JUSTIFICATION IN CASE-BASED REASONING

Wijnand van Woerkom,^a Davide Grossi,^{b.c.d} Henry Prakken,^{a.e} Bart Verheij^b September 12, 2022

^a Department of Information and Computing Sciences, Utrecht University, The Netherlands
^b Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands
^c Amsterdam Center for Law and Economics, University of Amsterdam, The Netherlands
^d Institute for Logic, Language and Computation, University of Amsterdam, The Netherlands
^e Faculty of Law, University of Groningen, The Netherlands

INTRODUCTION

Background

- · Explainable AI for applications with legal, ethical, or social consequences.
- · AI & law interpretation of training examples as cases.

	AI	law
Decision maker	ML system	Court
Precedent	Training data	Decided cases

 $\cdot\,$ An XAI method was developed on the basis of this interpretation.^1

Present Work

- · Extend theory of precedential constraint with notion of justification.
- \cdot Show that the top-level model can be seen as an instance of this.

¹Henry Prakken and Rosa Ratsma. "A top-level model of case-based argumentation for explanation: Formalisation and experiments". In: Argument & Computation 13 (2022), pp. 159–194. DOI: 10.3233/AAC-210009.

Background

- · Explainable AI for applications with legal, ethical, or social consequences.
- · AI & law interpretation of training examples as cases.

	AI	law
Decision maker	ML system	Court
Precedent	Training data	Decided cases

 \cdot An XAI method was developed on the basis of this interpretation.¹

Present Work

- $\cdot\,$ Extend theory of precedential constraint with notion of justification.
- $\cdot\,$ Show that the top-level model can be seen as an instance of this.

¹Henry Prakken and Rosa Ratsma. "A top-level model of case-based argumentation for explanation: Formalisation and experiments". In: Argument & Computation 13 (2022), pp. 159–194. DOI: 10.3233/AAC-210009.

PRECEDENTIAL CONSTRAINT

The Formalism

- The theory of precedential constraint, formalizing a fortiori reasoning in case law.²
- · Illustrate through example: judging risk of recidivism.

Formal Definition	Recidivism Example
Outcomes	Low risk (0), High risk (1)
Dimension	Age, Priors, Sex
Dimension order	E.g. "People age out of crime"
Fact situation	(45, 4, M), (30, 5, M)
Case	(45, 4, M) : 1
Case base	$\{(45, 4, M) : 1, (30, 5, M) : 1\}$
Forcing	(45, 4, M) <u>≺</u> 1 (30, 5, M)

Interpreting Training Examples as Cases

- 1. Determine dimension orders.
- 2. Interpret examples as fact situations, and labels as outcomes.

²John Horty: "Reasoning with dimensions and magnitudes". In: Artificial Intelligence and Law 27.3 (2019), pp. 309–345. DOI: 10.1007/s10506-019-09245-0.

The Formalism

- The theory of precedential constraint, formalizing a fortiori reasoning in case law.²
- · Illustrate through example: judging risk of recidivism.

Formal Definition	Recidivism Example
Outcomes	Low risk (0), High risk (1)
Dimension	Age, Priors, Sex
Dimension order	E.g. "People age out of crime"
Fact situation	(45, 4, M), (30, 5, M)
Case	(45, 4, M) : 1
Case base	{(45, 4, M) : 1, (30, 5, M) : 1}
Forcing	(45, 4, M) <u>≺</u> 1 (30, 5, M)

Interpreting Training Examples as Cases

- 1. Determine dimension orders.
- 2. Interpret examples as fact situations, and labels as outcomes.

²John Horty: "Reasoning with dimensions and magnitudes". In: Artificial Intelligence and Law 27.3 (2019), pp. 309–345. DOI: 10.1007/s10506-019-09245-0.

JUSTIFICATION

Definition of Forcing

Given cases a and b we say a forces the outcome of b, denoted a \preceq b, if

- 1. a and b have the same outcome s, and
- 2. b is at least as good for this outcome as a on all dimensions;

 $a(d) \leq_s b(d)$ for all $d \in D$.

Definition of Justification

A relation \sqsubseteq on cases is called a justification relation if it extends the forcing relation:

 $\preceq \subseteq \sqsubseteq$.

Definition of Forcing

Given cases a and b we say a forces the outcome of b, denoted a \leq b, if

- 1. a and b have the same outcome s, and
- 2. b is at least as good for this outcome as a on all dimensions;

 $a(d) \leq_s b(d)$ for all $d \in D$.

Definition of Justification

A relation \sqsubseteq on cases is called a justification relation if it extends the forcing relation:

 $\preceq \subseteq \sqsubseteq$.

Recidivism Example

· In our earlier example we saw:

$$(45, 4, M) : 1 \leq (30, 5, M) : 1.$$

- · If instead we had (25, 4, M) : 1, the forcing relation would not hold.
- · But a justification relation might still hold:

 $(25, 4, M) : 1 \sqsubseteq (30, 5, M) : 1.$

Relation to Compensation

- \cdot The example suggests we (contextually) value priors above age.
- · Alternatively: the convict's priors compensate for the age difference.
- · A justification relation induces a notion of compensation and vice versa.

Recidivism Example

· In our earlier example we saw:

$$(45, 4, M): 1 \leq (30, 5, M): 1.$$

- · If instead we had (25, 4, M) : 1, the forcing relation would not hold.
- · But a justification relation might still hold:

 $(25, 4, M) : 1 \sqsubseteq (30, 5, M) : 1.$

Relation to Compensation

- \cdot The example suggests we (contextually) value priors above age.
- · Alternatively: the convict's priors compensate for the age difference.
- $\cdot\,$ A justification relation induces a notion of compensation and vice versa.

CONCLUSION AND DISCUSSION

Conclusion

- · Introduce concept of justification to the theory of precedential constraint
- Show that the top-level model of Prakken & Ratsma can be equivalently formulated in terms of this notion of justification.

Future Work

- · Further develop the relation between compensation and justification.
- · Relate justification to similar models using notions of compensation.

Discussion

- · Is the word 'justification' appropriate?
- · How can justification relations be determined in an automated way?
- · In the context of XAI, what is the difference between justification and explanation?

Conclusion

- · Introduce concept of justification to the theory of precedential constraint
- Show that the top-level model of Prakken & Ratsma can be equivalently formulated in terms of this notion of justification.

Future Work

- $\cdot\,$ Further develop the relation between compensation and justification.
- $\cdot\,$ Relate justification to similar models using notions of compensation.

Discussion

- · Is the word 'justification' appropriate?
- · How can justification relations be determined in an automated way?
- · In the context of XAI, what is the difference between justification and explanation?

Conclusion

- · Introduce concept of justification to the theory of precedential constraint
- Show that the top-level model of Prakken & Ratsma can be equivalently formulated in terms of this notion of justification.

Future Work

- · Further develop the relation between compensation and justification.
- $\cdot\,$ Relate justification to similar models using notions of compensation.

Discussion

- $\cdot\,$ Is the word 'justification' appropriate?
- \cdot How can justification relations be determined in an automated way?
- \cdot In the context of XAI, what is the difference between justification and explanation?