REINFORCEMENT LEARNING

Chapter 21.1-21.3

Timotheus Kampik

UMEÅ UNIVERSITY

THAT'S ME

- Bachelor's in Information Systems (Kristiansand)
- Master's Computer Science (Tromsø)
- Currently pursuing PhD at Umeå University:
	- o WASP Sweden Autonomous Systems
- Industry background in
	- o enterprise systems, product management
	- o open source software
- Research interests:
	- o AI and decision making
	- o Artificial intelligent agents of bounded rationality

EXPECTED LEARNING OUTCOMES

- Recap: Bellman equation and value iteration to solve Markov Decision Process (MDP) problems
- Understand active and passive reinforcement learning
- Be able to conceptualize the exploration vs. exploitation dilemma
- Understand Q-learning
- Be able to implement multi-armed bandits
- **Gain an intuition of how reinforcement learning can be applied**

AGENDA I

- Review: Bellman Equation & MDPs
- RL overview
- Why is RL important?
- Passive RL
	- o Direct utility estimation
	- o Temporal difference learning
- Active RL (continued)
	- \circ ϵ -greedy
	- o Exploration vs. exploitation
	- \circ ϵ -greedy with decaying ϵ

AGENDA II

- Active RL (continued)
	- o Q-learning
	- o Multi-armed bandits
- Examples
	- o Robotics (Boston Dynamics)
	- o Music recommender system (Spotify)
	- o Basic research (UmU)
- Assignment preview

Artificial Intelligence: Methods and applications cial Intelligence: Methods and applications
Timotheus Kampik, Umeå University 5

REVIEW: MARKOV DECISION PROCESSES

$U_{i+1}(S) = R(S) + \gamma \max$ γ max $\sum_{s'} P(s'|s, a) U_i(s')$

Artificial Intelligence: Methods and applications uar intemigente. Pretinuas and applications
Timotheus Kampik, Umeå University 6

REVIEW: MARKOV DECISION PROCESSES

Bellman equation:

$$
U(s) = \max_{a \in A(s)} (R(s, a) + \gamma U(s'))
$$

 \circ s: Current state

- \circ A(s): all possible actions at state s
- \circ s': Future state
- \circ R(s, a): Immediate reward of S after action a
- o 1*:* Discount factor

\rightarrow Take the action that maximizes the immediate reward plus all time-discounted future rewards

Artificial Intelligence: Methods and applications dia Intelligence. Hethods and applications
Timotheus Kampik, Umeå University 7

REVIEW: VALUE ITERATION I

Artificial Intelligence: Methods and applications Timotheus Kampik, Umeå University ⁸

REVIEW: VALUE ITERATION II

Artificial Intelligence: Methods and applications Timotheus Kampik, Umeå University ⁹

REVIEW: VALUE ITERATION III

Artificial Intelligence: Methods and applications da Intelligence: Hechods and applications
Timotheus Kampik, Umeå University 10

PROBLEMS WITH MDPS

?

¹¹ Artificial Intelligence: Methods and applications Timotheus Kampik, Umeå University

PROBLEMS WITH MDPS

- Simplistic: states and rewards often not fully known
- State space grows quickly, more so with POMDPs

 \rightarrow Most real-world problems are too complex to be solved with MDPs

Artificial Intelligence: Methods and applications and applications of the state Timotheus Kampik, Umeå University

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING (RL)

REINFORCEMENT LEARNING (RL)

- An **agent** learns through iterative inter**actions** with an **environment**
- "Trial and error" approach (very roughly)
- RL log entry: tuple (**State, Action, Time, Reward**)
- **How to select actions that maximize long-term rewards?**
- How to design rewards?

PASSIVE VS. ACTIVE VS. INVERSE RL

- **Passive**: policy is known/fixed: learn utilities of states
	- o Direct utility estimation
	- o Adaptive programming
	- o Temporal difference learning
- **Active**: policy is learned as we go along/dynamic
	- o Active temporal difference learning
	- o Q-learning
	- o State-action-reward-state-action (SARSA)
	- o Multi-armed bandits
- **Inverse**: learn policy of an agent we observe

MOTIVATION: WHY RL?

- "Traditional" learning is just correlation and clustering
	- \rightarrow Does not allow for great degree of autonomy
- Planning cannot solve many problems in dynamic real-world environments
	- \rightarrow Computationally too complex

MOTIVATION: WHY RL?

Use Cases?

Artificial Intelligence: Methods and applications Timotheus Kampik, Umeå University ¹⁸

MOTIVATION: WHY RL?

McInerney, James, et al. "Explore, exploit, and explain: personalizing explainable recommendations with bandits." *Proceedings of the 12th ACM Conference on Recommender Systems*. ACM, 2018.

<https://robots.ieee.org/robots/spotmini/>

Hwangbo, Jemin, et al. "Learning agile and dynamic motor skills for legged robots." *arXiv preprint arXiv:1901.08652* (2019).

Artificial Intelligence: Methods and applications dia Intelligence. Hethods and applications
Timotheus Kampik, Umeå University 19

PASSIVE REINFORCEMENT LEARNING

PASSIVE RL

- Agent interacts with environment using a fixed policy
- The agent use the fixed policy π
- Evaluate policy π
- Passive RL does not dynamically choose actions

- Essentially supervised learning
- Run policy several times For each time:
	- o Update expected utility of state with: "experienced" reward + future rewards at the given state
- Utility of state *s*, given policy π :

$$
U^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s))U^{\pi}(s')
$$

s: state, π : policy
 γ : discount factor
s': future state

Figure 21.1 (a) A policy π for the 4×3 world; this policy happens to be optimal with rewards of $R(s) = -0.04$ in the nonterminal states and no discounting. (b) The utilities of the states in the 4×3 world, given policy π .

Russel, Norvig: Artificial Intelligence: A Modern Approach

- \bullet (1,1): -0.04 \rightarrow (1,2): -0.04 \rightarrow (1,3): -0.04 \rightarrow $(2,3)$: $-0.04 \rightarrow (3,3)$: $-0.04 \rightarrow (4,3)$: $+1$
- $(1,1)$: -0.04 \rightarrow $(2,1)$: -0.04 \rightarrow $(3,1)$: -0.04 \rightarrow $(3,2)$: -0.04 \rightarrow (4,2): -1

What is the estimated utility of state $(1,1)$?

Artificial Intelligence: Methods and applications

Timethous Kennils University (Altitudinations 24 Timotheus Kampik, Umeå University

- \bullet (1,1): $-0.04 \rightarrow (1,2)$: $-0.04 \rightarrow (1,3)$: -0.04 $(2,3): -0.04 \rightarrow (3,3): -0.04 \rightarrow (4,3): +1$
- \bullet (1,1): -0.04 \rightarrow (2,1): -0.04 \rightarrow (3,1): -0.04 \rightarrow

$$
(3,2): -0.04 \rightarrow (4,2): -1
$$

What is the estimated utility of state $(1,1)$? \rightarrow (1 - 5 x 0.04 - 1 – 4 x 0.04)/2 $= -0.18$

Artificial Intelligence: Methods and applications and applications of the state Timotheus Kampik, Umeå University

Reduces the RL problem to an inductive learning problem

oMisses that utilities are not independent \circ No learning until the end of trial \rightarrow converges slowly

TEMPORAL-DIFFERENCE LEARNING

- Adjust (update) the current estimate of utility of each state
- By observing actions, transitions, and rewards
- It shows how much we under/over estimated the utility of the current state and then adjust it based on the observed successor s'
- Each time we move from s to s' we update the utility estimation
- Basis for Q-learning algorithm (active RL)

TEMPORAL-DIFFERENCE LEARNING

function PASSIVE-TD-AGENT(*percept*) **returns** an action

inputs: *percept*, a percept indicating the current state s' and reward signal r' **persistent**: π , a fixed policy

 U , a table of utilities, initially empty

 N_s , a table of frequencies for states, initially zero

s, a, r , the previous state, action, and reward, initially null

if s' is new **then** $U[s'] \leftarrow r'$

if s is not null **then**

increment $N_s[s]$

 $U[s] \leftarrow U[s] + \alpha(N_s[s])(r + \gamma U[s'] - U[s])$ **if** s'.TERMINAL? **then** s, a, r \leftarrow null **else** s, a, r \leftarrow s', $\pi[s']$, r' return a

Russel, Norvig: Artificial Intelligence: A Modern Approach

Artificial Intelligence: Methods and applications and applications of the state Timotheus Kampik, Umeå University

TEMPORAL-DIFFERENCE LEARNING

$U[s] \leftarrow U[s] + \alpha(N_s[s])(r + \gamma U[s'] - U[s])$

- $U[s]$: estimate of reward in previous state s
- α : learning rate
- $N_s[s]$: frequency of state *s*
- *r*: reward, as just received in state *s*
- $\gamma U[s'] U[s]$: discounted reward of current state s' reward of previous state
	- \rightarrow How good is current state compared to previous state?
	- \rightarrow If reward in previous state was higher, we discount utility, else we add utility to estimation

PROBLEM WITH PASSIVE REINFORCEMENT LEARNING

- In passive learning we can estimate utilities and transition probabilities for a **fixed policy**
	- o using passive recordings of an agent interacting with the environment.
- But not for any action that is not in the policy
- The agent cannot discover the environment to find better policies, it can only use the action which is defined by the fixed policy.

ACTIVE REINFORCEMENT LEARNING

ACTIVE RL

- The agent attempts to find the optimal policy
- Or at least a "good" policy
- By exploring the world taking different actions

 \rightarrow The agent learns as it goes along and adjusts its policy step-by-step

Artificial Intelligence: Methods and applications

Timethods (September 1996) University

22 Timotheus Kampik, Umeå University

ACTIVE LEARNING

- Methods are similar to the passive learning but with ability of using the new freedom (choosing actions)
- Instead of using the expected utility for a fixed policy, the agent use expected utility for the best policy
- Agent can select any action to take (not only those that are defined by the fixed policy)
- Therefore, can explore the environment and improve the policy
- Its all about Exploration vs Exploitation

ε – greedy

- With probability of ε (0 < ε < 1): oExecute random action
- With probability of 1ε : o Execute action with highest expected utility, given current knowledge
- Update expected utility, given (state, action)

Artificial Intelligence: Methods and applications and applications of the state Timotheus Kampik, Umeå University

EXPLORATION-EXPLOITATION DILEMMA

?

³⁵ Artificial Intelligence: Methods and applications Timotheus Kampik, Umeå University

EXPLORATION-EXPLOITATION DILEMMA

• **Explore**: try to find better actions

• **Exploit**:

execute action with highest expected utility, given the knowledge we have

• **Explore too much**

 \rightarrow **regret caused by lack of commitment**

- **Exploit too much**
	- è *regret* **caused by lack of knowledge**
	- è **get stuck in local maximum**

Artificial Intelligence: Methods and applications and applications of the state Timotheus Kampik, Umeå University

Decaying ϵ – greedy

- With probability of ε (0 < ε < 1): oExecute random action
- With probability of 1- ε : o Execute action with highest expected utility, given current knowledge
- Update expected utility, given (state, action)
- Decrease ε (multiply by factor $x, 0 < x < 1$)

Q-LEARNING

• Q-learning learns **action-utility** instead of learning utilities

 \circ $U(s) = \max_{a} Q(s, a)$

- Does not need a model of $P(s'|s, a)$:
	- o Probability of being in state *s*', given prior state *s* and action *a*
	- → **model-free**
- Q-learning is off-policy,
- Action-utility assignment analogous to temporal difference learning:

$$
Q(s, a) \leftarrow Q(s, a) + \alpha(R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a))
$$

Q-LEARNING ALGORITHM

- 1. Start in state *s*
- 2.Take action a based on exploration/exploitation strategy (epsilon-greedy or similar)
- 3.Based on the utility of the new state *s'*: update the utility of previous state *s*
- 4.Execute the policy
- 5.Update the current state *s'*
- 6.Repeat steps

MULTI-ARMED BANDITS (MAB)

- *N* possible actions
- Each action has unknown expected reward (random variable)
- Goal:
	- o find best (or at least "good" action)

http://www.primarydigit.com/blog/multi-arm-banditsexplorationexploitation-trade-off

Artificial Intelligence: Methods and applications (40) 40 Artificial Intelligence: Methods and applications (40) 40 Timotheus Kampik, Umeå University

MAB – EPSILON-GREEDY

- *N* arms, $0 < \varepsilon < 1$
- At iteration *i*, *0 < i < N:* oPull arm *i.*

oLog reward returned by arm *i.*

• At iteration *i, i > N:*

 \circ If $\varepsilon > random(0,1)$: Pull random arm

oElse: Pull arm with highest expected reward

oUpdated expected reward of pulled arm

Artificial Intelligence: Methods and applications (2001) 2014 12:30 and 30 Artificial Intelligence: Methods and applications (2001) 2014 12:30 and 30 Artificial Intelligence: Methods and applications (2001) 2014 12:30 and Timotheus Kampik, Umeå University

MAB – EPSILON-DECAY

- *N* arms, $0 < \varepsilon < 1$, $0 < x < 1$
- At iteration *i*, *0 < i < N:*
	- oPull arm *i.*
	- oLog reward returned by arm *i.*
- At iteration *i, i > N:*
	- \circ If $\varepsilon > random(0,1)$: Pull random arm oElse: Pull arm with highest expected reward oUpdated expected reward of pulled arm

 $\alpha \in \mathcal{E} \times \mathcal{X}$

MAB – OTHER ALGORITHMS

- Decay function for epsilon
- "Discard" arms that are clearly bad
- Thompson sampling:
	- o Assumes known initial distribution over action values
	- o Allows (theoretically) to compute optimal exploration vs. exploitation balance

EXAMPLES

THE OBVIOUS ONES

 \bullet

https://deepmind.com/blog/article/alp hastar-mastering-real-time-strategygame-starcraft-ii

UMEÅ UNIVERSITY

Artificial Intelligence: Methods and applications dia Intelligence. Hechods and applications
Timotheus Kampik, Umeå University 45

https://deepmind.com/blog/article/alphazero-shedding-newlight-grand-games-chess-shogi-and-go

https://arxiv.org/pdf/1312.5602.pdf

SPOTIFY

McInerney, James, et al. "Explore, exploit, and explain: personalizing explainable recommendations with bandits." *Proceedings of the 12th ACM Conference on Recommender Systems*. ACM, 2018.

Artificial Intelligence: Methods and applications dia Intelligence. Hechods and applications
Timotheus Kampik, Umeå University 46

EXPLAINABLE BANDITS

Use novel **explainable** personalized recommendations generated by multi-armed bandits

- Make exploration explainable
- Bandit dynamically changes explanation type
- Recommendations on two dimension:
	- Recommended item
	- Explanation of recommended item

JC Nieves @ AI Methods and Applications

BOSTON DYNAMICS (ETH ZÜRICH, INTEL)

Random initial configuration

Right front foot makes contact

Shift leg mass

Initial impact

Final configuration

Hwangbo, Jemin, et al. "Learning agile and dynamic motor skills for legged robots." *arXiv preprint arXiv:1901.08652* (2019).

Artificial Intelligence: Methods and applications dia Intelligence. Hethods and applications
Timotheus Kampik, Umeå University 48

RL FOR ROBOTS

- "Learn" controller that manages robot's locomotion skills "best"
- Train in simulation
- Eventually out-perform hand-crafted controllers
- Still needs control theory, though!

JC Nieves @ AI Methods and Applications

UMU: RL-REWARDS AND FAIR EQUILIBRIA

Kampik and Spieker. "Learning Agents of Bounded Rationality: Rewards Based on Fair Equilibria."

Artificial Intelligence: Methods and applications dia Intelligence. Hechods and applications
Timotheus Kampik, Umeå University 50

MULTI-AGENT GRID WORLD

- Agents act in a grid world
- Should collect coins
- Loose health over time \rightarrow need to repair
- Collecting coins and reparations negatively affect other coins/health of others
- \rightarrow How to act sustainably as a society/community?

REWARD DESIGN

- All (both) agents are rewarded for *fairness*
- Rewards are based on: oHow far are the *actual* actions from the closest *fair equilibrium*?

oSmaller distance leads to higher reward

JC Nieves @ AI Methods and Applications

FAIR EQUILIBRIUM - EXAMPLE

the software.

Show

JS-son Arena

This page shows how JS-son agents that learn with rewards based on fair equilibria act in a grid world arena.

Rewards: Average, Last 10 Steps

JC Nieves @ AI Methods and Applications

BANDITS FOR BUSINESS PROCESS MANAGEMENT

Mohan and Kampik. Work in progress.

BANDITS FOR BUSINESS PROCESS MANAGEMENT

BANDITS FOR BUSINESS PROCESS MANAGEMENT

- Use multi-armed bandits to test/simulate different task configurations before deploying at scale
- "Dynamic A/B testing"
- Especially useful in scenarios, where fullscale deployments are hard to change (e.g., smart contract)

LAB III – REINFORCEMENT LEARNING WITH MULTI-ARMED BANDITS

• Multi-armed bandits:

•

Practical: [Towards Data Science](https://towardsdatascience.com/solving-multiarmed-bandits-a-comparison-of-epsilon-greedy-and-thompson-sampling-d97167ca9a50) Academic: [Paper](https://arxiv.org/pdf/1402.6028)

- In the lab, you will implement a multi-armed bandit to solve an example problem.
- Your bandit will need to beat a "naïve" benchmark.
- The best bandit will be determined.
- You will need to use git for version control: [https://github.com/TimKam/multi-armed-bandit-](https://github.com/TimKam/multi-armed-bandit-lab)
lab

FURTHER READING

• *Russel, Norvig: Artificial Intelligence: A Modern Approach, chapters 21.1 – 21.3*

plus:

Literature about multi-armed bandits:

- o ["Towards Data Science" introduction to multi-armed bandits](https://towardsdatascience.com/solving-multiarmed-bandits-a-comparison-of-epsilon-greedy-and-thompson-sampling-d97167ca9a50)
- o *[Kuleshow, Precup: Algorithms for the multi-armed bandit](https://arxiv.org/pdf/1402.6028) problem*

Artificial Intelligence: Methods and applications dia Intelligence. Hechods and applications
Timotheus Kampik, Umeå University 58

FURTHER CODING

- *OpenAI Gym:* <https://gym.openai.com/>
- *Reinforcement learning in JavaScript:* https://metacar-project.com
- *Multi-armed bandits in Python:* <https://github.com/bgalbraith/bandits>

Artificial Intelligence: Methods and applications dia Intelligence. Hethods and applications
Timotheus Kampik, Umeå University 59