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OUTLIER REMOVAL FOR PREDICTION
OF COVARIANCE MATRICES

with an Application to Portfolio Optimization1

We apply a simple algorithm for systematic removal of outliers in

the computation of covariance matrices for portfolio optimization.

The algorithm computes a penalty measure for each day depending

on the increase or decrease in prediction error the inclusion of the

day has given for the previous predictions. The penalty measure is

updated at each prediction step by additional predictions where each

day in the modelling window is removed in sequence. The algorithm

gives a signi�cant reduction in RMSE for the covariance matrices

when tested on data with deliberately planted outliers and also for

real stock data. The covariance matrices are also fed into a port-

folio optimizer that maximizes risk-adjusted return. The algorithm

gives higher risk-adjusted return than the naive prediction even if

the reduction of RMSE for the covariances is higher than the gain

in portfolio optimization. This indicates that outliers in stock data

do not a�ect the computation of optimal portfolios to any signi�cant

degree, at least not on the daily scale that is used in the presented

tests. However, the algorithm shows a clear ability to detect and

eliminate the e�ect of outliers and could be applied to other time

series related modelling problems with outliers in data.
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62G35.
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1. INTRODUCTION

Modern portfolio theory involves solving a quadratic optimization problem

where the return vector and covariance matrix are supposed to be known. The

normal \naive" method of using historical data to compute sample covariances

1The invited paper
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and returns results in sub-optimal portfolios since the price generating process

is time varying and also since the sample covariance is known to be sensitive

to outliers in data. A lot of alternative methods for estimation and prediction

of covariance matrices have been suggested in the literature. For a survey and

examples of common techniques see for example Ma, Genton (1999) or Ledoit

(1999).

In this paper a simple algorithm to improve the naive prediction with sys-

tematic removals of outliers in data is presented. Outlier detection is a well es-

tablished �eld in statistics. For a thorough introduction refer to Barnett, Lewis

(1994). Our method is a leave-one-out approach which has been previously (Pena

and Yohai (1994)) used for outlier detection in regression problems. However, our

algorithm performs repetitive updates of a contamination factor in a way that to

the authors knowledge is novel. Also the application to portfolio optimization is

new. Section 2 gives an introduction to the applicable parts of modern portfolio

theory. Section 3 investigates the naive prediction empirically and determines a

bench mark for the evaluation of the new algorithm which is described in Section

4. The empirical test results are presented in Section 5 and Section 6 concludes

the report with a summary of results and conclusions.

2. PORTFOLIO THEORY

We are looking at the problem of composing a portfolio out of a set of stocks

s1; :::; sn. The portion of stock si is given by the weight wi such that
Pn

i=1 wi = 1.

The column vector w is de�ned as w = (w1; :::; wn)
T . The classical approach

to analyze such a portfolio was formulated in Markowitz (1952) and recognizes

the relation between the return and the variance of the portfolio. A smaller

variance can be achieved by utilizing the correlations between individual stocks

in the portfolio. This reduction is normally paid o� by a smaller return for the

portfolio. The portfolio return Rp is the weighted sum of the individual stock

returns r1; :::; rn with the expected values �1; :::; �n :

Rp =

nX
i=1

wiri: (115)

The expected value for the portfolio return Rp is given by

ERp =

nX
i=1

wiEri =
nX
i=1

wi�i:

Using matrix notation where R is the column vector (�1; :::; �n)
T , we get the

following expression for the expected value of the portfolio return Rp :

ERp = wTR: (116)

The variance �2 quanti�es the risk of the portfolio and is given by the expression

�2 = E (Rp �ERp)
2 = E

 
nX
i=1

wiri �
nX
i=1

wi�i

!2

(117)
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which can be further expanded to

�2 =
nX
i=1

w2
i �

2
i + 2

n�1X
i=1

nX
j=i+1

wiwj�ij (118)

where �i is the standard deviation for stock i and �ij is the covariance between

stock i and stock j. Using matrix notation where C is the covariance matrix

(C(i; j) = �ij), we �nally arrive at the following expression for the variance �
2 of

the portfolio:

�2 =
nX
i=1

nX
j=1

wiwj�ij = wTCw: (119)

�2 will in the following be denoted �2p.

2.1 Portfolio Optimization

Given ERp and �2p the following optimization problem can be formulated.

The risk tolerance factor � expresses the relative importance of expected portfolio

return and variance and is often set to 0:5:

max
w

�wTR� wTCw

s:t:

wi � 0; i = 1; :::; nPn
i=1 wi = 1

(120)

The optimization task is to �nd the weight vector w so the risk adjusted return,

de�ned as �wTR � wTCw, is at its maximum for the portfolio. This standard

problem of Modern Portfolio Theory (MPT) can be easily solved using o�-the-

shelf routines for quadratic programming. The optimization requires the vector

with expected stock returns R and the covariance matrix C to be estimated. The

typical procedure is to compute the sample covariances and returns using histori-

cal data. The estimated values for R and C are then plugged into the optimization

routine, which computes the weights (w1; :::; wn) that maximize �w
TR�wTCw:

It is important to realize that both the inputs (R and C) and the outputs (w) are

estimated using the same historical time period. The problem solved is therefore

an arti�cial one: \Find the portfolio weights w that would have given the highest

risk adjusted return �wTR � wTCw". The computed weights are however nor-

mally used to compose a real stock portfolio with the objective to achieve a future

behavior similar to the one assumed in the optimization. The success or failure of

this assumption depends on the stationarity properties of the covariance matrix

C and the returns R.
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3. THE NAIVE PREDICTION

The method of using historical data to compute estimates of covariance ma-

trices and return vectors for the portfolio optimization is here called the naive

prediction. The naive prediction is surprisingly hard to beat and will serve as a

bench mark in the evaluation of the new algorithm. Predicting the returns for

a set of stocks is a well studied subject where the naive prediction has an even

stronger position than in the case with covariance matrices. Indeed there are few

indications that it is possible to formulate a general model for prediction of future

returns more accurately than using the historical mean. The naive prediction of

the covariance matrix C and the return vector R uses the sampled data up to

time T � 1 to compute a prediction of C(t) and R(t) for t � T . The method ob-

viously relies on a stationarity assumption regarding C and R. In this section we

present some empirical studies of how this naive prediction behaves and depends

on the amount of historical data that is used to compute the prediction.

Data in a window of size N days measured from time T�N to T�1 is used to
compute the sample covariance matrix and the mean returns in a window of size

20 trading days (1 month) measured from time T to T + 19. This prediction is

then used as input in the portfolio optimizer that computes an optimal portfolio

given the estimate of the covariance matrix and the return vector, as described

in Section 2.1. The outcome of this prediction is a number of performance mea-

sures; direct RMSE (the root of the mean squared error) prediction errors (for

covariances and returns) and portfolio measures (return, variance and the risk

adjusted return). The predictions are repeated with sliding windows of width

20, thus producing a number of performance measures for each value on N . The

mean values of these samples are plotted versus N in Figures 1 and 2. Figure

1 shows the results for 24 major stocks from the Swedish stock market between

1988 and 1997 while Figure 2 shows the results for 29 stocks from the Dow Jones

index during the same 10 years.

The presented results are the following: The mean RMSE for all returns

r1; :::; rn and also for all elements in the covariance matrix C are shown in the

�rst two diagrams. The results for the computed optimal portfolio are shown

in the following three diagrams; the portfolio return Rp, the variance �2p and

�nally the risk adjusted return �wTR�wTCw: The risk tolerance factor � is set

to 0:5 in all presented results in this report. From the graphs we can conclude

that the naive prediction gives higher risk adjusted return the more data we

incorporate. However, more than 200 trading days back does not produce any

noticeable increase in performance. The naive prediction that will be used as

benchmark throughout this report will therefore be based on 200 trading days.
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Figure 1: Performance versus N for naive predictions of the covariance
matrix for portfolio optimization. The predictions use the N previous days

to form estimates of the returns and the covariances. Data from 24 major

stocks on the Swedish stock market 1988-1997. The value to be predicted
is the sample covariance of daily returns 20 trading days ahead.
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Figure 2: Performance versus N for naive predictions of the covariance
matrix for portfolio optimization. The predictions use the N previous days

to form estimates of the returns and the covariances. Data from 29 stocks

in the Dow Jones index from 1988-1997. The value to be predicted is the
sample covariance of daily returns 20 trading days ahead.
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4. AN ALGORITHM FOR OUTLIER REMOVAL

Our approach in the present work is that of starting with the naive prediction

and trying to improve it by removing outliers. Outliers are detected by updating

a contamination factor Ki for each day i. This factor is a relative measure of

the prediction improvement achieved by removing the particular day from the

computation of the sample covariances. The algorithm relies on the assumption

that the \badness" of a particular day generalizes into the future. The method is

related to leave-one-out cross-validation commonly used in classi�cation problems

(e.g. Mosteller, Tukey (1968) or Stone (1978)) to estimate the miss-classi�cation

risk.

The following Remove algorithm is used to produce a sequence of monthly

predictions Ĉ0(t) of the covariance matrix one month ahead. Historical data for

k stocks are assumed to be available for the time period d1; :::; d2. The prediction

horizon is set to v days and w days backwards are used as a sliding window in

which the predictions are formed. A prediction is performed every v days starting

at time d1+w. In the examples in this report, v is set to 20 days and w is set to

200 days.

1) Ki  0; i = d1;:::; d2
2) for t = d1 + w step v to d2 � v
3) r  fjjKj > Klimit; j 2 ft� w; :::; t � 1gg
4) Ĉ(t) cov(t� w; t� 1; r)

5) C(t) cov(t; t + v � 1)

6) Ĉ0(t) cov(t� w; t� 1)

7) e0  
C(t)� Ĉ0(t)

2
2

8) for j = t�w to t� 1

9) Ĉj(t) cov(t� w; t� 1; j)

10) ej  
C(t)� Ĉj(t)

2
2

11) Kj  Kj +
e0�ej
e0

100

12 next j

13) next t

(121)

The function cov(t1; t2) computes the sample covariance matrix using data be-

tween times t1 and t2. If a third argument d to the function cov is given, the

days d are removed from the computation of the covariance matrix.

The Remove algorithm works as follows:

1. The contamination factor Ki for each day is initialized to zero.

2. The predictions are done every v days.

3. Select those days within the modeling window with a contamination factor

Kj > Klimit.

4. Compute a new prediction Ĉ(t) where all these points have been removed.

5. The \correct answer" is chosen as the sample covariance v days ahead1.

1The sample covariance is of course not equal to the true covariance but it is a relevant

entity since we are aiming at beating a prediction of the sample covariance.
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6. The naive predictor Ĉ0(t) is computed as the sample covariance w days

back.

7. The prediction error e0 is de�ned as the squared 2-norm of the di�erence

between the prediction and the correct answer.

8. w additional predictions are made to update the contamination factors.

9. Ĉj(t) is the sample covariance with data between t�w and t� 1 with day

j removed.

10. The errors for each j is de�ned as the squared 2-norm of the di�erence

between the prediction and the correct answer.

11. Update the contamination factor Kj for the prediction Ĉj(t).

12. Repeat w times, thus removing every day in the modeling window in se-

quence.

13. Repeat for all days, with a v days step.

For one particular day j, the contamination factor Kj will be updated at w=v

predictions. Some of these predictions will indicate that the prediction gains from

the removal of day j, while other predictions will indicate the opposite. The net

result from the updates performed up to time t for a new prediction will decide

if a day should be included or not in the computation of the estimate Ĉ(t).

4.1 What About the Returns?

The returns vector R = (�1; :::; �n) also has to be estimated in order to

compute an optimal portfolio as described in (120). Attempts have been made to

include the prediction error for returns in the error terms e0 and ej in algorithm

121 above. The empirical results get worse by this modi�cation. The present

version of the algorithm therefor predicts the returns in the same way as the

covariances. I.e.: step 4 in the algorithm is expanded by the computation

R̂(t) ret(t�w; t� 1; r) (122)

where ret is assumed to compute the return vector using data between times t1
and t2. If a third argument r to the function ret is given, the days r are removed

from the computation of the return vector.
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5 EMPIRICAL RESULTS

The algorithm has been tested on Swedish and American stock data from

1988 to 1997. The Swedish data consists of 24 major stocks while the American

data consists of 29 stocks from the Dow Jones index. The prediction horizon v

is 20 days and the modelling window w is 200 days. Figure 3,4 and 5 show the

results for the Swedish data. The cut o� valueKlimit for the contamination factor

is set to 3. The method's sensitivity to this value has not been examined in this

report but should be included in future research. Furthermore, optimal Klimit

could be computed automatically with a cross-validation technique similar to the

one used in the Remove algorithm. Figure 3 shows the contamination factor Ki

for each day i: A high value for a day means that the day has been detected as

outlier by the algorithm. Figure 4 shows the number of days that get removed by

the algorithm for every monthly prediction. This number varies between 0 and

28 days with an average number of 12, both for the Swedish and American data.

The �nal prediction performance is shown in Figure 5. The error measure is the

RMSE for all distinct elements Cij in the n�n covariance matrix, averaged over

all predictions:

RMSE = ave

t

vuut 2

n2 + n

nX
i=1

nX
j=i

�
Ĉij(t)� Cij(t)

�2
: (123)

The improvement by using the algorithm instead of the naive prediction is 8:9%

for the Swedish stock data. The results for the American stock data is shown in

Figures 6,7 and 8. The improvement in this case is lower. The Remove algorithm

reduces the RMSE by in average 3:5%.

5.1 Using the Predictions in Portfolio Optimization

The computed predictions are also input in the portfolio optimization prob-

lem de�ned in Section 2.1. In this way the risk adjusted return can be used

as performance measure instead of the mean squared error for the covariance

predictions. The portfolio is rebalanced once every 20 trading days (i.e. one

calendar month) using predictions for the covariance matrix C and the return

vector R. The two prediction methods Remove 3% (denoted Ĉ in the algorithm)

and Naive (denoted Ĉ0 in the algorithm) are compared in Tables 124 and 125.

The columns show the return Rp, the variance �
2
p and the risk adjusted return

RADJ = 0:5Rp � �2p for the portfolio. The last column gives the fraction of cases

where the method has been at least as good as the other method with respect

to RADJ . As previously mentioned the Naive method uses all previous 200 days

to compute the covariance matrix and the return vector. For comparison, the

performance for an Equally balanced portfolio is also presented in the tables.
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Figure 3: The diagram shows the contamination factor Kt as a function of

time t. A high value for a day means that a lot is gained by removing it
before computing the sample covariance matrix. The cut o� level Klimit is

in the example set to 3%. Days above this level will be removed. Data from

24 Swedish stocks.

5.1.1 Results for the Swedish Stock Market

The performance for monthly predictions on the Swedish data (24 stocks from

1988-1997) is presented in Table 124.

Method Rp �2p RADJ Best

Ĉj : Remove 3% 0.067 0.995 -0.959 62%

Ĉ0 : Naive 200 days 0.065 1.019 -0.984 47%

Improvement 3.2% 2.4% 2.5%

Equally balanced 0.072 1.465 -1.428

(124)

From the RADJ column, we can conclude that Remove is 2:5% better than Naive.

It is surprisingly low considering that the reduction in RMSE for the pure co-

variance predictions is 8:9%. However, the Remove method is the best choice in

about 62% of the predictions while the Naive is the best only 47% of the times.
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Figure 4: Number of removed days for each monthly prediction Ĉ(t). A

day i is removed if Ki > 3%. The average number of removed days is 11.9.
Data from 24 Swedish stocks. The modelling window is 200 days long.

We can also see that both methods, as expected, are better than the Equally

balanced portfolio.

5.1.2 Results for the American Stock Market

The same performance analysis for monthly predictions on American data

(29 stocks from 1988-1997) is presented in Table 125.

Method Rp �2p RADJ Best

Ĉj : Remove 3% 0.061 0.627 -0.597 54%

Ĉ0 : Naive 200 days 0.055 0.636 -0.608 51%

Improvement 10.5% 1.4% 1.9%

Equally balanced 0.065 0.727 -0.694

(125)

The Remove method has 1:9% higher RADJ than Naive and also 10:5% higher

portfolio return. The Equally balanced portfolio exhibits an even higher portfolio

return which seems like bad news for the Remove algorithm. However, at each



58

88 89 90 91 92 93 94 95 96 97 98
−30

−20

−10

0

10

20

30

40

50

60

t

Im
pr

ov
em

en
t (

%
)

Figure 5: The improvement (reduction of RMSE for the covariance predic-

tions) for each monthly prediction Ĉ(t) relative the naive prediction Ĉ0(t)
is plotted versus time. The average improvement is 8.9%. Data from 24

Swedish stocks.

prediction step, portfolio weights are computed to maximize the risk adjusted

return RADJ = 0:5Rp � �2p. Since the portfolio variance �2p is one order of

magnitude larger than the portfolio return Rp it should not come as a surprise

that the generated portfolios have sub-optimal or even random returns. The

relevant performance measure is of course the optimization entity, i.e. RADJ .

5.2 Simulating Outliers

The developed algorithm is now tested with arti�cial data. The same data sets

as before are used but this time with noise injected in a systematic fashion. Data

for every 50th trading day is exposed to a shock such that the true stock prices

get multiplied by (1+rnd�NoiseLevel=100) where rnd is a normally distributed
random sample 2 N(0; 1) and NoiseLevel is a pre de�ned constant. Even if the

economic motivation for this way of introducing noise might be questionable, it

serves the purpose of demonstrating the algorithm's ability to detect outliers in



59

88 89 90 91 92 93 94 95 96 97 98
−40

−20

0

20

40

60

80

100

120

140

t

C
on

ta
m

in
at

io
n 

fa
ct

or
 K

t

Figure 6: Contamination factor Kt as a function of time t. A high value

for a day means that a lot is gained by removing it before computing the
sample covariance matrix. The cut o� level Klimit is in the example set to

3%. Days above this level will be removed. Data from 29 American stocks.

the data. The results are shown in Figures 9 and 10 and illustrate that the 50-day

interval gets clearly detected and that the distorted days will be removed before

the covariance matrices are estimated (note that one calendar year comprises

approximately 250 trading days). NoiseLevel is in the shown examples set to 5:
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Figure 7: Number of removed days for each monthly prediction Ĉ(t). A

day i is removed if Ki > 3%. The average number of removed days is 11.7.
Data from 29 American stocks. The modelling window is 200 days long.

6. SUMMARY AND CONCLUSIONS

The described Remove algorithm gives a signi�cant reduction in prediction

error for the covariance matrix. The RMSE for the covariances is reduced by

8.9% for the Swedish stock data and by 3.5% for the American stock data. In

the portfolio optimization, the Remove algorithm gives 2.5% higher RADJ for the

Swedish stock data and 1.9% higher for the American stock data. The fact that

the increase in RADJ is smaller than the decrease in RMSE indicates that outliers

in data do not a�ect the computation of optimal portfolios to any signi�cant

degree. It is possible that outlier detection has to be brought down to stock level

instead of looking at a day level and the algorithm could be expanded in this

direction. The computational demands would in such case rule out an exhaustive

search and applying genetic algorithms would be a plausible and interesting track

for future research.
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Figure 8: The improvement (reduction of RMSE for the covariance predic-

tions) for each monthly prediction Ĉ(t) relative the naive prediction Ĉ0(t)
is plotted versus time. The average improvement is 3.5%. Data from 29

American stocks.

The Remove algorithm shows a clear ability to detect and eliminate the ef-

fect of simulated outliers and could also be applied to other time series related

modelling problems with outliers in data.
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Figure 9: Noise injected in the data. Every 50th trading days has a random

noise added to the stock prices. The noisy days get clearly detected and
removed by the algorithm. Original data is taken from 24 Swedish stocks.

BIBLIOGRAPHY

1. Barnett, V. and Lewis, T., Outliers In Statistical Data, John Wiley and

Sons, (1994).

2. Ledoit, O. Improved estimation of the covariance matrix of stock returns

with an application to portfolio selection, Technical report, Anderson Grad-

uate School of Management at UCLA, (1999).

3. Ma, Y. and Genton, M. G., Highly robust estimation of dispersion matri-

ces Technical report, Department of Mathematics, 2-390, Massachusetts

Institute of Technology, (1999).

4. Markowitz, H. M., Portfolio selection, Journal of Finance, 7, (1952),77{91.

5. Mosteller, F. and Tukey, J. W., Data analysis, including statistics. In

Lindzey, G. and Aronson, E., (ed), Handbook of Social Psychology, Addi-

son Wesley, 2,(1968),1{26.



63

88 89 90 91 92 93 94 95 96 97 98
−50

0

50

100

150

200

t

C
on

ta
m

in
at

io
n 

fa
ct

or
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removed by the algorithm. Original data is taken from 29 American stocks.
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