Optimizing the Sharpe Ratio for a Rank Based Trading System

Thomas Hellstrom
Department of Computing Science
Umea University
SE-901 87 Umea, Sweden
thomash@cs.umu.se

July 13 18, 2001

Abstract

Most models for prediction of the stock market focus on individual securities. In this paper we introduce
a rank measure that takes into account a large number of securities and grades them according to the relative
returns. It turns out that this rank measure, besides being more related to a real trading situation, is more
predictable than the individual returns. The ranks are predicted with perceptrons with a step function for
generation of trading signals. An optimizing decision support system for stock picking based on the rank
predictions is constructed. The optimization uses a genetic algorithm that maximizes the Sharpe ratio for
a simulated trader. The trading simulation is executed in a general purpose trading simulator ASTA. The
trading results from the Swedish stock market show significantly higher returns and also Sharpe ratios,
relative the benchmark.

1 Introduction

The returns of individual securities are the primary targets in most research that deal with the predictability
of financial markets. In this paper we focus on the observation that a real trading situation involves not only
attempts to predict the individual returns for a set of interesting securities, but also a comparison and selection
among the produced predictions. What an investor really wants to have is not a large number of predictions for
individual returns, but rather a grading of the securities in question. Even if this can be achieved by grading
the individual predictions of returns, it is not obvious that it will yield an optimal decision based on a limited
amount of noisy data. In Section 2 we introduce a rank measure that takes into account a large number of
securities and grades them according to the relative returns. In Section 4, perceptron models for prediction of
the rank are defined and historical data is used to estimate the parameters in the models. Results from time
series predictions are presented. The predictions are used as a basis for a genetically optimized decision support
system for stock picking described in Section 5. The surprisingly successful results are discussed. Section 6
contains a summary of the results together with ideas for future research.

2 Defining a Rank Measure
The k-day return Ry (t) for a stock m with close prices y™(1),...,y"™(t1) is defined for ¢t € [k + 1, ...,¢1] as

y"(t) —y™(t — k)
ym(t—k)

R (t) = (1)

We introduce a rank concept A}, based on the k-day return Ry, as follows: The k-day rank A}* for a stock
Sm in the set {s1, ..., s} is computed by ranking the N stocks in the order of the k-day returns Ry. The ranking
orders are then normalized so the stock with the lowest Ry is ranked —0.5 and the stock with the highest Ry
is ranked 0.5. The definition of the k-day rank A}* for a stock m belonging to a set of stocks {s1,...,sn}, can
thus be written as

AT (t) = #{RL (| R (1) ZNRE(? 1<i<Ny-1 & (2)




where the # function returns the number of elements in the argument set. This is as integer between 1 and
N. RJ* is the k-day returns computed for stock m. The scaling between —0.5 and +0.5 assigns the stock with
the median value on Rj, the rank 0. A positive rank A} means that stock m performs better than this median
stock, and a negative rank means that it performs worse. This new measure gives an indication of how each
individual stock has developed relatively to the other stocks, viewed on a time scale set by the value of k.

The scaling around zero is convenient when defining a prediction task for the rank. It is clear that an ability
to identify, at time ¢, a stock m, for which A}*(t + h) > 0,h > 0 means an opportunity to make profit in the
same way as identifying a stock, for which Ry (¢t + h) > 0. A method that can identify stocks m and times ¢
with a mean value of AJ*(t +h) > 0,h > 0, can be used as a trading strategy that can do better than the
average stock. The hit rate for the predictions can be defined as the fraction of times, for which the sign of the
predicted rank A}*(t+ h) is correct. A value greater than 50% means that true predictions have been achieved.
The following advantages compared to predicting returns Ry, (t + h) can be noticed:

1. The benchmark for predictions of ranks A}*(¢ + h) performance becomes clearly defined:

e A hit rate > 50% , for the predictions of the sign of A}*(t 4+ h) means that we are doing better than
chance. When predicting returns Ry, (t+ h), the general positive drift in the market causes more than
50% of the returns to be > 0, which means that it is hard to define a good benchmark.

e A positive mean value for predicted positive ranks Ay (t+h) (and a negative mean value for predicted
negative ranks) means that we are doing better than chance. When predicting returns Ry, (¢t + h), the
general positive drift in the market causes the returns to have a mean value > 0. Therefore, a mere
positive mean return for predicted positive returns does not imply any useful predicting ability.

2. The rank values AL(t),..., AN (t), for time ¢ and a set of stocks 1, ..., N are uniformly distributed between
—0.5 and 0.5 provided no return values are equal. Returns R}, on the other hand, are distributed with
sparsely populated tails for the extreme low and high values. This makes the statistical analysis of rank
predictions safer and easier than predictions of returns.

3. The effect of global events gets automatically incorporated into the predictor variables. The analysis
becomes totally focused on identifying deviations from the average stock, instead of trying to model the
global economic situation.

3 Serial Correlation in the Ranks

We start by looking at the serial correlation for the rank variables as defined in (2). In Table 1 mean ranks
A7 (t +1) are tabulated as a function of A}*(t) for 207 stocks from the Swedish stock market 1987-1997. Table
2 shows the “Up fraction”, i.e. the number of positive ranks A7*(¢ 4+ 1) divided by the number of non-zero
ranks. Table 3 finally shows the number of observations of A7*(t + 1) in each table entry. Each row in the
tables represents one particular value on k, covering the values 1,2, 3,4, 5,10, 20, 30, 50, 100. The label for each
column is the mid-value of a symmetrical interval. For example, the column labeled 0.05 includes points with
k-day rank A}*(t) in the interval [ 0.00,...,0.10 [. The intervals for the outermost columns are open-ended on
one side. Note that the stock price time series normally have 5 samples per week, i.e. k = 5 represents one
week of data and k = 20 represents approximately one month. Example: There are 30548 observations where
—0.40 < A% (t) < —0.30 in the investigated data. In these observations, the 1-day ranks on the following day,
A (t + 1), have an average value of 0.017, and an "Up fraction” = 52.8%.

The only clear patterns that can be seen in the table are a slight negative serial correlation: negative
ranks are followed by more positive ranks and vice versa. To investigate whether this observation reflects a
fundamental property of the process generating the data, and not only idiosyncrasies in the data, the relation
between current and future ranks is also presented in graphs, in which one curve represents one year. Figure 1
shows AT*(t + 1) versus A7*(t) in the diagram on the left. Le.: 1-day ranks on the following day versus 1-day
ranks on the current day. The same relation for 100 simulated random-walk stocks is shown in the diagram on
the right for comparison.

From Figure 1 we can conclude that the rank measure exhibits a mean reverting behavior, where a strong
negative rank in mean is followed by a positive rank. Furthermore, a positive rank on average is followed by a
negative rank on the following day. Looking at the “Up fraction” in Table 2, the uncertainty in these relations
is still very high. A stock m with a rank A7*(¢) < —0.4 has a positive rank A7*(t 4+ 1) the next day in no more
than 59.4% of all cases. However, the general advantages described in the previous section, coupled with the



Table 1: Mean 1-step ranks for 207 stocks

k-day rank
Kk -0.45 | -0.35 | -0.25 | -0.15 | -0.05 | 0.05 | 0.i5 | 0.25 ] 0.35 | 0.45
1 0.067 | 0.017 | -0.005 | -0.011 | -0.011 | -0.004 | -0.005 | -0.010 | -0.014 | -0.033
2 0.060 | 0.017 | 0.002 | -0.004 | -0.010 | -0.003 | -0.007 | -0.015 | -0.017 | -0.032
3 0.057 | 0.016 | 0.003 | -0.005 | -0.003 | -0.008 | -0.011 | -0.011 | -0.015 | -0.034
4 0.054 | 0.018 | 0.003 | -0.003 | -0.005 | -0.008 | -0.011 | -0.013 | -0.012 | -0.032
5 0.051 | 0.015 | 0.004 | -0.002 | -0.004 | -0.009 | -0.010 | -0.009 | -0.016 | -0.032
10 0.040 | 0.013 | 0.005 | -0.001 | -0.003 | -0.006 | -0.007 | -0.000 | -0.012 | -0.030
20 0.028 | 0.008 | 0.003 | -0.003 | -0.002 | -0.002 | -0.006 | -0.011 | -0.009 | -0.010
30 0.021 | 0.007 | 0.002 | 0.004 | -0.003 | -0.003 | -0.006 | -0.006 | -0.011 | -0.015
50 0.014 | 0.005 | 0.000 | -0.000 | -0.001 | -0.002 | -0.005 | -0.004 | -0.006 | -0.010
100 | 0.007 | 0.003 | 0.001 | -0.002 | -0.003 | -0.004 | -0.004 | -0.004 | -0.003 | -0.008
Table 2: Fraction up/(up+down) moves (% )
k-day rank
Kk -0.45 | -0.35 | -0.25 | -0.15 | -0.05 ] 0.05 ]| 0.15 | 0.25 | 0.35 | 0.45
1 504 | 520 | 49.1 | 473 | 480 | 49.6 | 495 | 48.2 | 47.8 | 464
2 584 | 52.8 | 49.7 | 480 | 484 | 49.7 | 480 | 474 | 47.6 | 462
3 581 524 | 503 | 489 | 491 | 490 | 481 | 481 | 478 | 46.1
1 575 | 52.5 504 | 492 | 490 | 48.7 | 480 | 479 | 486 | 46.3
5 571 520 | 504 | 494 | 491 | 485 | 482 | 486 | 47.7 | 46.3
10 556 | 517 | 504 | 498 | 493 | 488 | 487 | 485 | 482 | 463
20 538 | 5L.1 502 | 496 | 494 | 405 | 49.0 | 48.3 | 48.7 | 47.8
30 527 | 500 | 503 | 508 | 401 | 49.2 | 488 | 48.9 | 485 | 484
50 520 | 50.7 | 496 | 490 | 496 | 49.6 | 49.0 | 49.3 | 49.1 | 48.9
100 | 514 | 504 | 49.9 | 495 | 402 | 492 | 49.0 | 49.2 | 496 | 49.1
Table 3: Number of points
k-day rank
Kk -0.45 | -0.35 | -0.25 | -0.15 | -0.05 | 0.05 | 0.15 | 0.25 | 0.35 | 0.45
1 30878 | 30866 | 31685 | 30837 | 30434 | 31000 | 31258 | 30539 | 30951 | 31550
2 30926 | 30548 | 31427 | 30481 | 30442 | 31116 | 31263 | 30435 | 30841 | 31675
3 30022 | 30440 | 31202 | 30404 | 30350 | 31146 | 31061 | 30449 | 30814 | 31697
1 30887 | 30315 | 31052 | 30320 | 30371 | 31097 | 31097 | 30328 | 30777 | 31776
5 30857 | 30203 | 30951 | 30275 | 30101 | 31040 | 31144 | 30254 | 30701 | 31816
10 | 30755 | 30004 | 30648 | 29958 | 30004 | 30875 | 30889 | 30155 | 30571 | 31775
20 | 30521 | 29635 | 30306 | 29591 | 29679 | 30560 | 30580 | 29836 | 30377 | 31692
30 | 30388 | 29371 | 30083 | 29388 | 29567 | 30349 | 30437 | 29652 | 30190 | 31503
50 | 30117 | 29006 | 20728 | 28979 | 29306 | 29876 | 30109 | 29236 | 29927 | 31159
100 | 29166 | 28050 | 28790 | 28011 | 28238 | 20015 | 20049 | 28254 | 20012 | 30460
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Figure 1: 1-day ranks A7*(t + 1) versus A7*(t). Each curve represents one year between 1987 and 1997. Real
data in the diagram on the left and simulated random walk in the diagram on the right.

shown correlation between present and future values, do make the rank variables very interesting for further
investigations. In [3] the observed mean reverting behavior is exploited in a simple trading system. The rank
measure in the next section is used both as input and output in a model for prediction of future ranks.

4 Predicting the Ranks with Perceptrons
For a stock m, we attempt to predict the h-day-rank h days ahead by fitting a function g,, so that
ARt + 1) = g (1) ®3)

where I; is the information available at time ¢. I; may, for example, include stock returns R}*(t), ranks A}*(t),
traded volume etc. The prediction problem 3 is as general as the corresponding problem for stock returns, and
can of course be attacked in a variety of ways. Our choice in this first formulation of the problem assumes a
dependence between the future rank A7*(t+ h) and current ranks A7 (t) for different values on k. Le.: a stock’s
tendency to be a winner in the future depends on its winner property in the past, computed for different time
horizons. This assumption is inspired by the autocorrelation analysis in Hellstrom [5], and also by previous
work by De Bondt, Thaler [2] and Hellstrom [3] showing how these dependencies can be exploited for prediction
and trading. Confining our analysis to 1,2, 5 and 20 days horizons, the prediction model 3 is refined to

A (E+ h) = g (AT'(8), A (1), AF'(2), AB(2)). (4)

The choice of function g,, could be a complex neural network or a simpler function. Our first attempt is a
perceptron, i.e. the model is

Am(t+h) = 5)
F(g" -+ AT () + PEAL () + P AR (1) + i AZ (1))

where the activation function f for the time being is set to a linear function. The parameter vector p™ =
(pgr, P, P8, Py, pyY) is determined by regression on historical data. For a market with N stocks, N separate
perceptrons are built, each one denoted by the index m. The h-day rank A}" for time ¢+ h is predicted from the
1-day, 2-day, 5-day and 20-day ranks, computed at time t. To facilitate further comparison of the m produced
predictions, they are ranked in a similar way as in the definition of the ranks themselves:

At +h) — —0.5+

GHALOIAR () > Aj(1),1<i < N} - 1)4. ©

In this way the N predictions A;f“(t + h),m =1,..., N, get values uniformly distributed between —0.5 and 0.5
with the lowest prediction having the value —0.5 and the highest prediction having the value 0.5.



4.1 Data and Experimental Set-Up

The data that has been used in the study comes from 80 stocks on the Swedish stock market from January 1,
1989 till December 31, 1997. We have used a sliding window technique, where 1000 points are used for training
and the following 100 are used for prediction. The window is then moved 100 days ahead and the procedure is
repeated until end of data. The sliding window technique is a better alternative than cross validation, since data
at time t and at time t+k, k > 0 is often correlated (consider for example the returns RY*(t) and RZ*(t+1)). In
such a case, predicting a function value AJ*(¢1 4+ 1) using a model trained with data from time ¢ > ¢; is cheating
and should obviously be avoided. The sliding window approach means that a prediction AZ‘ (t + h) is based on
close prices y™(t — k), ...,y™(t). Since 1000 points are needed for the modeling, the predictions are produced for
the years 1993-1997. Results from an extended analysis can be found in [5].

4.2 Evaluation of the Rank Predictions

The computed models g,,m = 1, ..., N at each time step ¢ produce N predictions of the future ranks A}*(t+h) for
the N stocks. The N predictions fl}l”, m =1,..., N, are evenly distributed by transformation 6 in [-0.5, ...,0.5].
As we shall see in the following section, we can construct a successful trading system utilizing only a few of
the N predictions. Furthermore, even viewed as N separate predictions, we have the freedom of rejecting
predictions if they are not viewed as reliable or profitable!. By introducing a cut-off value v, a selection of
predictions can be made. For example, v = 0.49 means that we are only considering predictions A;L”(t + h) such
that |A(t + h)| > 0.49.

The results for 1-day predictions of 1-day ranks A’l"(t +1) for a v = 0.0 and 0.49 are presented in Tables
4 and 5. Each column in the tables represents performance for one trading year with the rightmost column
showing the mean values for the entire time period. The rows in the table contain the following performance
measures:

1. Hitratey. The fraction of predictions A;f“(t + h) > ~, with correct sign. A value significantly higher than
50% means that we are able to identify higher-than-average performing stocks better than chance.

2. Hitrate_. The fraction of predictions A}l”(t + h) < —~, with correct sign. A value significantly higher
than 50% means that we are able to identify lower-than-average performing stocks better than chance.

3. Returny. 100-Mean value of the h-day returns Ry*(t 4 h) for predictions A7 (t + h) > .
4. Return_. 100-Mean value of the h-day returns Ry*(t + h) for predictions Ay*(t + h) < —7.
5. #Pred, . Number of predictions Ay*(t + h) > 7.

6. #Pred_. Number of predictions A7*(t + h) < —7.

7. #Pred. Total number of predictions A7 (t + h).

All presented values are average values over time ¢ and over all involved stocks m. The performance for the one-
day predictions are shown in the Tables 4 and 5. In Table 4 with v = 0.00, the hit rates Hitrate; and Hitrate_
are not significantly different from 50% and indicate low predictability. However, the difference between the
mean returns (Returny and Return_) for positive and negative rank predictions shows that the sign of the rank
prediction really separates the returns significantly. By increasing the value for the cut-off value v to v = 0.49,
the hit rate goes up to 64.2.0% for predicted positive ranks (Table 5). Furthermore, the difference between
the mean returns for positive and negative rank predictions (Return, and Return_) is substantial. Positive
predictions of ranks are in average followed by a return of 0.895% while a negative rank prediction in average is
followed by a return of 0.085%. The rows #Pred, and #Pred_ show the number of selected predictions, i.e.
the ones greater than v and the ones less than v respectively. For v = 0.49 these numbers add to about 2.7%
of the total number of predictions. This is normally considered insufficient when single securities are predicted,
both on statistical grounds and for practical reasons (we want decision support more often than a few times
per year). But since the ranking approach produces a uniformly distributed set of predictions each day (in
the example 80 predictions) there is always at least one selected prediction for each day, provided v < 0.5.
Therefore, we can claim that we have a method by which, every day we can pick a stock that goes up more

L As opposed to many other applications, where the performance has to be calculated as the average over the entire data set.



than the average stock the following day with probability 64%. This is by itself a very strong result compared
to most published single-security predictions of stock returns (see for example Burgess and Refenes [1], Steurer
[8] or Tsibouris and Zeidenberg [9]).

5 Decision Support

The rank predictions are used as basis for a decision support system for stock picking. The layout of the
decision support system is shown in Figure 2. The 1-day predictions A’l"(t + 1) are fed into a decision maker
that generates buy and sell signals that are executed by the ASTA trading simulator. The decision maker is
controlled by a parameter vector z. comprising threshold values for two step functions that generate buy and
sell signals from the rank predictions. The learning element comprises a genetic algorithm and aims at finding
the parameter vector = that maximizes the mean annualized Sharpe ratio for the simulated trader. The learning
period is 1992-1993. The found optimal z is then used out of sample for the time period 1994-1997. The ASTA
system is a general-purpose tool for development of trading and prediction algorithms. A technical overview
of the system can be found in Hellstrom [4] and examples of usage in Hellstrom [3] and Hellstrom, Holmstrom
[6]. More information can also be found at http://www.cs.umu.se/~thomash. The rank measure and also the
prediction algorithm described in Section 3 is implemented in ASTA and therefore the test procedure is very
straightforward. A transaction cost of 0.15% (minimum 90 Swedish crowns ~ 10 USD) is assumed for every
buy or sell order.

5.1 Trading Results

The annual trading profit is presented in Table 6. As can be seen, the performance is very good. The trading
strategy outperforms the benchmark (the Swedish Generalindex) consistently and significantly every year and
the mean annual profit made by the trading is 96.7%. The mean annual index increase during the same period
is 21.2%. The Sharpe ratio which gives an estimate of a risk adjusted return shows the same pattern. The
average Sharpe ratio for the trading strategy is 2.6 while trading the stock index Generalindex gives 1.3. By
studying the annual performance we can conclude that these differences in performance is consistent for every
year 1994-1997. Further more, the number of trades every year is consistently high (six buy and six sell per
week), which increases the statistical credibility of the results. The trading results are also displayed in Figure
3. The upper diagram shows the equity curves for the trading strategy and for the benchmark index. The lower
diagram shows the annual profits.

Let us look at possible reasons and mechanisms that may lie behind the good results. In [7], Lo and
MacKinley report on positive cross-autocovariances across securities. These cross effects are most often positive
in sign and are characterized by a lead-lag structure where returns for large-capitalization stocks tend to lead
those of smaller stocks. Initial analysis of the trades that the rank strategy generates, expose a similar pattern,
where most trading signals are generated for companies with relatively low traded volume. A positive cross-
autocovariances can therefor provide part of an explanation to the successful trading results.

6 Conclusions

We have successfully implemented a model for prediction of a new rank measure for a set of stocks. The shown
result is clearly a refutation of the Random Walk Hypothesis (RWH). Statistics for the 1-day predictions of
ranks show that we are able to predict the sign of the threshold-selected rank consistently over the investigated
5-year-period of daily predictions. Furthermore, the mean returns that accompany the ranks show a consistent
difference for positive and negative predicted ranks which, besides refuting the RWH, indicates that the rank
concept could be useful for portfolio selection. The shown experiment with an optimizing trading system shows
that this is indeed the case. The mean annual profit is 96.7% compared to 21.2% for the benchmark portfolio,
over the investigated 4-year-period. The risk adjusted return, as measured by the Sharpe ratio, exhibits the
same relation. The trading system gives a Sharpe ratio of 2.6 while trading the benchmark portfolio gives only
1.3.

Of course, the general idea of predicting ranks instead of returns can be implemented in many other ways
than the one presented in this paper. Replacing the perceptrons with multi layer neural networks and also
adding other kind of input variables to the prediction model (4) are exciting topics for future research.
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Table 4: 1-day predictions of 1-day ranks |A;(t + 1) > 0.00

Year: 93 94 95 96 97 | 93-97
Hitratey 51.1 53.4 93.3 53.0 92.5 52.7
Hitrate_ 51.8 53.6 53.4 53.2 52.6 52.9
Returng | 0.389 | 0.101 | 0.155 | 0.238 | 0.172 | 0.212
Return_ | 0.253 | -0.176 | -0.094 | 0.057 | 0.008 | 0.010
#Pred, 7719 8321 8313 | 8923 | 8160 | 41510
#Pred_ 7786 8343 8342 | 8943 | 8172 | 41664
#Pred 15505 | 16664 | 16655 | 17866 | 16332 | 83174

Table 5: 1-day predictions of 1-day ranks | A, (t + 1) > 0.49

Year : 93 94 95 926 97 | 93-97
Hitrate, 59.7 65.1 67.9 66.7 61.2 64.2
Hitrate_ 52.7 53.2 56.4 59.4 56.7 55.7
Returny 1.468 | 0.583 | 0.888 | 0.770 | 0.745 | 0.895
Return_ 1.138 | -0.236 | -0.402 | -0.040 | -0.055 | 0.085
#Pred, 211 215 218 228 214 1088
#Pred_ 222 220 220 234 217 1115
#Pred 15505 | 16664 | 16655 | 17866 | 16332 | 83174




Table 6: Trading results for the trading system shown in Figures 1 and 2.

Year : 94 95 96 97 | Mean | Total
Profit 41.7 | 89.8 | 170.7 | 84.7 96.7 | 1244.5
Index profit 4.6 | 183 | 38.2| 23.8 21.2 | 111.6
Diff. 37.1 | 71.6 | 132.6 | 60.8 75.5 | 1132.9
#.trades 630 | 644 726 | 582 646 2582
Sharpe 1.2 | 22 4.5 | 2.7 2.6

Index sharpe | 0.1 14 2.4 14 1.3

Rank Decision <n OV7| Leaming
predictors maker element

A
m=1,...,N _ buy threshold ‘ Sharperatio
- sell threshold..
AT O A Buy |
AT LD o ASTA
Afn 0 s » | Trading
Af“ 0 o ] Sell »  Simulator

Figure 2: The trading system is based on 1-day rank predictions for N stocks, and a decision maker. The
learning element utilizes a genetic algorithm to find optimal thresholds by optimizing the Sharpe ratio on
historical data.
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Figure 3: Performance for the simulated trading with stock picking based on 1-day rank predictions as shown
in Figure 2. The top diagram shows the equity curves while the lower diagram displays the annual profits. The
trading outperforms the benchmark index consistently every year.



