Neural Networks
A Tuturial

Thomas Hellstrom
Department of Computing Science
Umea University, Sweden
Department of Mathematics and Physics

Malardalen University Véasteras, Sweden

March 6, 1998

Contents

Introduction

1.1 Two viewpoints on Neural networks

1.2 Computing elements Lo oL

1.3 The Perceptron

1
2
2.1
2.2
3
3.1
3.2
3.3
3.4
3.5
3.6
4

Multilayer Networks

Learning in Multilayer Networks

2.1.1
2.1.2

The Back-Propagation algorithm

Non statistical aspects on learning:

Neural networks as classifiers.

Radial basis networks

The activation function

Architecture

Learning in an RBF network

Applying an RBF network L.

Relations to a fuzzy rule bases

Remarks

Unsupervised learning

4.1 Competitive Learningo oL

4.1.1
4.1.2
4.1.3
4.1.4

Example
Other Similarity measures
Result of learning Lo

The learning raten

10
13
13

15
15
17
19
19
20
20

4.1.5 Deficiencies of Competitive Learning
4.2 Kohonen self organizing networks
4.2.1 Biological background
4.2.2 The architecture of the SOFM
4.2.3 The SOFM algorithm
4.2.4 SOFM after successful training

Learning Vector Quantization

5.1 The Phonetic Typewriter
5.2 Other applications

Statistical Inference

6.1 DBiasand Variance
6.2 Weak and strong modelling
6.3 Opverfitting and Underfitting
6.4 Overtraining
6.5 Measuring Generalization ability
6.5.1 Test-set validation
6.5.2 Cross-Validation
6.5.3 Algebraic estimates
6.6 Controlling Model complexity

6.6.1 Architecture selection in Neural Networks

Ithomash@cs.umu.se

CONTENTS

Chapter 1

Introduction

This tutorial is an introduction to Neural Networks The first three chapters covers
superwised learning techniques; feedforward networks, perceptrons and multilayer
architectures. Unsupervised networks are covered in chapter 4 with competetive
learning algorithms and Kohonen nets. Learning Vector Quantization is described in
chapter 5. Chapter 6 deals with statistical inference and issues such as bias/variance,
overtraining and generalization capability.

1.1 Two viewpoints on Neural networks

A neural network is conceptually composed of a number of simple computing el-
ements connected by links. Each link has a numerical weight associated with it.
From a biological and Al point of view, the weights are the primary means of stor-
ing information in the neural network, and learning is a process where the weights
are being updated to represent new knowledge. From a statistical point of view, the
weights are free parameters in a complex non linear function. The correct values for
these weights are found by regression.

1.2 Computing elements

The most common computing element have the following form and function:

The computing element, or node receives signals from other nodes or from network
inputs, computes a new activation level that is sent along each of the output links.
The computation is divided in two parts: a weighted sum in; of the inputs:

ini = ZVVjﬂ'aj (].].)
J

3

4 CHAPTER 1. INTRODUCTION

a
I\V\/j,i

'.r,f;‘; g(zvv,. .)~

__—

/

Figure 1.1:

and the activation function g. g can be either linear or non linear. The most
common choises are:

>
e Step function step,(z) = { (1) i<§ }

>
e Sign function sign,(z) = { tlae=0 }

-1,z <0

1

e Sigmoid function sigmoid(x) = 1=

J x

e Tanh function g(x) = tanh(z)

—

Of particular interest in early research on neural networks was the step function.
.We will start by looking at what functions can be represented by a node with a
step function as activiation function. It’s convenient to replace the threshold ¢ with
an extra input weight Wy ; = ¢ connected to a fictive input ap = —1. In this way we
get the following expression for the activation level a; at unit i:

1.2. COMPUTING ELEMENTS 3

N N
a; = stepy (Z Wjaj> = stepy (Z I/I/}aj) (1.2)

j=1 7=0

The step t can then be handled in the same way as the other weigths when adapting
the behaviour of the node. Examples of boolean functions that can be represented
by this simple computing element are shown in figure 1.2,

& Wl=l B

(wp-is) a=step(-W, +Wa, +Wa,) =step(-1.5+a, +a,)
% w-1 AND
A Wp=t

Cw) —@—»a:step(—wo +Wga, +W,a,)=step(-0.5+a, +a,)
2w =1 ~ OR
a\fij@(}@—» a=step(-W, +Wa,) =step(0.5-a,)

~ NOT

Figure 1.2:

It is however also easy to find boolean function that can not be represented by the
same computing element. The exclusive or function XOR is such asn example. The
XOR function has the following truth table:

a; | az | XOR

0 (0]0

0|1 |1

1]0 |1

1 |1 |0

The corresponding equations for the node activation function are

—wo+0-w +0-wy <0 —woy <0 wy > 0
—wg+0-wy+1-wy>0 —wg + wy >0 o Wy > Wy
—wg+1-w+0-wy >0 —wo+wy; >0 wy > Wy
—w0+1-w1+1-w2§0 —w0+w1+w2§0 w1+w2§w0

This is clearly a contradiction since we get wy > 0, wy > wq, wy > wyp and yet the sum
w1 +wy < wy.Unfortunanatelly this example is not an exception. On the contrary it

6 CHAPTER 1. INTRODUCTION

can be shown that a majority of boolean functions can not be represented by a single
perceptron. The situation can be formalized by the concept of linear separability as
illustrated in the figure 1.3.

|2\\ f=1 l, I,
N
1 AN I N | ® 1 o
\ \ ?
N AN
f :\9\\ \
N N
0 o>\ 0 0
0 1L 0 ~_ 11 0 11,
I AND 15 IJOR 15\ 1] XOR I,

Figure 1.3:

In the general case, a function f(X) : RY — (0,1) is linearelly separable if there
exists an n — 1—dimensional hyper plane such that all points X where f(X) = 0 are
on the same side of the hyper plane.

1.3 The Perceptron

Neural networks were studied in the late 1950s under the name perceptrons. A
perceptrons is built from the the basic computational elements presented in the
previous section. In figure 1.4 a perceptron with four inputs and three outputs
is shown. The activation function g for the ouput nodes O; is the step function
previously described.

Even if perceptrons only can represent linearily separable functions, they achievde
a great deal of interest when Rosenblatt proposed them in 1960. His perceptron
learing rule was shown to converge to a set of weights that corectly represent any
data set, as long as the data were linearily separable.

Given a set of K examples {(I;,T;),i =1, K}, with I, = (I,q,...,I,,,) and T, =
(Tp1s -y Tpm) , the learning rule iteratively updates the weights w;; for each example
p according to

Wii=Wji+na; (Tpi — Opi) (1.3)

where 7 is the learning rate that stabilizes the algorithm steps.

1.3. THE PERCEPTRON

Figure 1.4:

CHAPTER 1. INTRODUCTION

Chapter 2

Multilayer Networks

The limitations with single layer networks are to some extent overcome by the
introduction of multi-layer networks. In figure 2.1 a network with one additional
hidden layer is shown. The activation functions for the hidden nodes are normally
chosen as either the sigmoid or the tanh function. The output layer often has linear
activation functions if the network is used for function approximation, and sigmoids
if the network is used for classification purposes.

A two hidden layer feedforward network has been proved ([Cyb88]) to be a universal
approximator, capable of approximating any continuous function. The learning
algorithms will however be much more complex then in the case with single layer
networks.

2.1 Learning in Multilayer Networks

From a statistical point of view a Feed Forward Neural network is a vector valued
function O[W](I) of an input vector I and a weight matrix W.

The Learning task can be defined as:

Given a set of K examples {(I;, T;),7 =1, K}, find values for the weights W such
that O[W](I,) = T,. Since exact match neither can nor should be achieved for all
examples p, we define an error function that we want to minimize. For each example
p=(1,,Ty) with I, = (1,1, ..., Ipn) and T, = (Tps, ..., Tpm) , the error at output jis
defined by:

6p,j = ij - Op' (2-1)

The total error £, for example p is normally computed as the individual 6, ;, squared
and summed over all outputs j, as shown by

9

10 CHAPTER 2. MULTILAYER NETWORKS

1]\1

E, =3 Z; &2 ; (22)
]:

We define the mean squared error MSE as then mean value of E, computed over
all examples , as shown by:

1 K
MSE = 2" E, (2.3)
p=1

MSE is a function of the free parameters W that controls the network output
values O. For a given training set of examples, MSE represents a measure of
training set learning performance. The objective of the learning process is to adjust
the values of the free parameters W so as to minimize the M SE. The well known
Back-Propagation algorithm is most often used even if numerical methods such as
Gauss-Newton and Conjugate-Gradient methods often does the job much faster.

From a learning perspective, the Back-Propagation algorithm however is often more
appealing since it reflects the incremental learning where knowledge gradually im-
proves the system behavior. The Back-Propagation algorithm is also a major step
towards parallelizable and biologically plausible learning mechanisms.

2.1.1 The Back-Propagation algorithm
We will derive the back propagation algorithm for the case with one hidden layer

as shown in figure 2.1. The equations derived for the hidden layer turns out to look
the same even if more hidden layers are added to the network.

Figure 2.1: MLP with one hidden layer

The algorithm works in a pattern by pattern basis where each example is presented
to the network in turn. The weights are updated to compensate for the error in

2.1. LEARNING IN MULTILAYER NETWORKS 11

network output. The algorithm can be derived as a gradient descent in weight
space. The gradient is computed on the function me want to minimize, i.e. £, as
defined in 2.2. Leaving out the pattern index p we get the following expression:

1

E(W) =35> (Tz‘ -9 (Z wj,z‘aj>) (2.4)

substituting ¢ (3", wy ;1) for the hidden unit activation a; we get

1

E(W) = %Z (:n —yg (ij W;ig (ij wk,jIk>))2 (2.5)

We compute the partial derivatives % with respect to the weights w;; connecting
7t

the hidden node j to the output node . This entity tells how much the error would
change if the weight w;; was increased by a small amount. We get the following
expression:

56; - = —a;(T; = 0,)¢' (Z wj,z‘aj> = —a;(T, — 0))¢ (in;) = —a; A, (2.6)
75t j

where in; is the input to the activation function in output node 7. I.e:

ini = ijﬂ-aj (27)
J

and A; is defined as the error in node 7 times the derivative computed in the same
point. Le.

The derivation of the partial derivatives with respect to the weights wy, ; connecting
the input k to the hidden layer node j yields a similar result even if the derivation
of the equations are more complex. We obtain

OF
= —I.A; 2.9
8Wk,j k=g ()
where
z'nj = Zwk,jjk (210)
k

and

12 CHAPTER 2. MULTILAYER NETWORKS
Aj = g'(ing) 3 Wjilds (2.11)

The obtain the update rules for the minimization of E, we should take steps opposite
to the gradient. Adding a learning rate n we get for the output layer weights

Wii=Wji+na; A (2.12)

and for the hidden layer weights

WkJ = WkJ’ + T]IkAj (213)

The updates rules are implemented in a recursive algorithm as follows:

Given a set of examples p = (I,, T,) with I, = (L1, ..., Ip,) and T, = (Tp1, ..., Tpm)
, the error at output jis defined by:

repeat for each example e
(O1,...,0,) = O [W] (I.) % compute the network output vector
for each output node i
err; =T.; — O; % compute the error at each output node
g =, Wiia;
A; = ¢'(in;) err;
W, =W;;+na; A; % update the weights leading to output layer
end
for each hidden node j:
ing =3 p Wi jlek
% compute the error at each node by propagating
% the A; from the output layer:
Aj = g’(inj) D vazAz
Wi =Wi,;+n Lr A; % weights leading to hidden layer
end
until converge
Each pass through all the examples in the training set is denoted an epoch.

As we can see in the update rules 7?7 and 2.12 a weight can be calculated by the unit
to which it is attached, using only local information. This makes backpropagation

2.2. NEURAL NETWORKS AS CLASSIFIERS 13

plausible as a biological learning mechanism. Furthermore it is appealing when
implementing learning algorithms on parallel computer architectures.

Like all gradient descent based algorithms, back-propagation suffers from slow con-
vergence and problems with local minima in the error surface. Numerous improve-
ments to the basic algorithm have been proposed and made it by far the most
commonly used learning method for neural networks.

2.1.2 Non statistical aspects on learning:

e We don’t want performance on the training data !

Minimization of the performance on the training data set often leads to ”over
training” where the computed model is to tightly connected to the training
data. The generalization performance (how well it predicts unseen data) will
therefor not be maximized by minimizing the mean squared error (2.3) on the
training set data.

e Is the error function relevant (MSE)

The mean squared error is not the only possible entity to minimize. Depending
on the application, it may be more relevant to minimize the mazimum error,
the median error or some other measure of prediction quality. Also, in the case
of multiple outputs, its not obvious that the error in all outputs are equally
important to minimize.

e What about the learning process?

Viewing the learning as a pure parameter estimation problem neglects the
system behavior during the training process. It may in some cases be the
whole purpose of a system to study the learning process as new data enters
into the system. In other cases, such as certain real time systems, the behavior
during training is crucial since useful predictions must be available even during
the training process.

2.2 Neural networks as classifiers

Neural networks are also often used for classification problems where p-dimensional
input vectors are to be mapped to an m-dimensional output vector with exactly one
element set to one and the rest to zero. The position of the set element represents the
class associated with the corresponding input vector. In this way, examples of input
vectors and corresponding output vectors can be used to train the network to assign
a class label to unknown input vectors. It is typically implemented with a multilayer
perceptron with p inputs and m outputs. The output layer often uses the sigmoid

14 CHAPTER 2. MULTILAYER NETWORKS

as activation function producing an m-dimensional output vector with values in
the closed interval [0,1]. It has been shown (see e.g. [?]) that the output from
a successfully trained network is an asymptotic approximation of the a posterior:
class probabilities.. This means that the optimum classification of an input vector
is the position in the output vector that has the highest value. It is common to
offset the target output vectors by a small amount € such that the zero-elements
are represented by ¢ and the one-element by 1 — e. The reason for this is to avoid
saturation of the activation function in the training process. The output from the
trained network can in this case not directly be interpreted as probabilities.. A
linear transformation [e,1 — €] — [0, 1] must first be applied. The position in the
output vector that has the highest value is however still the optimum classification
for a given input vector.

Chapter 3

Radial basis networks

A new and powerful type of feedforward artificial neural network is the radial basis
function (RBF) network. It differs from the Multi Layer Perceptron (MLP) primarily
in the activation function and how it is applied on the inputs to a node in the
network.

3.1 The activation function

In a "normal” feed-forward neural network, the activation value (i.e. the "output”)
a; from a node ¢ is the activation function g applied on a weighted sum of the inputs
I;,j =1,n to the node (figure 3.1) . Le.:

J

a; = (g (Z I/VJJIJ> .

Ji=1

Output
links

Figure 3.1: Node in a MLP

W, i is the weight connecting input j to node i. g is typically chosen as the sigmoid
defined as (figure 3.2)

15

16 CHAPTER 3. RADIAL BASIS NETWORKS

(3.1)

«Q

Figure 3.2: Sigmoid activation function

In the case of MLP, g contains no trainable parameters.

In a Radial basis network, each node has its own activation function denoted R
(figure 3.3) The idea is that each node should react on different parts of the input
space.

I Input Output
2 links — links

/’

15

Figure 3.3: Radial basis node

The activation value a; is therefor defined as a function of the distance between the
input vector I = (1;, ..., I,,) and a center point u = (u;1, ..., Ui):

a; = R(|IT—u)). (3.2)

The activation function R should have its maximum at zero and decay symmetrically
around zero. Typical choices are the gaussian (figure 3.4)

R(T— wl) = exp (— T - wi][* /202) (3.3)

and the logistic function

3.2. ARCHITECTURE 17

I-ui
Figure 3.4: Gaussian activation function

1

e = e (I wl /202)

(3.4)

Each node is thus specified by a center point u; = (uq,...,u,) and a standard de-
viation o;. Note that the inputs are connected directly to the node (in the case of
MLP, the inputs are weighted before entering the node).

e The activation function R operates on the distance between the input vector
I and the center point u .

e R has its maxima for zero input and approaches zero at infinity. That is why
the functions are called radial; their value is monotonically decreasing with
the distance from a center point.

e The receptive field is the part of the input space that affects the output; a
hyper sphere around u and a width determined by o.

e The nodes are called localized receptive fields, locally tuned processing units
or potential functions.

3.2 Architecture

Figure 3.5 shows a small RBF network. The hidden nodes have radial-basis activa-
tion functions as described above and the output layer nodes have weighted sums
as activation functions:

m
a; =y Wiia,
=1

18 CHAPTER 3. RADIAL BASIS NETWORKS

I , I
Input layer 1 Hidden layer I Output layer

1 |
a- =W, _.a, +W, _a
l, a W, 5 5 3573 454

Figure 3.5: Radial basis network

l, W5

where m is the number of hidden nodes connected to the output layer and W, is
the weight connecting hidden unit 5 to output node .

The number of hidden nodes can be determined in a number of ways:

e Each input vector can get its own node. The center is set equal to the input
vector. The standard deviation is estimated statistically. The weights to the
output layer are then estimated by ordinary linear regression. This method
normally yields a vastly over parameterized model since the size of the model
increases linearly with the number of input vectors.

e Another alternative is to cluster the input vectors and set the center points in
the hidden layer nodes to the cluster centers. The standard deviation is also
estimated from the clustering process.

Many other layouts have also been proposed for RBF networks. Depending on the
chosen layout, some or all of the following parameters are subject to training:

e Center points u and widths o for all the hidden nodes

e Weights between the hidden nodes and the output nodes
Weight initialization can also be done in several way:

e Random values
e Center points are set equal to the input vectors
e Center points are set equal to cluster means

e Standard deviations are estimated from the spread within clusters or from the
original input data.

3.3. LEARNING IN AN RBF NETWORK 19
3.3 Learning in an RBF network

The learning is done in the same manner as in the case of an MLP. An RBF neural
network is a vector valued function O[W](I) of an input vector I and a weight
matrix W. The number and types of weights depend on the chosen architecture as
described in the previous section.

If the center points and the standard deviations are not subject to training, as de-
scribed in the previous section, the learning task reduces to a simple linear regression
problem This can be solved in a fraction of the time for the corresponding training
of an MLP.

3.4 Applying an RBF network

After training the network is ready to be used on previously unseen data. A new
input vector will probably not match any of the weight vectors (i.e. center points in
the activation functions) exactly. It will more likely partially match several weight
vectors and therefore activate the corresponding hidden nodes to varying degrees.
The neuron is said to fire when an input vector falls within the receptive field.
Normally many neurons are fired and their outputs are weighted together in the
output nodes. In this way the network produces an interpolation between the centers
of the fired neurons. Figure3.6 shows an example of a trained radial basis network.
The individual activation functions R, R, ... are displayed as contour curves as a
function of the two inputs I; and I5. The computed model will be local in the sense
that it has little to say about what the underlying function looks like outside the
areas where there are training data. Each activation function just represents a local
model of the training data that falls inside the receptive field of the corresponding
neuron. An ordinary MLP on the other hand produces a global approximation that
is believed to be valid even outside the areas where it was actually trained.

RBF contour curves

Figure 3.6: A trained Radial Basis Network

20 CHAPTER 3. RADIAL BASIS NETWORKS
3.5 Relations to a fuzzy rule bases

A RBF network can be made equivalent to a first order Sugeno fuzzy inference
system (FIS). The aggregation method where the consequent parts of the fuzzy rule
base is combined corresponds to the processing performed by the output nodes in
the RBF network. It is in both cases implemented as a weighted sum. The receptive
fields in the hidden nodes correspond to Gaussian membership functions. If the fuzzy
AND is implemented as multiplication, the one-dimensional membership functions
will become multidimensional Gaussian functions and correspond to a Gaussian
activation function in the RBF network.

3.6 Remarks

We can make the following conclusive remarks on RBF networks:

e In general an RBF network trains orders of magnitude faster then ordinary
feed forward networks.

e It has been shown in Bianchini et al. (1995) that whenever the input space
is separable by hyperspheres, the error function minimized in the training has
no local minima. This is a great advantage compared to the ordinary MLP.

e An RBF network is normally slower to use due to the larger number of nodes.

Chapter 4

Unsupervised learning

When the data available for learning doesn’t contain any correct answers or teacher’s
instructions, only the input vectors can be used for learning..Such an approach is
commonly referred to as unsupervised learning. Whereas supervised learning usually
involves some sort of function interpolation we are now instead trying to find features
or regularities in the data. The goal is often to identify clusters that describe
important aspects of the investigated data set. The unsupervised methodology is
used in many applications:

Pattern recognition: Automated cytology, Fingerprint recognition, Optical
Character Recognition (OCR).

Feature extraction: Finding out what parts of a large input vector is relevant
for the problem.

Pre processing of data: The clustering of data may serve as a pre processing
stage for e.g. other types of neural networks.

Data compression: Compression of images.
Many paradigms for unsupervised learning has been developed:

e Competitive learning
e Kohonen self-organizing feature map
e Boltzman machines

e Principal Component Analysis

We will describe the first two paradigms in the following sections.

21

22 CHAPTER 4. UNSUPERVISED LEARNING
4.1 Competitive Learning

The Competitive Learning network is a popular scheme to achieve unsupervised
data clustering. Figure 4.1 shows a small example of a network for competitive
learning. Fach input is a 3-dimensional vector x = (x1, z9,x3), and we expect the
input vectors to be clustered in four clusters, hence the four output nodes aq, ...as.
Note that the data contain no output values. The analysis is based on the input
vectors only.

Input layer 1 Output layer

R o

R

Figure 4.1: Network for Competitive learning

The activation level a; (i.e. the output) from node j is normally defined as the
Euclidean distance between the weight vector w; = (wy j, ws ;,ws ;) and the input
vector x

a; = Z (wiw;)* = ||lx —wy (4.1)

where n = 3 since the x vectors are 3-dimensional in the example.

In competitive learning each pattern is presented to the network one by one. The
activation levels are computed and the most successful output is selected for up-
dating. In this case the winner is the neuron that has the smallest activation level,
i.e. the one with a weight vector w most similar to the input vector x. This node
is denoted k and the weight vector leading to it then adjusted further towards the
input vector the following learning rule:

Wi(t +1) = wi(t) + 1 (x(t) — wi(t)) (4.2)

4.1. COMPETITIVE LEARNING 23

where 7 is a learning rate parameter.

The weight vectors will eventually become cluster centers for all the inputs vectors
where the associated output node was selected as winner.

The individual neurons learn to specialize on sets of similar patterns. They are there-
for often denoted feature detectors. The cluster centers are often denoted templates,
reference vectors or codebook vectors.

When the trained network is presented a new unclassified input, the winning output
is taken as estimate or prediction of the classification of the input. If we want to
decide whether two input vectors are equal we simply let the network classify them
and see if they fall into the same cluster.

4.1.1 Example

Let us look at the example of a network for Competitive learning in figure 4.2.

a, :HX‘WJ'H

Before learning After learning

Figure 4.2: Illustration of Competitive learning

The network looks like the one in figure 4.1 but with 2-dimensional inputs I, I
and three output nodes a1, asas. The 8 inputs vectors are denoted x1,...,x3 and
are plotted as points in the 2-dimensional plane. We expect the input vectors to
be clustered in 3 clusters, hence the 3 output nodes with associated weight vectors
w1, Wy, Wsg. The tree weight vectors are also plotted in the same plane. The arrows
indicate how the eights are moved as result of the learning. The final result with
the weight vectors as cluster centers are shown to the right in the figure.

1. One of the input vector x is applied as input to the network.

2. The activation levels are computed for all output nodes, i.e. for the three
weight vectors. The activation level is defined as the Euclidean distance be-
tween the input vector x and the weight vector w for each node.

24 CHAPTER 4. UNSUPERVISED LEARNING

3. The weight for the output with the smallest activation level is selected for
updating. I.e. the weight vector w that is closest to the input vector x.

4. w is adjusted further towards the input vector by the learning rule 4.2.
5. The process is repeated from step 1 for all input vectors in one epoch.

6. The process is repeated with multiple epochs until all weights wy, wy, w3 have
stabilized.

The weight vector will become cluster centers for all the inputs vector where the
output node was selected as winner.

The input data is now divided into disjoint clusters such that the similarities between
inputs in the same cluster are larger then those in different clusters. If we apply a
totally new input vector x to the network, the node with a weight vector closest to
x will have give the smallest activation level. x is then classified as belonging to the
corresponding cluster.

4.1.2 Other Similarity measures

The concept of similarity is used to compute each neurons activation level when
an vector is input. We have been using the Euclidean distance 4.1 so far, but
other metrics can also be used. The scalar product between the input x and the
weight vector w is often used as measure of dissimilarity. The activation level a; for
node j is normally defined as the Euclidean distance between the weight vector
w,; = (w1 j, wa j, ws ;) and the input vector x = (zy, ..., z)

aj = leiw,»,j = x| [lw| * cos(pu, o) (4.3)
As we can se from the definition, the scalar product for normalized weight and in-
put vectors equals the angle between the two vectors. It can therefor be regarded
as a measure of dissimilarity and the selection of winner in the competitive learn-
ing should be the neuron with largest activation value instead of the one with the
smallest activation in the case of using the Euclidean distance. The normalization
of the weight vector is taken care of by a modified learning rule

Vet +1) = wi(t) + 1 (x(t) — wi(t)) (4.4)
wi(t+1) = vi(t+1)/ [vi(t+1)] (4.5)

and the normalization of the input vectors is taken care of before the learning phase.

4.1. COMPETITIVE LEARNING 25

4.1.3 Result of learning

We have claimed that the algorithms for the competitive learning divided the data
into disjoint clusters such that the similarities between points in the same cluster are
larger then those in different clusters. If we use the Euclidean distance as similarity
measure we can prove that the competitive learning rule is a version of gradient
descent applied on the squared error

E=3 pr — Wi(zp)
)

2

(4.6)

where i(x,) is the winning node for input vector x,. E measures the mean distance
between each input vectors x and the cluster center w that x is classified as belonging
to.

The algorithm for the competitive learning is an on-line method in the sense that the
algorithm processes each data item in sequence as if it really was measured in real
time, on-line. There are also off-line methods that operate on all data at once and
perform the same minimization. An example is the K-means clustering algorithm.

4.1.4 The learning rate 7

The learning rate is normally set dynamically during the learning process. A large
1 doesn’t guarantee stability, the centers will move around. On the other hand a
small 7 makes the algorithm less sensitive and the centers will not get updated when
new data are presented. This trade-of between sensitivity and stability is called
the stability-plasticity dilemma and is common for all learning intelligent systems.
Adaptive resonance theory (ART) was introduced by Grossberg and proposes a
solution to the dilemma in the network context.

4.1.5 Deficiencies of Competitive Learning

e Information is lost since an input vector is mapped onto one single winner
node. It would be better if many nodes were involved.

e Waste of hidden nodes. Some of the nodes may never win if the initially set
weights are to far away from all input vectors. In this way these nodes will
never contribute to the learning process. Some techniques to deal with this
problem are:

— Initialize the weights to an existing inputs vector instead of to random
values.

— Leaky learning: Update all nodes, but with different learning rates 7.

26 CHAPTER 4. UNSUPERVISED LEARNING

— Kohonen feature maps is a well known network paradigm that updates
nodes in a neighborhood around the winning node

e Hard to know how many output nodes to use!

e The underlying method of unsupervised learning uses a bottom-up represen-
tation and do not use any top-down information to form the clusters. It is not
obvious that distinct clusters in the input space are relevant for the task at
hand.

4.2 Kohonen self organizing networks

The self-organizing feature-mapping (SOFM) algorithm was developed by Teuvo
Kohonen in 1982. It is based on competitive learning where incoming signal patterns
of arbitrary dimension are mapped into a one- or two-dimensional discrete map. The
updating or learning is done using not only the winning neuron but all neurons in
a neighborhood around the winning node. The result of the training is the discrete
map where input data has formed clusters. The SOFM algorithm is consequently a
form of competitive learning, i.e. unsupervised learning where the data contain no
target values. It is used for data clustering and also for pre processing in conjunction
with other machine learning techniques.

4.2.1 Biological background

The self organizing artificial networks have been inspired by the studies of biological
brains. The artificial networks are furthermore used to model and simulate biological
brains in fields such as psychology and linguistics. We will therefor present some
biological background for the self organizing artificial networks.

There are partial biological evidence that the brain organize information spatially. It
is most easily studied by observing the neuron activity caused by a specific stimuli
such as touching of the skin, sounds or light signals. The neuron activity may
be studied by techniques such as radioactive tracers and gamma cameras and also
magnetoencephalography (MEG) that analyses the small magnetic fields caused
by neural responses. The reverse connection has been studied by stimulating a
particular site in the brain with small electric currents and observing excitatory and
inhibitory effects on certain cognitive abilities such as naming of objects.

In these ways a fairly detailed organizational view of the brain has evolved. The
brain seem to contain many kinds of maps such that a neural response in a certain
location in the map corresponds to a specific quality of stimuli. Examples are:

4.2. KOHONEN SELF ORGANIZING NETWORKS 27

e The visual areas where some maps deal with line orientation or color percep-
tion. The spatial directions in the maps represent different aspects or features
of the mapped entity.

e Some maps represent quite abstract qualities such as in the word-processing
areas where the neural responses seem to be organized according to categories
and semantic properties.

e Another example is the somotopic map, which contain a representation of the
skin surface. An identical adjacent map takes care of the muscle control based
on the same topology.

4.2.2 The architecture of the SOFM

The basic idea with the SOFM is that not only the winning neuron but all neurons
in a neighborhood around the winning node should be affected by updating. The
neighborhood concept is introduced by arranging the nodes in either a line or a
square. The neighbors to a certain node are then defined to be the adjacent nodes
in the square or on the line. The line or the square is denoted map.

In figure 4.3 we have 3-dimensional input vectors x = (x1,25,x3). All inputs are
fully connected to each one of the 16 nodes through 16 3-dimensional weight vectors
W = (wl, Wa, wg).

— 000

3-dim. }—» }—» ’_:;-» h:)-»
input

=
16 3-dim weight vectors 16 output nodes

Figure 4.3: Kohonen Self Organizing Map

The activation level (i.e. the output) from each node is the same as in ordinary
competitive learning. It may be the distance or the angle between the weight vector
for the node and the input vector x.

28

CHAPTER 4. UNSUPERVISED LEARNING

A neighborhood function A;is also defined. It should map a neuron i onto the set
of neurons that are regarded as the neighborhood to neuron ;.

One way of doing this is shown in the figure 4.4. The size of the neighborhood is
determined by the radius that can take values from 0 up to the full size of the map.

© O sy ©1 ©
O O OO O
1 rad|y_s:0 1 1 1

0 10 'O @ O O O

Figure 4.4: Neighbourhoods with varying radius

4.2.3 The SOFM algorithm

A high-level description of the SOFM algorithm is given below where N is the
number of neurons in the map.

1.

Initialization

Choose random values for the initial weights vectors w;. Different values for
all j =1,2,N

Sampling

Draw a sample vector x, from the training set of inputs.

Similarity Matching:

Find the winning neuron i(x,) =arg min ||x, — w,||
J

Updating

Update all weight vectors in the neighborhood A, :
w;(t+1) = w;(t) + 1 (x, — w;(t))for all j € Ajx,)
Continuation

Update the neighborhood function A (normally reduce the size) and the learn-
ing rate 1 (normally reduce the magnitude)

4.2. KOHONEN SELF ORGANIZING NETWORKS 29

7. Continue with step 2 until all weights are stable.

The success of the generated feature map depends on how the learning rate n and
neighborhood function A are initialized and updated in step 4. There is no theo-
retical basis for selection of these parameters. The following rules of thumb often
provide a useful guide. (Kohonen, 1988b). The learning is assumed to contain two
phases:

e The ordering phase. The topological ordering takes place. n should be around
1 during this phase for about 1000 iterations. Astarts at full radius and
decreases linearly with time down to a small value with only a couple of neigh-
boring nodes.

e The convergence phase. Fine tuning the map. 7 should be on the order of 0.01.
Many thousands of iterations. A is slowly reduced down to 1 or 0 neighboring
neurons.

A lot of variants of the basic algorithm exist. Step 4 where the weights are being
updated may for example use a negative feedback to update weight vectors that fall
outside the neighborhood, i.e.: w;(t+1) = w;(t) —n2 (x, — w;(t))for all j & Ay, -
This process is called lateral inhibition. Nodes close to the winning node are being
positively updated (reinforced or rewarded) and nodes farther away from the winner
are being negatively updated (extinguished or punished).

4.2.4 SOFM after successful training

What have we achieved when the SOFM algorithm has converged? Let X denote
the continuous input space and let A denote the discrete output space, e.g. the map
of neurons arranged in a line or in a square as in figure 4.5.

Let ® denote a nonlinear transformation from X to A as shown by

P:X — A (4.7)

® may be viewed as an abstraction of step 3 in the SOFM algorithm: i(x,) =arg min
J
[1%p — Wl

which finds the best matching or winning neuron in the output space A.

This mapping, called the feature map, is totally defined by the weight vectors w.
The weight vector for the winning neuron i(z) may then be viewed as a pointer for
the winning neuron back to X. These two mappings are illustrated in figure 4.5.

30 CHAPTER 4. UNSUPERVISED LEARNING

Continous Feature map ® Discrete

input space X: P:X - A output space A:

[0 00O
-) O ciJ(X)o O O
|« W, © ©0O0O0O0
/ OO0 O0OO0O0O
N O O0OO0O0O0O0
O O OO O O

Figure 4.5: Self organizing feature map ®

e If the input space has higher dimension than the map, we talk about dimen-
sionality reduction and data compression. The described techniques has been
applied successfully to image compression.

e The feature map ® is topologically ordered in the sense that the spatial location
of a neuron in the grid corresponds to a particular domain or feature of the
input vectors. It can therefor be utilized for similarity detection and also as a
preprocessing stage in other supervised algorithms.

Chapter 5

Learning Vector Quantization

This method was developed by Linde (1980) as a tool for image data compression.
It was adapted by Kohonen (1986) for pattern classification, i.e.: assigning class
labels to input data. The method combines unsupervised clustering and supervised
learning and involves two steps:

e Locate cluster centers w by a clustering method such as SOFM.

e Fine tune the centers w to minimize the classification error.

Since this is a supervised learning technique, the target value for each input pattern x
must be available to determine if the classification is correct. A high-level algorithm
is given here:

1.
2.

Initialize the cluster centers w by a clustering method such as SOFM

Label each cluster w to the median values of each clusters’s target values
(voting).

Select a random input vector x.

Find the closest cluster for x: i(x) =argmin ||x — w;]|
J

. If x is correctly classified (i.e. the target value for x equals the label of i(x))

then
Wi (t + 1) = Wi (1) + 1 (x = Wi (1))
else

Wi(x) (t + 1) = Wi(x) (t) | (X — Wi(x) (t))

Decrease the learning rate n (typically from 0.01 down to 0 in 100000 steps)
and repeat from step 3 maxiteration times.

31

32 CHAPTER 5. LEARNING VECTOR QUANTIZATION

The idea with the updating of weights in step 5 is to move the weight vectors away
from the decision surface to demarcate the class borders more accurately (Kohonen
1990). In this way the classification performance is increased.

The described algorithm is LVQ1. Kohonen also suggested improved versions of the
method, called LVQ2 and LVQ3, that update more then just the winning neuron.

5.1 The Phonetic Typewriter

A famous application of Learning Vector Quantization is Kohonens Phonetic Type-

writer. It is an implementation of the Self-Organizing Map for recognition of

phonemes in continuous speech (Finnish and Japanese). The input is a 15-components
spectral vector from a 256-point FFT. It gives the frequency contents of the origi-

nal speech signal. About 2000 samples is required to make the system learn a new

speaker. The input vectors are clustered with the SOFM algorithm. The clusters

are then labelled with phonemes and fine tuned according to the LVQ algorithm.

The resulting map is shown in figure 5.1.

AOOMO®OOOOE
OOOOO@OOOOOLO

COOOOOOOOOOOO
©JOICIOI0ICIOICI0I0]0]0,

CQLOOOOOO® OO

COUOOEOOOOOOO
OOOOBOWEEEEEOOE

OOOLVOOEOOOO®

Figure 5.1: Map for the Phonetic Typewriter

Each node in the map is labelled with the classified phoneme. Most nodes give
a unique answer, whereas the double labels indicate response to two phonemes.
Classification errors less then 10% has been reported. This is claimed to be better
then other methods. The method has been implemented in hardware for real time
operation (Kohnonen1988).

5.2. OTHER APPLICATIONS 33
5.2 Other applications

The self-organizing feature-mapping (SOFM) algorithm and then Learning Vector
Quantization algorithm have been used in a variety of applications, including the
following:

e Radar classification of sea ice

e Brain modelling

e Control of robot arms

e Speech recognition

e Sentence understanding

e Control of industrial processes

e Automatic synthesis of digital systems
e Optimization problems

e Image compression

e (Classification of insect courtship songs

34

CHAPTER 5. LEARNING VECTOR QUANTIZATION

Chapter 6

Statistical Inference

Model-free estimation and non parametric statistical inference deal with the problem
of finding a hypothesis function using a set of examples as primary information. The
estimators can take many forms such as algebraic or trigonometric polynomials,
neural networks, step wise regression etc. Many of these techniques have been
shown to share the common property of being universal approximators, capable
of approximating any continuous function. In the case of neural networks it was
first shown by Cybenko [Cyb88]. Note that these are theoretical results which
may require a model with arbitrary complexity for convergence. The convergence
also assumes an infinite example set. The data must furthermore be free from
all noise. Conditions which are seldom fulfilled in real applications. The general
limitations of statistical inference are also clearly understood and is formulated as
the ”bias/variance dilemma”[GBD92].

6.1 Bias and Variance

To estimate an unknown function f(P)that has produced a finite set of examples
(P, T) the following general procedure for inductive learning can be applied:

1. Draw a random training set from the set of examples
2. Train one estimator h;(P) (e.g. a neural network)
3. Evaluate the estimator on a randomly picked test set of examples

Repeat 1-3 a large number of times, producing hypothesis functions A, ..., hy.

Now lets concentrate on what we have produced for a specific point p. We have a
number of different estimators hq(p), ..., Ax(p). Since they all depend on random

35

36 CHAPTER 6. STATISTICAL INFERENCE

selections of training data, they can themselves be viewed as outcomes of a random
variable hp with mean mp and variance Vp.

The mean squared error for the predictions in the point p can be written as:

E, = E[(hp — f(p))*] = E[hp + f(p)* — 2hpf(p)] = E[hp] + f(p)* — 2f(p)E£hP])
6.1

By using the identity V, = E[hZ] — m? we get:

Ep =V, +my, + f(p)* = 2f(p)E[hp] =V, + (m, — f(p))” (6.2)

The mean squared prediction error £, thus is a random variable comprising two
components termed bias and variance:

e Bias: (m, — f(p))?. the amount by which the average estimator differs from
the true value

e Variance: V. The variation among the estimators

The mean mp can be estimated as >_; h;(p)/N and the variance Vp can be estimated
as >;(hi(p) —mp)?/(N — 1).Note that explicit estimation of Ep requires knowledge
of the underlying function f. This is seldom if ever the case, otherwise there would
be no need to estimate it. Statistical methods to estimate Fp without this knowledge
of f exist. For example, the Jackknife, and the Bootstrap techniques[Efr82]. It is
however possible to proceed without explicit calculation of Ep by looking at how the
estimators complexity affect the distribution for Ep. Depending on the estimators
complexity, we get the following extreme cases:

e To low complexity (e.g. a straight line or a neural network with few weights)
The computed estimators hi(p), ..., Ax(p) will produce roughly the same val-
ues since a low complexity model don’t have the power to express minor differ-
ences between different samples of training data. Hence the variance Vp will
be low. The bias will however by high since all of the estimators differ in the
same way from the true value f(P).

e To high complexity (e.g. a neural network with several layers and many
weights) The computed estimators h(p), ..., hy (p) will train precisely to each
training set, thereby producing high variance Vp for the estimators since each
estimator operate on different random samples of training data. The bias will
however be low since the mean value mp computed as Y, h;(p)/N will be
centered around the true value f(P).

6.2. WEAK AND STRONG MODELLING 37

Now turn to the "real” situation where only one single estimate hg(P) has been
produced. It is still an outcome from the random variable h(P) with its associated
mean and variance. So, what distribution on the estimates do we prefer to pick the
single estimate from, one with low-variance/high-bias or one with low-bias/high-
variance? The choice is partly controlled by the complexity of the model. Looking
at equation 6.2, the correct answer would be that neither of the alternatives are
optimal in terms of giving a minimal prediction error F,. The best choice is a trade-
off between low bias and low variance. Since the complexity affects the entities in
different directions we are facing what is called the ”bias/variance” dilemma. A
large variance has to be accepted in order to keep the bias low and vice versa.

According to Casdagli and Weigend [CW93], the position taken by most statisticians
is, 7 for reasons of conservatism”, to favor low-variance/high-bias over low-bias/high-
variance. This results in nonlinear models with relatively low complexity and few
parameters. These models work fine if the underlying function is equally simple and
the interesting behavior is mainly due to outside perturbations. For more compli-
cated functions, models with higher complexity must be used to get acceptably low
prediction error. The price to be payed for this additional expressiveness is higher
variance.

In some cases, a low complexity model can be designed using prior knowledge about
the specific application of interest. In such cases the bias is ”harmless” since it is
directed towards the real function f(P). The bias can then be brought down without
increasing the variance. This approach can applied even to black box models such
as neural networks. In weight sharing several synapses (connections between nodes)
are using the same weight. In radial basis networks the receptive field of the neurons
in the hidden layer can be preset to reflect known properties in the function to be
modelled. The general situations are described with the terms ”Weak” and ” Strong”
modelling.

6.2 Weak and strong modelling

The terms weak and strong modelling refers to the degree to which a model is pre
conditioned to reflect the underlying process to by modelled. A weak model makes
few assumptions on what the real process looks like whereas a strong model makes
many assumptions. The traditional choice in the natural sciences has been to prefer
strong models which are tightly connected to the actual process. The parameters in
such models can often be given a "meaning” in terms of slopes, constants, thresh-
olds etc. There are however also examples of weak modelling. Physicists sometimes
model dynamical systems as fairly general nonlinear functions [CW93]. The clas-
sical ARMA-models are also examples of weak models with few domain-specific
assumptions.

38 CHAPTER 6. STATISTICAL INFERENCE

6.3 Overfitting and Underfitting

The term Overfitting is used to denote the situation where the selected model type
has to high complexity with respect to the ”bias/variance” trade-off.. The term
underfitting denotes situations where the model has to low complexity.

6.4 Overtraining

The term overtraining refers to a situation where a model is fit to closely to the
training data, thereby decreasing the computed models generalization performance.
The problem is caused by allowing the learning algorithm to keep iterating in an
attempt to bring the total prediction error on the training data to an absolute
minimum. When the prediction error has reached below a certain, problem specific
limit, the algorithm will however start fitting properties in the training data which
are not general but rather to be considered as noise. The generalization performance
will therefor decrease from that point on in the learning process. The phenomena
is normally connected to ”weak modelling” where the model is totally unbiased
and capable of fitting data from any data source. It is also connected to the issue
of model complexity since the point where the overtraining starts depends on the
models expressiveness.. A model with low complexity (e.g. a straight line) will be
less sensitive to the problems with overtraining. A high noise level in data does also
increases the risk of overtraining since noisy data more easily gets interpreted as
real data by the training process. The risk for overtraining is also affected by the
amount of data used for the training of the model. A lot of data prevents a model
of a certain complexity to interpret noisy data as real.

The problem with overfitting can either be solved indirectly by reducing the model
complexity or directly by interrupting the learning algorithm. Refer to section 6.6
for further discussions.

6.5 Measuring Generalization ability

The crucial measure for all learning algorithms is the ability to perform good when
presented unseen data (also called out-of-sample performance). The difference be-
tween the performance on the training data and on unseen data is dramatically
increased when low-bias models such as artificial neural networks are considered..
The importance of good estimations of the performance on unseen data can in such
situations hardly be overestimated. Apart from being the principal performance
measure for a modelling problem, the generalization ability is also an important
tool for model selection.

6.5. MEASURING GENERALIZATION ABILITY 39

The theoretical aspects of why and when learning works is covered by computational
learning theory, a field in the intersection of Artificial Intelligence and computer
science. A result from the sub field PAC-learning (probably approzimately correct)
gives the following relation between the number of necessary examples m and the
set of possible hypotheses H.

m> <1n1 +1n |H]) (6.3)

€ o
where ¢ is the error in a specific hypothesis and 6 is the probability for a non correct
hypothesis being consistent with all examples. Thus, by using at least m examples
in the training then with probability at least 1 — 8, the produced hypothesis has an
error at most €. Even if the practical results from PAC-learning still are limited, it
puts focus on two important things:

e The aim of learning is to find a hypothesis which is approximately correct.
Traditional learning theory focused on the problem of identification in the
limit where the hypothesis should match the true function exactly.

e The size |H| of the hypothesis space, i.e. the model complexity, is a key issue
for both estimation and control of generalization ability.

A number of methods for estimation of the generalization ability exist.

6.5.1 Test-set validation

The standard procedure for validation in most machine learning techniques is to
split the data into a training set and a test set. Some times the training set is
further divided to extract a cross validation set (used to determine the stopping
point to avoid overfitting). The test set is only used for the final estimation of the
generalization performance. This approach is wasteful in terms of data since not all
of it can be used for training. The advantage is that no assumptions regarding error
distributions or model linearity have to be made. In the case of neural networks,
Weigend and LeBaron [WL94] have shown that the variation in results, due to how
the split in the three sets is done, is much larger then the variation due to different
network conditions such as architecture and initial weights. The method used to
show this is a variation of the procedure described in the section ” Bias and Variance”
above. By really generating a huge number of independent hypothesis functions
the variance can be explicitly estimated. Weigend and LeBaron uses predictions
of traded volume on the New York Stock Exchange as application in their report.
Volume data is known to contain more forecastable structures then typical price
series. It is however dominated by a noise component which makes the sensitivity
to how the data is split very prominent.

40 CHAPTER 6. STATISTICAL INFERENCE

This result should not be seen as a disqualification of the method of test-set-
validation, but rather as an illustration of the general problem with all inductive
inference methods.

6.5.2 Cross-Validation

Cross-validation takes the idea of Test-set-validation to its extreme. Assume that the
entire data set contains N data samples. One sample is left out and the remaining
samples are used to train a model. The performance of this model is estimated by
the squared error in the left out sample. The procedure is repeated for all N samples
in the data set, thus producing N models with associated error estimates for the
single left out point. The mean of these estimates are used as a total estimate of the
prediction error for the model. If NV is large, the method easily gets too expensive in
terms of computations. Variations where more the one sample is removed from the
data set was introduced in [Gei75]. A method specifically developed for artificial
neural networks was proposed in [MU95]. Instead of starting the training from
scratch with each new training set, the weights from previous training is kept and
used as starting values for the next model.

6.5.3 Algebraic estimates

The various methods with cross validation require the data to be split in separate
sets for training and estimation of generalization error. This is often not possible
to do when the total number of data points are very limited or the data is very
noisy (a large training set is then necessary). A number of algebraic estimates of
the generalization error however exist and work without any split of the data. They
all impose prior assumptions on the statistical error distribution. Some well known

formulas are Akaike’s final prediction error (FPE) and Generalized cross validation
(GCV):

Q
FPE - MSE 250 (6.4)
%

GOV = MSE——_ (6.5)

02
(1-%)

MSE is the average squared error and is computed over the whole data set. The

methods work by penalizing the M SE with a term to compensate for the complexity

of the model. A sufficiently powerful model with many weights can, as is well known,

fit any data set. A low value of MSFE is therefor not sufficient to guarantee a low
generalization error. The complexity is estimated by the number of free parameters

0.

6.6. CONTROLLING MODEL COMPLEXITY 41

In the case of neural network models, the value on @ is far from trivial! If the
training is done with regularization such as early stopping, Tikhonov regularization
or weight elimination, the number of free parameters is not the same as the number
of weights!

6.6 Controlling Model complexity

As been described above, the model complexity is intimately connected the ”bias
/variance dilemma”. In powerful models such as neural networks with many weights,
it’s often necessary to impose some restrictions on the model in order to avoid too
high model variance. The methods used are often termed ”regularization” and in-
clude techniques such as Architecture selection, Adding noise to data, Early stopping
and Tikhonov regularization. Tikhonov’s reqularization theory applied to neural net-
work training algorithms can be found in [EGLWO97].

6.6.1 Architecture selection in Neural Networks

The architecture of an ordinary feed-forward neural network is characterized by

e The number of hidden layers
e The number of hidden nodes

e The set of non zero weights

In the following we assume a network with one hidden layer. The problem of find-
ing the best number of hidden nodes and the best set of nonzero weights can be
approached in one of two ways:

e Network growing methods.

The network is gradually increased in size by adding hidden nodes until the best
performance is achieved. Methods for doing this includes structure-level adaption
and cascade correlation learning architecture [FL90)].

e Network pruning methods

The network is gradually decreased in size by either removing nodes (such as in
optimal brain surgeon OBS [?] and optimal brain damage OBD [?]), by removing
weights (such as in weight-elimination [?]) or by reducing weights (such as in weight-
decay[?]. Haykin gives a survey of these common methods in [?].

42 CHAPTER 6. STATISTICAL INFERENCE

Moody [M0094] presents some other common algorithms for control of the network
complexity: the minimum description length (MDL) [Ris78] and an information
theoretic criterion [?]. Both methods work by adding a complexity term to the
ordinary mean squared error that is minimized in the training process.

Structure-level adaption

In this method the networks performance is monitored after the training phase has
completed. If the estimation error is larger then a desired value, a new node is added
to the network which is then trained again. If the weights connected to the inputs of
a node fluctuate a lot between successive trainings it may be inferred that the node
does not contribute to the function approximation and should therefor be removed.

Cascade correlation learning architecture

The procedure starts with an empty hidden layer and an input and output layer
determined by the specific problem at hand. New hidden nodes are then added one
by one. Each new node gets weights connecting it to the input layer and to the
existing hidden nodes. The new weights and some of the old weights are trained
repeatedly when each new node is added. new nodes are added until satisfactory
performance is attained.

Optimal brain surgeon OBS and Optimal brain damage OBD

The basic idea of these methods is to identify the weights whose deletion from the
network will cause the least increase in the value of the error function (normally
the mean square error). This is achieved by a quadratic approximation of the error
surface. The methods are very computationally intensive and require inversion of
the Hessian matrix for the network.

Weight-decay

The idea behind this method is to force weights to take values either close to zero or
relatively large. Add to the usual cost function a term which is a scaled sum of all
squared weights, and minimize this new sum in the training phase. I.e. for a neural
network with K weights and N examples in the training set we want to minimize
the following cost function:

N K

D) —y®) + A wy (6.6)

i=1 =1

6.6. CONTROLLING MODEL COMPLEXITY 43

The last term works by grouping the weights of the network in two categories: those
that have a large influence on the mean squared error and those that have little
influence on it. Weights that have little effect on reducing the mean squared error
will be penalized because of the last term. Their absolute values will therefor take
values close to zero. Weights that have large effect on reducing the mean squared
error will on the other hand not be penalized since the last term is balanced by a
hopefully greater reduction in the first term. The value on A is crucial for successful
function of the method.

Weight-elimination

The idea behind this method is simple: Add to the usual cost function a term which
estimates the number of significant parameters, and minimize this new sum in the
training phase. I.e. for a neural network with K weights and N examples in the
training set we want to minimize

S/) —yt) + AZ Wi/ (6.7)

P 1+ wQ/w0

The last term is an estimate of the number of significantly sized weights. ”Signif-
icant” is defined by the choice of wy .For |w;| < wy the cost is close to zero. All
significantly sized weights will result in an extra cost and will therefor be penal-
ized when the training algorithm attempts to minimize the cost function. It should
be noted that the values on A and wq are crucial for the function of the method.
Guidelines for selection of A can be found in /?/.

Early Stopping

Early stopping is a method that addresses the complexity issue by combining train-
ing and estimation of the generalization performance. It is normally used for neural
networks but could also be applied to other types of inductive learning techniques.
Weigend et al. [WRH90] suggests setting part of the training data apart, introduc-
ing a cross-validation set. The learning is done using the training set data but is
stopped at the point where the performance (e.g. mean square error) on the cross-
validation set has its minimum. This performance measure for the cross validation
set is therefor computed in parallel with the ordinary training algorithm that at-
tempts to minimize the mean squared error on the training set data. The weights in
the epoch where the mean square error on the cross validation set has its minimum
are then regarded as optimal and are selected for the model. The produced model is
then applied to the test set for a final estimation of the generalization performance.

In [WR92] and [?] Weigend and Rumelhart performs an interesting analysis on how
the effective dimension of the hidden units in a neural network is changed during

44 CHAPTER 6. STATISTICAL INFERENCE

back propagation training. The effective dimension is a measure of the complexity
in the model that is represented by the network at each instance during training. It
turns out that the effective dimension starts at almost zero and gradually increases
during training. This provides a justification for the use of oversized neural networks
and early stopping. The early stopping should therefor by viewed as a architecture
selection tools rather then an obscure method that stops the regression before the
actual minima is reached.

Bibliography

[CW93]

[Cyb88]

[Efr82]

[EGLWY7]

[FLI0]

[GBD92]

[GeiT5]

[Mo0094]

[MU95]

[Ris78]

Martin C. Casdagli and Andreas S. Weigend. FEzploring the contin-
uum Between Deterministic and Stochastic Modeling, pages 347-369.
Addison-Wesley, 1993.

G. Cybenko. Approximation by superpositions of a sigmoidal function.
Technical report, University of Illinois, 1988.

B. Efron. The jackknife, the bootstrap and other resampling plans.
Society for Industrial and Applied Mathematics (SIAM), 38, 1982.

Jerry Eriksson, Marten Gulliksson, Per Lindstrom, and Per-Ake Wedin.
Regularization tools for training large Feed-Forward neural networks
using automatic differentiation. Optimization Methods and Software,
page 7, 1997.

S.E. Fahlman and C. Lebiere. The cascade-correlation learning architec-
ture. Morgan Kaufmann, 1990.

Geman.S, E. Bienstock, and R. Doursat. Neural networks and the
bias/variance dilemma. Neural Computation, 5:1-58, 1992.

S. Geisser. The predictive sampling reuse method with applications.
Journal of The American Statistical Association, 1975.

John Moody. Prediction risk and architecture selection for neural net-
works. In V. Cherkassky, J. H. Friedman, and H. Wechsler, editors,
From Statistics to Neural Networks: Theory and Pattern Recognition
Applications, NATO ASI Series F. Springer-Verlag, 1994.

John Moody and Joachim Utans. Architecture selection strategies for
neural networks: Application to corporate bond rating prediction. In
Apostolos-Paul Refenes, editor, Neural Networks in the Capital Markets,
pages 277-300. John Wiley & Sons, 1995.

J Rissanen. Modelling by shortest data description. Automatica, 14:465—
471, 1978.

45

46 BIBLIOGRAPHY

[WL94] Andreas S. Weigend and Blake LeBaron. Evaluating neural network
network predictors by bootstrapping. Technical Report CU-CS-725-94,
Department of Computer Science and Institute of Cognitive Science,
University of Colorado, Boulder, CO, May 1994.

[WR92] Andreas S. Weigend and David E. Rumelhart. Weight Elimination and
Effective Network Size, chapter 16, pages 457—476. 7, 19927

[WRH90] Andreas S. Weigend, David E. Rumelhart, and Bernardo A. Huberman.
Predicting the future: a connectionist approach. Internatioanl Journal
of Neural Systems, pages 193-209, 1990.

