Fostering Explainable Online Review Assessment Through Computational Argumentation

Atefeh Keshavarzi Zafarghandi Davide Ceolin

Human-Centered Data Analytics, Centrum Wiskunde & Informatica, The Netherlands

1st International Workshop on Argumentation for eXplainable AI (ArgXAI)

Cardiff University Wales, United Kingdom

Sep. 12, 2022

Motivation

AI Research Question

- I How to evaluate the quality of online information?
- One of the assessment of the quality of the online information?

Argumentation

- review assessment [Ceolin et al., 2021]
- 2 explainable [Cyras et al., 2021, Vassiliades et al., 2021]

Motivation Question

How can argumentation be used for explanation of the review quality?

A.Keshavarzi, D.Ceolin (CWI)

Explainable Online Review

Contribution

Main Contributions

- Argumentation formalisms
 - for assessing the quality of the reviews
 - for explaining the assessment
- Abstract argumentation frameworks
 - Argument
 - Attack relation
 - Grounded semantics
 - Explaining
 - Evaluating the score of the reviews

• • = • • = •

Outline

A.Keshavarzi, D.Ceolin (CWI)

イロト イボト イヨト イヨト

э

Background

Definition

An argumentation framework F is a pair (A, R) such that [Dung, 1995]

- A is a finite set of arguments
- *R* ⊆ *A* × *A* is a binary relation representing attacks between arguments

• Semantics: Solution concepts to define the acceptance of arguments

• Extension: A set of jointly accepted arguments

A.Keshavarzi, D.Ceolin (CWI)

Explainable Online Review

Sep. 12, 2022

Background

- An argument $a \in A$ is defended by $S \subseteq A$ (in F) if $\forall c \in A$: if $(c, a) \in R$ then $\exists b \in S$ such that $(b, c) \in R$
- $\Gamma_F(S) = \{a \in A \mid a \text{ is defended by } S \text{ in } F\}$
- S is the grounded extension if S is the \subseteq -least fixed point of Γ_F

- F = (A, R) is *acyclic*: if there is no $a_1, \ldots, a_i \in A$ s.t. $(a_{i+1}, a_i) \in R$
- [Dung, 1995] Acyclic AF: all sets of semantics coincide

A.Keshavarzi, D.Ceolin (CWI)

Explainable Online Review

Sep. 12, 2022

Modeling Reviews with AFs

Reviews

- Let t be a product
- let $\{r_{t1}, \ldots, r_{tn}\}$ be a set of reviews of t
- r_{ti} consists of a numerical score $sc(r_{ti})$ and a textual description
- list of all topics $\mathcal{T}_t = \{\phi_1, \dots, \phi_n\}$
- $w(sc(r_{ti}), \phi, r_{ti})$: *initial weight* of ϕ in review r_{ti} and score $sc(r_{ti})$
- $[\phi]_k = \{ \mathsf{r}_{ti} \mid \mathsf{r}_{ti} \text{ contains topic } \phi \text{ and } sc(\mathsf{r}_{ti}) = k \}$
- $w([\phi]_k) = \sum_{i=1}^n w(k, \phi, \mathsf{r}_{ti})$

Definition: Modeling Reviews with AFs

An AF constructed based on topics is F = (A, R) where,

•
$$A = \{a_{i,\phi} = [\phi]_i\}$$

• $R = \{(a_{i,\phi}, a_{j,\phi}) \mid a_{i,\phi}, a_{j,\phi} \in A \text{ and } w(a_{i,\phi}) > w(a_{j,\phi})\}.$

Theorem

Let *F* be an AF, constructed based on topics \mathcal{T}_t of product *t*. If $|\mathcal{T}_t| = m$ and m > 1, then

• the associated graph of F is disconnected and it contains at least m connected component.

- Every connected component is acyclic.
- Severy component has at least one initial argument.
- The grounded extension of F, i.e., grd(F) is none empty
- **3** $grd(F) = \{b \mid \text{ there is no } a \in A \text{ such that } (a, b) \in R\}$

< ロ > < 同 > < 回 > < 回 > < 回 > <

What is an AI system explanation?

Definition

Let F = (A, R) be an AF constructed based on topics of t, and let $\phi \in T_t$ Score of a topic:

$$\mathit{sc}_{\mathit{AI}}(\phi) = \mathsf{round}(rac{\sum_{\mathit{a}_{i,\phi} \in \mathit{grd}(\mathit{F})}i}{|\{i \mid \mathit{a}_{i,\phi} \in \mathit{grd}(\mathit{F})\}|})$$

Explanation of a score of a topic:

$$\mathsf{Exp}(\phi,\mathsf{sc}_{\mathcal{A}\mathcal{I}}(\phi)) = \{a_{i,\phi} \mid a_{i,\phi} \in grd(\mathcal{F})\}$$

What is an AI system explanation?

Definition

Let F = (A, R) be an AF constructed based on topics of t, and let $\phi \in T_t$ Score of a topic:

$$\mathit{sc}_{\mathcal{A}\mathcal{I}}(\phi) = \mathsf{round}(rac{\sum_{a_{i,\phi} \in \mathit{grd}(\mathcal{F})}i}{|\{i \mid a_{i,\phi} \in \mathit{grd}(\mathcal{F})\}|})$$

Explanation of a score of a topic:

$$\mathsf{Exp}(\phi,\mathsf{sc}_{AI}(\phi)) = \{a_{i,\phi} \mid a_{i,\phi} \in grd(F)\}$$

Score of a review:

$$\mathsf{SC}_{\mathcal{A}\mathcal{I}}(\mathsf{r}_{ti}) = \mathsf{round}(\frac{\Sigma_{\phi \in \mathcal{T}_{t, \mathsf{r}_{ti}}}\mathsf{sc}_{\mathcal{A}\mathcal{I}}(\phi)}{|\mathcal{T}_{t, \mathsf{r}_{ti}}|})$$

Explanation of a score of a review:

$$\mathsf{Exp}(\mathsf{r}_{ti},\mathsf{SC}(\mathsf{r}_{ti})) = \bigcup_{\phi \in \mathcal{T}_{t,\mathsf{r}_{ti}}} \mathsf{Exp}(\phi,\mathsf{sc}_{\mathcal{A}\mathcal{I}}(\phi))$$

A.Keshavarzi, D.Ceolin (CWI)

Explainable Online Review

Summary

Summary

- We construct an AF based on a set of reviews
- Evaluate the score of topics in the grounded extension
- Explain the reason for choosing the associated score of a topic
- Accumulate function assigns a score to a review
- Explanation of a score of a review

Future work

- Study relations among reviews that do not have a common topic
- Work on temporal way of reasoning
- Consider user preferences over the topics of a product
- Extract AFs by combining human and automated computation

Contact: Atefeh Keshavarzi Centrum Wiskunde en Informatica akz@cwi.nl

(日) (四) (코) (코) (코) (코)

References

Ceolin, D., Primiero, G., Wielemaker, J., and Soprano, M. (2021). Assessing the quality of online reviews using formal argumentation theory. In <u>ICWE</u>, pages 71–87. Springer.

Cyras, K., Rago, A., Albini, E., Baroni, P., and Toni, F. (2021). Argumentative XAI: A survey. In IJCAI, pages 4392–4399. ijcai.org.

Dung, P. M. (1995).

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games.

(日) (四) (문) (문) (문)

Artificial Intelligence, 77:321-357.

Vassiliades, A., Bassiliades, N., and Patkos, T. (2021). Argumentation and explainable artificial intelligence: a survey. The Knowledge Engineering Review, 36.