Argumentation-based Causal and Counterfactual Reasoning

Lars Bengel¹, Lydia Blümel¹, Tjitze Rienstra², Matthias Thimm¹

 Artificial Intelligence Group, University of Hagen, Germany
 Department of Advanced Computing Sciences, Maastricht University, The Netherlands

September 12, 2022

Argumentation

Definition

An argumentation framework is a pair $F = (\mathbf{A}, \Rightarrow)$ where \mathbf{A} is a set whose elements are called *arguments* and where $\Rightarrow \subseteq \mathbf{A} \times \mathbf{A}$ is called the *attack relation*.

Definition

A set $E \subseteq \mathbf{A}$ is:

- ▶ conflict-free if for all $a, b \in E$ we have $a \not\Rightarrow b$.
- ▶ stable if E is conflict-free and for every $a \in \mathbf{A} \setminus E$ there is a $b \in E$ such that $b \Rightarrow a$.

Phan Minh Dung. "On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games". In: Artificial Intelligence 77.2 (1995), pp. 321–358

Causal Knowledge Bases

Definition

A causal model is a triple (U, V, K) where U and V partition the set of atoms into, respectively, a set of background and explainable atoms. K consists of a set of Boolean structural equations, one for each atom $v \in V$. A Boolean structural equation for v is a formula of the form $v \leftrightarrow \phi$.

Causal Knowledge Bases

Definition

A causal model is a triple (U, V, K) where U and V partition the set of atoms into, respectively, a set of background and explainable atoms. K consists of a set of Boolean structural equations, one for each atom $v \in V$. A Boolean structural equation for v is a formula of the form $v \leftrightarrow \phi$.

Definition

A causal knowledge base is a knowledge base $\Delta = (K, A)$ where K is a causal model and where A is a set of background assumptions, at least one for each background atom. A background assumption for an atom u is a literal $I \in \{u, \neg u\}$.

KB-Induced Argumentation Frameworks

Definition

Let $\Delta = (K, A)$ be a knowledge base. We define the AF induced by Δ $F(\Delta)$ as the AF $(\mathbf{A}, \Rightarrow)$ where

- **A** is the set of all pairs (Φ, ψ) such that
 - $ightharpoonup \Phi \subseteq A$,
 - $\triangleright \Phi \cup K \nvdash \bot$
 - \blacktriangleright $\Phi \cup K \vdash \psi$, and if $\Psi \subset \Phi$ then $\Psi \cup K \nvdash \psi$.
- ▶ $\Rightarrow \subseteq \mathbf{A} \times \mathbf{A}$ such that $((\Phi, \psi), (\Phi', \psi')) \in \Rightarrow$ iff (Φ, ψ) undercuts (Φ', ψ') , i. e., for some $\phi' \in \Phi'$ we have $\phi' \equiv \neg \psi$.

KB-Induced Argumentation Frameworks

Definition

Let $\Delta = (K, A)$ be a knowledge base. We define the AF induced by Δ $F(\Delta)$ as the AF $(\mathbf{A}, \Rightarrow)$ where

- **A** is the set of all pairs (Φ, ψ) such that
 - $ightharpoonup \Phi \subseteq A$,
 - $\triangleright \Phi \cup K \nvdash \bot$
 - ▶ $\Phi \cup K \vdash \psi$, and if $\Psi \subset \Phi$ then $\Psi \cup K \nvdash \psi$.
- ▶ $\Rightarrow \subseteq \mathbf{A} \times \mathbf{A}$ such that $((\Phi, \psi), (\Phi', \psi')) \in \Rightarrow$ iff (Φ, ψ) undercuts (Φ', ψ') , i. e., for some $\phi' \in \Phi'$ we have $\phi' \equiv \neg \psi$.

Proposition

Let $\Delta = (K, A)$ be a knowledge base. Then $\phi \triangleright_{\Delta} \psi$ if and only if every stable extension E of $F(K \cup \{\phi\}, A)$ contains an argument with conclusion ψ .

Claudette Cayrol. "On the Relation between Argumentation and Non-monotonic Coherence-Based Entailment". In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI 95, Montréal Québec, Canada, August 20-25 1995, 2 Volumes. Morgan Kaufmann, 1995, pp. 1443–1448

Example

Example

Consider the causal knowledge base $\Delta = (K, A)$, where

```
K = \begin{array}{cccc} covid & \leftrightarrow & corona \\ flu & \leftrightarrow & influenza \\ fever & \leftrightarrow & covid \lor flu \\ chills & \leftrightarrow & fever \\ short-of-breath & \leftrightarrow & covid \land at-risk \\ \end{array}
```

$$A = \{at\text{-}risk, \neg at\text{-}risk, \neg corona, \neg influenza\}$$

$$A = \{\textit{at-risk}, \neg \textit{at-risk}, \neg \textit{corona}, \neg \textit{influenza}\}$$

Example

fever \sim_{Δ} short-of-breath

Example

fever \sim_{Δ} short-of-breath

Example

fever \sim_{Δ} short-of-breath

Example

fever \sim_{Δ} short-of-breath

⇒ Given fever, shortness of breath is possible but not necessary.

Counterfactual Reasoning

given $\phi, \text{ if } \textit{v} \text{ had been } \textit{x} \text{ then } \psi \text{ would be true}$

Counterfactual Reasoning

given ϕ , if v had been x then ψ would be true

Definition

The *twin model* for a causal model K is the causal model K^* defined by

$$K^* = K \cup \{(v^* \leftrightarrow \phi^*) \mid (v \leftrightarrow \phi) \in K\}$$

Counterfactual Reasoning

given ϕ , if v had been x then ψ would be true

Definition

The twin model for a causal model K is the causal model K^* defined by

$$K^* = K \cup \{ (v^* \leftrightarrow \phi^*) \mid (v \leftrightarrow \phi) \in K \}$$

Example

Would the patient have had *fever* if we had administered a covid vaccine (i.e., if *covid* had been false)?

$$\mathit{fever} \hspace{0.2em} \hspace$$

$$\mathit{fever} \hspace{0.2em} \hspace$$

$$\mathit{fever} \hspace{0.2em} \hspace$$

$$\boxed{a_1 \colon (\{\neg corona\}, fever^*)} \longleftarrow \boxed{a_2 \colon (\{\neg influenza\}, corona)}$$
$$\boxed{a_3 \colon (\{\neg corona\}, influenza)}$$

$$\mathit{fever} \hspace{0.2em} \hspace$$

$$a_1: (\{\neg corona\}, fever^*)$$

$$a_2: (\{\neg influenza\}, corona)$$

$$a_3: (\{\neg corona\}, influenza)$$

Example

$$\mathit{fever} \hspace{0.2em} \hspace$$

$$a_1: (\{\neg corona\}, fever^*)$$

$$a_2: (\{\neg influenza\}, corona)$$

$$a_3: (\{\neg corona\}, influenza)$$

⇒ The patient may or may not have had fever, had we administered a covid vaccine.

$$\textit{fever} \land \textit{short-of-breath} ~ {\sim_{\Delta^*_{[\textit{covid}^* = \bot]}}} ~ \textit{fever}^*$$

$$fever \land short\text{-}of\text{-}breath \hspace{0.2em} \hspace{0.2em} \hspace{0.2em} \swarrow_{\Delta^*_{[covid^*=\bot]}} fever^*$$

$$\textit{fever} \land \textit{short-of-breath} \, \middle|_{\Delta^*_{[\textit{covid}^* = \bot]}} \, \textit{fever}^*$$

Example

$$\textit{fever} \land \textit{short-of-breath} ~ {\sim_{\Delta^*_{[\textit{covid}^* = \bot]}}} ~ \textit{fever}^*$$

⇒ The patient would not have had fever, had we administered a covid vaccine.

Conclusion and Future Work

- ▶ We defined a model to transform causal knowledge bases into Dung-style AFs.
- ► The twin model method provides an alternative mechanism for answering counterfactual queries.
- ▶ The constructed AF can be used to provide argumentative explanations.

Conclusion and Future Work

- ▶ We defined a model to transform causal knowledge bases into Dung-style AFs.
- ► The twin model method provides an alternative mechanism for answering counterfactual queries.
- ▶ The constructed AF can be used to provide argumentative explanations.

Open Questions

▶ Representing uncertain causal relations via probabilistic argumentation methods.