publications as of January, 2024
Journal Articles
[1] A. Mousavi, M. Berggren, L. Hägg, and E. Wadbro. Topology optimization of a waveguide acoustic black hole for enhanced wave focusing. J. Acoust. Soc. Amer., 155:742–756, January 2024. weblink.
[2] A. H. Bokhari, M. Berggren, D. Noreland, and E. Wadbro. Loudspeaker cabinet design by topology optimization. Sci. Rep., 13:21248, 2023. weblink.
[3] H. Nobis, P. Schlatter, E. Wadbro, M. Berggren, and D. S. Henningson. Topology optimization of superhydrophobic surfaces to delay spatially developing modal laminar–turbulent transition. Int. J. Heat Fluid Fl., 114:109231, 2023. .pdf.
[4] A. Mousavi, M. Berggren, and E. Wadbro. Extending material distribution topology optimization to boundary-effect-dominated problems with applications in viscothermal acoustics. Mater. Design, 234:112302, 2023. .pdf.
[5] M. Berggren. Shape calculus for fitted and unfitted discretizations: domain transformations vs. boundary-face dilations. Commun. Optim. Theory, 2023:1–33, 2023. Article ID 27, .pdf.
[6] H. Nobis, P. Schlatter, E. Wadbro, M. Berggren,
and D. S. Henningson. Modal laminar–turbulent transition delay by means
of topology optimization of superhydrophobic surfaces. Comput. Methods
Appl. Mech. Engrg., 403:115721, 2022.
.pdf.
[7] A. Mousavi, M. Berggren, and E. Wadbro. How the waveguide acoustic black hole works: A study of possible damping mechanisms. J. Acoust. Soc. Amer., 151(6), June 2022. https://doi.org/10.1121/10.0011788.
[8] H. Nobis, P. Schlatter, E. Wadbro, M. Berggren,
and D. S. Henningson. Topology optimization of unsteady flows using the
spectral element method. Comput. & Fluids, 239:105387, 2022.
.pdf.
[9] M. Berggren and L. Hägg. Well-posed variational formulations of
Friedrichs-type systems. J. Differential Equations, 292:90–131, May 2021.
.pdf.
[10] L. Hägg and M. Berggren. On the well-posedness of Galbrun’s
equation. J. Math. Pures Appl., 150:112–133, 2021.
.pdf.
[11] N. B. Asan, E. Hassan, M. D. Perez, L. Joseph, M. Berggren,
T. Voigt, and R. Augustine. Fat-IntraBody communication at 5.8 GHz:
Verification of dynamic body movement effects using computer simulation
and experiments. IEEE Access, 9:48429–48445, 2021.
.pdf.
[12] A. H. Bokhari, M. Berggren, D. Noreland, and E. Wadbro. A computationally efficient hybrid 2D–3D subwoofer model. Sci. Rep., 11:255, 2021. .pdf.
[13] M. J. Cops, J. G. McDaniel, E. A. Magliula, D. J. Bamford, and
M. Berggren. Estimation of acoustic absorption in porous materials based
on viscous and thermal boundary layers as acoustic boundary conditions.
J. Acoust. Soc. Amer., 148(3):1624–1635, September 2020. .pdf.
Copyright (2020) Acoustical Society of America. This article may be downloaded
for personal use only. Any other use requires prior permission of the author
and the Acoustical Society of America. The article can also be found at
https://doi.org/10.1121/10.0001959.
[14] E. Hassan, B. Schneider, F. Michler, M. Berggren, E. Wadbro,
F. Roehrl, S. Zorn, R. Weigel, and F. Lurz. Multilayer topology
optimization of wideband SIW-to-waveguide transitions. IEEE Trans.
Microwave Theory Tech., 68(4):1326–1339, April 2020.
.pdf.
[15] E. Hassan, D. Martynenko, E. Wadbro, G. Fischer, and M. Berggren.
Compact differential-fed planar filtering antennas. Electronics, 8(1241),
2019.
.pdf.
[16] A. Bernland, E. Wadbro, and M. Berggren. Shape optimization of a
compression driver phase plug. SIAM J. Sci. Comput., 41(1):B181–B204,
2019.
.pdf.
[17] N. B. Asan, E. Hassan, J. Velander, S. Redzwan, D. Noreland, T. J. Bkokuis, E. Wadbro, M. Berggren, T. Voigt, and R. Augustine. Characterization of the fat channel of intra-body communication at R-band frequencies. Sensors, 18, 2752, 2018. .pdf.
[18] C. Saglietti, P. Schlatter, E. Wadbro, M. Berggren, and D. Henningson. Topology optimization of heat sinks in a square differentially heated cavity. Int. J. Heat Fluid Fl., 74:36–52, 2018. .pdf.
[19] M. Berggren, A. Bernland, and D. Noreland. Acoustic boundary layers as boundary conditions. J. Comput. Phys., 371:633–650, 2018. .pdf.
[20] E. Hassan, E. Wadbro, L. Hägg, and M. Berggren. Topology
optimization of compact wideband coaxial-to-waveguide transitions with
minimum-size control. Struct. Multidiscip. Optim., 57:1765–1777, 2018.
.pdf.
[21] A. Bernland, E. Wadbro, and M. Berggren. Acoustic shape
optimization using cut finite elements. Internat. J. Numer. Methods Engrg.,
113:432–449, 2018.
.pdf.
[22] E. Hassan, D. Noreland, E. Wadbro, and M. Berggren. Topology
optimisation of wideband coaxial-to-waveguide transitions. Sci. Rep.,
7:45110, 2017.
.pdf.
[23] E. L. Yedeg, E. Wadbro, and M. Berggren. Layout optimization of
thin sound-hard material to improve the far-field directivity properties of
an acoustic horn. Struct. Multidiscip. Optim., 55(3):795–808, 2017.
.pdf.
[24] S. Schmidt, E. Wadbro, and M. Berggren.
Large-scale three-dimensional acoustic horn optimization. SIAM J. Sci.
Comput., 38(6):B917–B940, 2016.
.pdf.
[25] E. L. Yedeg, E. Wadbro, P. Hansbo, M. G. Larson, and M. Berggren. A Nitsche-type method for Helmholtz equation with an embedded acoustically permeable interface. Comput. Methods Appl. Mech. Engrg., 304:479–500, 2016. .pdf.
[26] E. L. Yedeg, E. Wadbro, and M. Berggren. Interior layout topology
optimization of a reactive muffler. Struct. Multidiscip. Optim., 53:634–656,
2016.
.pdf.
[27] F. Kasolis, E. Wadbro, and M. Berggren. Analysis of fictitious
domain approximations of hard scatterers. SIAM J. Numer. Anal.,
53(5):2347–2362, 2015.
.pdf.
[28] E. Hassan, D. Noreland, R. Augustine, E. Wadbro, and M. Berggren.
Topology optimization of planar antennas for wideband near-field coupling.
IEEE Trans. Antennas and Propagation, 63(9):4208–4213, 2015.
.pdf.
[29] E. Hassan, E. Wadbro, and M. Berggren. Patch and ground
plane design of microstrip antennas by material distribution topology
optimization. PIER B, 59:89–102, 2014.
.pdf.
[30] E. Hassan, E. Wadbro, and M. Berggren. Topology optimization
of metallic antennas. IEEE Trans. Antennas and Propagation,
62(5):2488–2500, May 2014.
.pdf.
[31] E. Wadbro, S. Zahedi, G. Kreiss, and M. Berggren. A uniformly
well-conditioned, unfitted Nitsche method for interface problems. BIT
Numer. Math., 53(3):791–820, 2013. .pdf.
The final publication is available at
http://link.springer.com/article/10.1007%2Fs10543-012-0417-x.
[32] M. W. Roos, E. Wadbro, and M. Berggren. Computational estimation of fluid mechanical benefits from a fluid deflector at the distal end of artificial vascular grafts. Comput. Biol. Med., 43:164–168, 2013. .pdf.
[33] M. Berggren and F. Kasolis. Weak material approximation of holes
with traction-free boundaries. SIAM J. Numer. Anal., 50(4):1827–1848,
2012.
.pdf.
[34] F. Kasolis, E. Wadbro, and
M. Berggren. Fixed-mesh curvature-parameterized shape optimization of
an acoustic horn. Struct. Multidiscip. Optim., 46(5):727–738, 2012. .pdf.
The final publication is available at
http://link.springer.com/article/10.1007%2Fs00158-012-0828-y.
[35] R. Udawalpola, E. Wadbro, and M. Berggren. Optimization of a
variable mouth acoustic horn. Internat. J. Numer. Methods Engrg.,
85:591–606, 2011.
The copyright holder (Wiley) unfortunately agrees only to author publication of
a pre-peer reviewed version: .pdf.
[36] D. Noreland, R. Udawalpola, and M. Berggren. A hybrid scheme for
bore design optimization of a brass instrument. J. Acoust. Soc. Amer.,
128(3):1391–1400, September 2010. .pdf.
Copyright (2010) Acoustical Society of America. This article may be downloaded
for personal use only. Any other use requires prior permission of the
author and the Acoustical Society of America. The article appeared in
the Journal of the Acoustical Society of America and may be found at
http://link.aip.org/link/?JAS/128/1391.
[37] E. Wadbro and M. Berggren. High contrast microwave tomography
using topology optimization techniques. J. Comput. Appl. Math.,
234:1773–1780, 2010.
.pdf (preprint).
[38] E. Wadbro, R. Udawalpola, and M. Berggren. Shape and topology
optimization of an acoustic horn–lens combination. J. Comput. Appl.
Math., 234:1781–1787, 2010.
.pdf (preprint).
[39] E. Wadbro and M. Berggren. Megapixel topology optimization on a
graphics processing unit. SIAM Rev., 51(4):707–721, 2009.
.pdf.
[40] M. Berggren, S.-E. Ekström, and J. Nordström. A discontinuous
Galerkin extension of the vertex-centered edge-based finite volume method.
Commun. Comput. Phys., 5(2–4):456–468, February 2009.
.pdf (preprint).
[41] E. Wadbro and M. Berggren. Microwave tomography using topology
optimization techniques. SIAM J. Sci. Comput., 30(3):1613–1633, 2008.
.pdf.
[42] R. A. Bartlett, B. G. van Bloemen Waanders, and M. Berggren.
Hybrid differentiation strategies for simulation and analysis of applications
in C++. ACM Trans. Math. Software, 35(1), July 2008. Article 1, 27 pages,
.pdf.
[43] R. Udawalpola and M. Berggren. Optimization of an acoustic horn with respect to efficiency and directivity. Internat. J. Numer. Methods Engrg., 73(11):1571–1606, 2008.
[44] E. Wadbro and M. Berggren. Topology optimization of an acoustic horn. Comput. Methods Appl. Mech. Engrg., 196:420–436, 2006.
[45] O. Amoignon, J. Pralits, A. Hanifi, M. Berggren, and D. S. Henningson. Shape optimization for delay of laminar–turbulent transition. AIAA J., 44(5):1009–1024, May 2006.
[46] M. Berggren. A vertex-centered dual discontinuous Galerkin method. J. Comput. Appl. Math., 192(1):175–181, 2006.
[47] M. Berggren. Approximations of very weak solutions to boundary-value
problems. SIAM J. Numer. Anal., 42(2):860–877, 2004.
.pdf.
[48] E. Bängtsson, D. Noreland, and M. Berggren. Shape optimization of an acoustic horn. Comput. Methods Appl. Mech. Engrg., 192:1533–1571, 2003.
[49] M. Högberg and M. Berggren. Numerical approaches to optimal control of a model equation for shear flow instabilities. Flow Turbul. Combust., 3/4:299–320, 2000.
[50] P. Andersson, M. Berggren, and D. S. Henningson. Optimal
disturbances and bypass transition in boundary layers. Phys. Fluids,
11(1):134–150, January 1999. .pdf.
Copyright 1999 American Institute of Physics. This article may be downloaded
for personal use only. Any other use requires prior permission of the
author and the American Institute of Physics. The article may be found at
http://pof.aip.org/resource/1/phfle6/v11/i1/p134_s1.
[51] M. Berggren. Numerical solution of a flow-control problem: Vorticity
reduction by dynamic boundary action. SIAM J. Sci. Comput.,
19(3):829–860, May 1998.
.pdf.
[52] M. Berggren, R. Glowinski, and J. L. Lions. A computational approach to controllability issues for flow-related models. (I): Pointwise control of the viscous Burgers equation. Int. J. Comput. Fluid Dyn., 7(3):237–252, 1996.
[53] M. Berggren, R. Glowinski, and J. L. Lions. A computational approach to controllability issues for flow-related models. (II): Control of two-dimensional, linear advection-diffusion and Stokes models. Int. J. Comput. Fluid Dyn., 6(4):253–274, 1996.
[54] M. Berggren and R. Glowinski. A spectral preconditioner for control problems associated with linear evolution equations. East-West J. Numer. Math., 3(2):81–109, 1995.
[55] M. Berggren. Solving an advection-diffusion problem on the Connection Machine. Concurrency: Pract. Exper., 6(1):55–68, 1994.
Manuscripts
[1] L. Hägg and M. Berggren. Investigations of an effective time-domain
boundary condition for quiescent viscothermal acoustics. arXiv:2207.03152,
2022,
.pdf.
Reviewed Conference Proceedings
[1] M. Berggren, A. Bernland, A. Massing, D. Noreland, and
E. Wadbro. A computationally inexpensive visco–thermal boundary layer
model for acoustic simulation and optimization. In M. Kaltenbacher, J. M.
Melenk, L. Nannen, and F. Toth, editors, Waves 2019, 4th International
Conference on Mathematical and Numerical Aspects of Wave Propagation,
2019.
.pdf.
[2] E. Hassan, M. Berggren, B. Scheiner, F. Michler, R. Weigel, and F. Lurz. Design of planar microstrip-to-waveguide transitions using topology optimization. In IEEE Radio & Wireless Symposium, Orlando, Florida, 2019.
[3] C. Saglietti, E. Wadbro, M. Berggren, and D. S. Henningson. Heat
transfer maximization in a three dimensional conductive differentially
heated cavity by means of topology optimization. In 6th European
Conference on Computational Mechanics (ECCM 6) and 7th European
Conference on Computational Fluid Dynamics (ECFD 7), Glasgow, UK,
2018.
.pdf.
[4] F. Kasolis, E. Wadbro, and M. Berggren. Preventing resonances
within approximated sound-hard material in acoustic design optimization.
In N.D. Lagaros M. Papadrakakis, M.G. Karlaftis, editor, OPT-i 2014.
An International Conference on Engineering and Applied Sciences
Optimization. Kos Island, Greece, 4–6 June, 2014.
.pdf.
[5] E. Hassan, E. Wadbro, and M. Berggren. Conductive material distribution optimization for ultrawideband antennas. In Waves 2013. The 11th International Conference on Mathematical and Numerical Aspects of Waves, 2013. http://www.lamsin.tn/waves13/proceedings.pdf.
[6] M. Berggren, U. Lacis, F. Lindström, and E. Wadbro. Sound
vibration damping optimization with application to the design of
speakerphone casings. In 10th World Congress of Structural and
Multidisciplinary Optimization, Orlando, Florida, USA, 2013. Paper id
5569,
.pdf.
[7] E. Hassan, E. Wadbro, and M. Berggren. Topology optimization of
UWB monopole antennas. In 7th European Conference on Antennas and
Propagation (EuCAP), 2013, pages 1488–1492, 2013.
.pdf.
[8] M. Berggren. A unified discrete–continuous sensitivity analysis
method for shape optimization. In W. Fitzgibbon, Y. A. Kuznetsov,
P. Neittaanmäki, J. Periaux, and O. Pironneau, editors, Applied and
Numerical Partial Differential Equations, volume 15 of Computational
Methods in Applied Sciences. Springer, 2010. .pdf.
The final publication is available at
http://link.springer.com/chapter/10.1007%2F978-90-481-3239-3_4.
[9] A. Gersborg-Hansen, M. Berggren, and B. Dammann. Topology optimization of mass distribution problems in Stokes flow. In M. P. Bendsoe, N. Olhoff, and O. Sigmund, editors, IUTAM Symposium on Topological Design Optimization of Structures, Machines, and Materials. Status and Perspectives, pages 365–374. Springer, 2006.
[10] E. Wadbro and M. Berggren. Topology optimization of wave transducers. In M. P. Bendsøe, N. Olhoff, and O. Sigmund, editors, IUTAM Symposium on Topological Design Optimization of Structures, Machines, and Materials, pages 301–310. Springer, 2006.
[11] O. Amoignon, J. O. Pralits, A. Hanifi, M. Berggren, and D. S. Henningson. Flap design optimization for take-off performance. In W. Schilling, W. Haase, J. Periaux, , H. Baier, and G Bugeda, editors, Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems: EUROGEN 2005. FLM, Munich, 2005.
[12] O. Amoignon, J. O. Pralits, A. Hanifi, M. Berggren, and D. S. Henningson. Adjoint-based shape optimization for natural laminar flow design. In Design Optimization International Conference, March 31–April 2, Athens, Greece, 2004.
[13] O. Amoignon and M. Berggren. Discrete adjoint-based shape optimization for an edge-based finite-volume solver. In K. J. Bathe, editor, Computational Fluid and Solid Mechanics 2003, pages 2190–2193. Elsevier Science Ltd, 2003.
[14] M. Berggren, E. Bängtsson, and Daniel Noreland. Multifrequency shape optimization of an acoustic horn. In K. J. Bathe, editor, Computational Fluid and Solid Mechanics 2003, pages 2204–2207. Elsevier Science Ltd, 2003.
[15] M. Chevalier, M. Högberg, M. Berggren, and D. S. Henningson. Linear and nonlinear optimal control in spatial boundary layers. AIAA 3rd Theoretical Fluid Mechanics Meeting, St. Louis, MO. AIAA Paper 2002-2755, 2002.
[16] M. Högberg, T. R. Bewley, M. Berggren, and D. S. Henningson. Optimal control of transition initiated by oblique waves in channel flow. In Turbulence and Shear Flow Phenomena — 2, volume 1, pages 157–161. 2001.
[17] D. Wang, S. Wallin, M. Berggren, and P. Eliasson. A computational study of unsteady turbulent buffet aerodynamics. AIAA Paper 2000-2657, 2000.
[18] M. Chevalier and M. Berggren. Accuray of gradient computations in aerodynamic shape optimization, 2000. Proc., 22nd Congress of the International Council of the Aeronautical Science. ICAS-0245.1.
[19] M. Berggren. The volume discharge approach to geometric conservation. In T. Kvamsdal et al., editor, Computational Methods for Fluid–Structure Interaction. Tapir Publishers, N-7005 Trondheim, Norway, 1999.
[20] P. Andersson, M. Berggren, and D. S. Henningson. Optimal disturbances in boundary layers. In J. Borggaard, J. Burns, E. Cliff, and S. Schreck, editors, Computational Methods for Optimal Design and Control, Proceedings of the AFOSR workshop on Optimal Design and Control, Arlington, Virginia, 1997, pages 1–26. Birkhäuser, 1998.
[21] M. Berggren and M. Heinkenschloss. Parallel solution of optimal-control problems by time-domain decomposition. In M-O Bristeau, G. Etgen, W. Fitzgibbon, J. L. Lions, J. Périaux, and M. F. Wheeler, editors, Computational Science for the 21st Century, pages 102–112. Wiley, 1997.
Book Sections
[1] S.-E. Ekström and M. Berggren. Incorporating a discontinuous Galerkin method into the existing vertex-centered edge-based finite volume solver Edge. In N. Kroll, H. Bieler, H. Deconinck, V. Couaillier, H. van der Ven, and K. Sørensen, editors, ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications, volume 113 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pages 39–52. Springer-Verlag, Berlin, 2010.
[2] S.-E. Ekström and M. Berggren. Agglomeration multigrid for the vertex-centered dual discontinuous Galerkin method. In N. Kroll, H. Bieler, H. Deconinck, V. Couaillier, H. van der Ven, and K. Sørensen, editors, ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications, volume 113 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pages 301–308. Springer-Verlag, Berlin, 2010.
[3] M. Berggren, P. Eliasson, C. Johansson, S. Wallin, and D. Wang. Flow physics modelling and numerical issues for unsteady and aeroelastic computations. In W. Haase, V. Selmin, and B. Winzell, editors, Progress in Computational Flow-Structure Interaction Results of the Project UNSI, supported by the European Union 1998–2000, pages 73–86. Springer, 2003. In series Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol 81.
[4] O. Amoignon and M. Berggren. Discrete adjoint method for an edge-based finite-volume solver. In V. Selmin et al., editors, book reporting results of the EU-project Aeroshape. To appear in Springer series Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2004.
Reports
[1] L. Hägg, D. Noreland, E. Wadbro, and M. Berggren. 1D-model of the interaction between a stack of wood and an imposed electromagnetic wave. Technical Report DiVA: diva2:881647, Department of Computing Science, Umeå University, 2015. .pdf.
[2] E. Hassan, E. Wadbro, and M. Berggren. Time-domain sensitivity analysis for conductivity distribution in Maxwell’s equations. Technical Report UMINF 15.06, Dept. of Computing Science, Umeå University, 2015. Fulltext.
[3] U. Lacis, E. Wadbro, and M. Berggren. Design optimization of
phone casings for sound vibration damping: preliminary studies on the
Euler–Bernoulli beam model. Technical Report UMINF 12.16, Department
of Computing Science, Umeå University, 2012.
.pdf.
[4] S. Zahedi, E. Wadbro, G. Kreiss, and M. Berggren. A uniformly
well-conditioned, unfitted Nitsche method for interface problems: part
I. Technical Report TRITA-NA 2011:1, Numerical Analysis, School of
Computer Science and Communication, KTH Royal Institute of Technology,
Stockholm, Sweden, 2011.
.pdf.
[5] E. Wadbro, S. Zahedi, G. Kreiss, and M. Berggren. A uniformly
well-conditioned, unfitted Nitsche method for interface problems: part
II. Technical Report TRITA-NA 2011:2, Numerical Analysis, School of
Computer Science and Communication, KTH Royal Institute of Technology,
Stockholm, Sweden, 2011.
.pdf.
[6] D. Noreland, R. Udawalpola, P. Seoane, E. Wadbro, and M. Berggren. An efficient loudspeaker horn designed by numerical optimization: an experimental study. Technical Report UMINF 10.1, Dep. of Computing Science, Umeå University, 901 87 Umeå, Sweden, 2010. .pdf.
[7] M. Högberg, M. Chevalier, M. Berggren, and D. S. Henningson. Optimal control in wall bounded flows. Technical Report FOI-R-0182-SE, FOI, the Swedish Defence Research Agency, SE-172 90 Stockholm, Sweden, 2001.
[8] M. Berggren. Geometric conservation for structured moving meshes. Technical Report TN 1998-28, FFA, the Aeronautical Research Institute of Sweden, P. O. Box 11021, S-161 11 Bromma, Sweden, 1998.
[9] M. Berggren. Optimal Control of Time Evolution Systems: Controllability Investigations and Numerical Algorithms. Ph. D. thesis, Department of Computational and Applied Mathematics, Rice University, Houston, Tx 77251-1892, 1995.