

THAT'S ME

- Bachelor's in Information Systems (Kristiansand)
- Master's Computer Science (Tromsø)
- Currently pursuing PhD at Umeå University:
 - o WASP Sweden Autonomous Systems
- Industry background in
 - o enterprise systems, product management
 - o open source software
- Research interests:
 - AI and decision making
 - Artificial intelligent agents of bounded rationality

EXPECTED LEARNING OUTCOMES

- Recap: Bellman equation and value iteration to solve Markov Decision Process (MDP) problems
- Understand active and passive reinforcement learning
- Be able to conceptualize the exploration vs. exploitation dilemma
- Understand Q-learning
- Be able to implement multi-armed bandits
- Gain an intuition of how reinforcement learning can be applied

AGENDA I

- Review: Bellman Equation & MDPs
- RL overview
- Why is RL important?
- Passive RL
 - Direct utility estimation
 - Temporal difference learning
- Active RL (continued)
 - \circ ϵ -greedy
 - Exploration vs. exploitation
 - \circ ϵ -greedy with decaying ϵ

AGENDA II

- Active RL (continued)
 - o Q-learning
 - Multi-armed bandits
- Examples
 - Robotics (Boston Dynamics)
 - Music recommender system (Spotify)
 - o Basic research (UmU)
- Assignment preview

REVIEW: MARKOV DECISION PROCESSES

$$U_{i+1}(S) = R(S) + \gamma \max_{a \in A(S)} \sum_{s'} P(s'|s,a) U_i(s')$$

REVIEW: MARKOV DECISION PROCESSES

Bellman equation:

$$U(s) = \max_{a \in A(s)} (R(s, a) + \gamma U(s'))$$

- o s: Current state
- \circ A(s): all possible actions at state s
- \circ s': Future state
- \circ R(s,a): Immediate reward of S after action a
- $\circ \gamma$: Discount factor

→ Take the action that maximizes the immediate reward plus all time-discounted future rewards

REVIEW: VALUE ITERATION I

REVIEW: VALUE ITERATION II

REVIEW: VALUE ITERATION III

PROBLEMS WITH MDPS

?

PROBLEMS WITH MDPS

- Simplistic: states and rewards often not fully known
- State space grows quickly, more so with POMDPs
- → Most real-world problems are too complex to be solved with MDPs

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING (RL)

Artificial Intelligence: Methods and applications Timotheus Kampik, Umeå University

REINFORCEMENT LEARNING (RL)

- An agent learns through iterative interactions with an environment
- "Trial and error" approach (very roughly)
- RL log entry: tuple (**State, Action, Time, Reward**)
- How to select actions that maximize long-term rewards?
- How to design rewards?

PASSIVE VS. ACTIVE VS. INVERSE RL

- **Passive**: policy is known/fixed: learn utilities of states
 - Direct utility estimation
 - Adaptive programming
 - Temporal difference learning
- **Active**: policy is learned as we go along/dynamic
 - Active temporal difference learning
 - Q-learning
 - State-action-reward-state-action (SARSA)
 - o Multi-armed bandits
- **Inverse**: learn policy of an agent we observe

MOTIVATION: WHY RL?

- "Traditional" learning is just correlation and clustering
 - → Does not allow for great degree of autonomy
- Planning cannot solve many problems in dynamic real-world environments
 - **→**Computationally too complex

MOTIVATION: WHY RL?

Use Cases?

MOTIVATION: WHY RL?

McInerney, James, et al. "Explore, exploit, and explain: personalizing explainable recommendations with bandits." *Proceedings of the 12th ACM Conference on Recommender Systems*. ACM, 2018.

https://robots.ieee.org/robots/spotmini/

Hwangbo, Jemin, et al. "Learning agile and dynamic motor skills for legged robots." *arXiv preprint arXiv:1901.08652* (2019).

PASSIVE REINFORCEMENT LEARNING

PASSIVE RL

- Agent interacts with environment using a fixed policy
- The agent use the fixed policy π
- Evaluate policy π
- Passive RL does not dynamically choose actions

- Essentially supervised learning
- Run policy several times
 For each time:
 - Update expected utility of state with: "experienced" reward + future rewards at the given state
- Utility of state s, given policy π :

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) U^{\pi}(s')$$

s: $state, \pi$: policy

γ: discount factor

s': future state

Figure 21.1 (a) A policy π for the 4×3 world; this policy happens to be optimal with rewards of R(s) = -0.04 in the nonterminal states and no discounting. (b) The utilities of the states in the 4×3 world, given policy π .

Russel, Norvig: Artificial Intelligence: A Modern Approach

•
$$(1,1)$$
: $-0.04 \rightarrow (1,2)$: $-0.04 \rightarrow (1,3)$: $-0.04 \rightarrow (2,3)$: $-0.04 \rightarrow (3,3)$: $-0.04 \rightarrow (4,3)$: $+1$

•
$$(1,1)$$
: $-0.04 \rightarrow (2,1)$: $-0.04 \rightarrow (3,1)$: $-0.04 \rightarrow (3,2)$: $-0.04 \rightarrow (4,2)$: -1

What is the estimated utility of state (1,1)?

- (1,1): $-0.04 \rightarrow (1,2)$: $-0.04 \rightarrow (1,3)$: -0.04(2,3): $-0.04 \rightarrow (3,3)$: $-0.04 \rightarrow (4,3)$: +1
- (1,1): -0.04 \rightarrow (2,1): -0.04 \rightarrow (3,1): -0.04 \rightarrow

$$(3,2)$$
: -0.04 \rightarrow $(4,2)$: -1

What is the estimated utility of state (1,1)?

$$\rightarrow$$
 (1 - 5 x 0.04 - 1 - 4 x 0.04) / 2

$$= -0.18$$

Reduces the RL problem to an inductive learning problem

- Misses that utilities are not independent
- No learning until the end of trial → converges slowly

TEMPORAL-DIFFERENCE LEARNING

- Adjust (update) the current estimate of utility of each state
- By observing actions, transitions, and rewards
- It shows how much we under/over estimated the utility of the current state and then adjust it based on the observed successor *s*′
- Each time we move from *s* to *s'* we update the utility estimation
- Basis for Q-learning algorithm (active RL)

TEMPORAL-DIFFERENCE LEARNING

function PASSIVE-TD-AGENT(percept) returns an action

inputs: percept, a percept indicating the current state s' and reward signal r'

persistent: π , a fixed policy

U, a table of utilities, initially empty

 N_s , a table of frequencies for states, initially zero

s, a, r, the previous state, action, and reward, initially null

if s' is new then $U[s'] \leftarrow r'$

if s is not null then

increment $N_s[s]$

$$U[s] \leftarrow U[s] + \alpha(N_s[s])(r + \gamma U[s'] - U[s])$$

if s'. Terminal? then $s, a, r \leftarrow \text{null else } s, a, r \leftarrow s', \pi[s'], r'$

return a

Russel, Norvig: Artificial Intelligence: A Modern Approach

TEMPORAL-DIFFERENCE LEARNING

$$U[s] \leftarrow U[s] + \alpha(N_s[s])(r + \gamma U[s'] - U[s])$$

- *U*[*s*]: estimate of reward in previous state s
- α : learning rate
- $N_s[s]$: frequency of state s
- r: reward, as just received in state s
- $\gamma U[s'] U[s]$: discounted reward of current state s' reward of previous state
 - → How good is current state compared to previous state?
 - → If reward in previous state was higher, we discount utility, else we add utility to estimation

PROBLEM WITH PASSIVE REINFORCEMENT LEARNING

- In passive learning we can estimate utilities and transition probabilities for a **fixed policy**
 - o using passive recordings of an agent interacting with the environment.
- But not for any action that is not in the policy
- The agent cannot discover the environment to find better policies, it can only use the action which is defined by the fixed policy.

ACTIVE REINFORCEMENT LEARNING

ACTIVE RL

- The agent attempts to find the optimal policy
- Or at least a "good" policy
- By exploring the world taking different actions
- → The agent learns as it goes along and adjusts its policy step-by-step

ACTIVE LEARNING

- Methods are similar to the passive learning but with ability of using the new freedom (choosing actions)
- Instead of using the expected utility for a fixed policy, the agent use expected utility for the best policy
- Agent can select any action to take (not only those that are defined by the fixed policy)
- Therefore, can explore the environment and improve the policy
- Its all about Exploration vs Exploitation

ε – greedy

- With probability of ε (0 < ε < 1):
 - Execute random action
- With probability of 1- ε :
 - Execute action with highest expected utility, given current knowledge
- Update expected utility, given (state, action)

EXPLORATION-EXPLOITATION DILEMMA

?

EXPLORATION-EXPLOITATION DILEMMA

- **Explore**: try to find better actions
- **Exploit**: execute action with highest expected utility, given the knowledge we have
- Explore too much
 - → regret caused by lack of commitment
- Exploit too much
 - → regret caused by lack of knowledge
 - → get stuck in local maximum

Decaying ε – greedy

- With probability of ε (0 < ε < 1):
 - Execute random action
- With probability of 1- ε :
 - Execute action with highest expected utility, given current knowledge
- Update expected utility, given (state, action)
- Decrease ε (multiply by factor x, o < x < 1)

Q-LEARNING

- Q-learning learns **action-utility** instead of learning utilities
 - $\circ \ U(s) = \max_{a} Q(s, a)$
- Does not need a model of P(s'|s,a):
 - Probability of being in state s', given prior state s and action a
 - → model-free
- Q-learning is off-policy,
- Action-utility assignment analogous to temporal difference learning:

$$Q(s,a) \leftarrow Q(s,a) + \alpha(R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

Q-LEARNING ALGORITHM

- 1. Start in state *s*
- 2. Take action a based on exploration/exploitation strategy (epsilon-greedy or similar)
- 3. Based on the utility of the new state *s*': update the utility of previous state *s*
- 4. Execute the policy
- 5. Update the current state *s*'
- 6. Repeat steps

MULTI-ARMED BANDITS (MAB)

- *N* possible actions
- Each action has unknown expected reward (random variable)
- Goal:
 - find best (or at least "good' action)

http://www.primarydigit.com/blog/multi-arm-bandits-explorationexploitation-trade-off

MAB - EPSILON-GREEDY

- N arms, $0 < \varepsilon < 1$
- At iteration i, o < i < N:
 - o Pull arm i.
 - Log reward returned by arm *i*.
- At iteration i, i > N:
 - \circ If $\varepsilon > random(0,1)$: Pull random arm
 - Else: Pull arm with highest expected reward
 - Updated expected reward of pulled arm

MAB - EPSILON-DECAY

- *N* arms, $0 < \varepsilon < 1$, 0 < x < 1
- At iteration i, o < i < N:
 - o Pull arm *i*.
 - Log reward returned by arm *i*.
- At iteration i, i > N:
 - \circ If $\varepsilon > random(0,1)$: Pull random arm
 - o Else: Pull arm with highest expected reward
 - o Updated expected reward of pulled arm

$$\circ \varepsilon \leftarrow \varepsilon * \chi$$

MAB - OTHER ALGORITHMS

- Decay function for epsilon
- "Discard" arms that are clearly bad
- Thompson sampling:
 - Assumes known initial distribution over action values
 - Allows (theoretically) to compute optimal exploration vs. exploitation balance

EXAMPLES

THE OBVIOUS ONES

https://www.netflix.com/se/title/80190844

https://deepmind.com/blog/article/alp hastar-mastering-real-time-strategygame-starcraft-ii

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

UMEÅ UNIVERSITY

https://arxiv.org/pdf/1312.5602.pdf

SPOTIFY

McInerney, James, et al. "Explore, exploit, and explain: personalizing explainable recommendations with bandits." *Proceedings of the 12th ACM Conference on Recommender Systems*. ACM, 2018.

EXPLAINABLE BANDITS

Use novel **explainable** personalized recommendations generated by multi-armed bandits

- Make exploration explainable
- Bandit dynamically changes explanation type
- Recommendations on two dimension:
 - Recommended item
 - Explanation of recommended item

BOSTON DYNAMICS (ETH ZÜRICH, INTEL)

Hwangbo, Jemin, et al. "Learning agile and dynamic motor skills for legged robots." *arXiv preprint arXiv:1901.08652* (2019).

RL FOR ROBOTS

- "Learn" controller that manages robot's locomotion skills "best"
- Train in simulation
- Eventually out-perform hand-crafted controllers
- Still needs control theory, though!

UMU: RL-REWARDS AND FAIR EQUILIBRIA

Kampik and Spieker. "Learning Agents of Bounded Rationality: Rewards Based on Fair Equilibria."

MULTI-AGENT GRID WORLD

- Agents act in a grid world
- Should collect coins
- Loose health over time → need to repair
- Collecting coins and reparations negatively affect other coins/health of others
- → How to act sustainably as a society/community?

REWARD DESIGN

- All (both) agents are rewarded for *fairness*
- Rewards are based on:
 - OHow far are the *actual* actions from the closest *fair equilibrium*?
 - Smaller distance leads to higher reward

FAIR EQUILIBRIUM - EXAMPLE

e software.

JS-son Arena

Rewards: Average, Last 10 Steps

-50 -100 -150

https://people.cs.umu.se/tkampik/slides/sais.html#/11

JC Nieves @ AI Methods and Applications

BANDITS FOR BUSINESS PROCESS MANAGEMENT

Mohan and Kampik. Work in progress.

BANDITS FOR BUSINESS PROCESS MANAGEMENT

BANDITS FOR BUSINESS PROCESS MANAGEMENT

- Use multi-armed bandits to test/simulate different task configurations before deploying at scale
- "Dynamic A/B testing"
- Especially useful in scenarios, where fullscale deployments are hard to change (e.g., smart contract)

LAB III - REINFORCEMENT LEARNING WITH MULTI-ARMED BANDITS

Multi-armed bandits:

Practical: <u>Towards Data Science</u>

Academic: Paper

- In the lab, you will implement a multi-armed bandit to solve an example problem.
- Your bandit will need to beat a "naïve" benchmark.
- The best bandit will be determined.
- You will need to use git for version control: https://github.com/TimKam/multi-armed-bandit-lab

FURTHER READING

• Russel, Norvig: Artificial Intelligence: A Modern Approach, chapters 21.1 – 21.3

plus:

Literature about multi-armed bandits:

- o <u>"Towards Data Science" introduction to multi-armed bandits</u>
- Kuleshow, Precup: <u>Algorithms for the multi-armed bandit</u> <u>problem</u>

FURTHER CODING

• OpenAI Gym: https://gym.openai.com/

- Reinforcement learning in JavaScript: https://metacar-project.com
- Multi-armed bandits in Python: https://github.com/bgalbraith/bandits

