
1

A Software Framework for Control and Sensing in
Mobile Robotics

Thomas Hellström, Thomas Johansson, Ola Ringdahl
Department of Computing Science, Umeå University, Sweden

{thomash, thomasj, ringdahl}@cs.umu.se

Index Terms—Software engineering, Mobile-robot software,
Autonomous vehicles

Abstract—Many of the existing mobile-robot software packages
do not include handling of sensors and actuators in a sufficiently
systematic and uniform way, as described later in this section. The
software framework proposed in this paper, denotedNAV2000,
addresses the specific need for interchangeability of components
in robotics. At the lowest level, sensors, and sometimes also
actuators, often have to be replaced by similar, yet not identical,
components. At a higher level, the target vehicle often changes
during the work process. The presented software provides a
framework that supports these replacements and allows configu-
rations of sensors, actuators, and target machines to be specified
and manipulated in an efficient manner. The system can be run
on several different computers if some software modules require
more computing power. To accomplish sufficient monitoring of
the system’s health, a dedicated system keeps track of all software
modules loaded onto the local computer, and also communicates
with health monitors in all other computers running the system.
The overall health of every module as well as a more detailed
description of possible problems is presented graphically. In
addition to this, the system uses logfiles to enable convenient
debugging and performance analysis of hardware and software
modules. The software has been developed as part of, and is
currently in use in, a R&D-project for an autonomous path-
tracking forest machine.

I. I NTRODUCTION

Various tools for mobile robot software development have
been proposed over the last two decades. These tools exist at
many levels of abstraction, and are designed to support the
development in different ways:

- At the highest level, the hierarchical, reactive, and hybrid
robotics paradigms are represented by a number of architec-
tures that implement the general ideas within the respective
paradigm. In the hierarchical paradigm, the robot senses the
world, plans the next action, and then acts accordingly. This
paradigm focuses much on planning. The Nested Hierarchical
Controller (NHC) [10] is a popular architecture for hierarchical
systems. In the reactive paradigm, the robot reacts directly on
sensor data, without any planning. The subsumption architec-
ture [2] was one of the very first architectures put forth for
building reactive systems. The hybrid paradigm is a mix of the
other two and is the most common paradigm used today. Here
the robot first plans how to get to the goal, then the underlying
reactive system takes over and acts on this information. The
system can re-plan when new sensor data arrives, or when the
goal has been reached. One of the first architectures for hybrid
systems was the Autonomous Robot Architecture (AuRA) [1].

- At the intermediate level, there are a number ofrobot
middlewaresystems, e.g. OSCAR [8], MARIE [3], CARMEN
[11], Orca [12], and MIRO [14]. These are software frame-
works to support different robotics paradigms and are some-
times calledRobotic Development Environments(RDE) [9].
They provide data structures, functions, and communication
protocols as a platform to build software architectures on.They
often contain high-level functions, such as path-trackingand
obstacle avoidance, in addition to the basic robot interface.

- At a lower level,networking middlewaresuch as CORBA
[6], Microsoft’s .NET Framework, and MIRPA-X [4], enables
software to run on several computers with different operating
systems, programming languages, and networks. They are not
deigned specifically for robotics applications, but are general
programming tools for distributed computing.

Many of the above-mentioned robot middleware tools over-
look important issues regarding target machines, actuators, and
sensors. Some of the intermediate-level systems do include
high-level handling of sensors and actuators, but not in a
sufficiently systematic and uniform way. The work presented
in this paper attempts to fill this gap, and provide a link
between physical sensors/actuators (or rather their software
counterparts) and the overall control program. The system
proposed here, denoted NAV2000, covers the lower level
and a significant part of the intermediate level. Instead of
a networking middleware, Java is used for (among other
things) transparent network communication. The development
started in 2002 as part of a project for research in the area
of autonomous path-tracking forest machines [7], [13]. This
project is used in this paper to exemplify the various concepts
in the NAV2000 design.

It should be emphasized that NAV2000 does not aim at
taking the same role as some of the robot middleware systems
mentioned above. Many of these systems provide support for a
wide range of different sensors, robot platforms and algorithms
for obstacles avoidance and path-tracking for example. While
we have implemented such algorithms, they are not part of
the NAV2000 system. The proposed software infrastructure for
control and sensing should be seen as support, or a framework
basis, for a complete development environment. NAV2000 is
programmed in Java because of its suitability for rapid testing
and evaluation, and its support of an Object-Oriented system.
Java has built-in multi-tasking (threading) and also supports
networked systems, which makes it easier to deploy the system
on several computers without using networking middleware.



II. M OTIVATION

The work has been driven by an identified need for inter-
changeability of hardware components in the development and
use of robotics systems. This need surfaces at many levels in
the systems, and at many stages in the development process:

At the lowest level, sensors, and sometimes also actuators,
often have to be replaced by similar yet not identical com-
ponents. In a complex system, this may very well mean that
a sensor of one type has to be replaced by one of another
type, which may be connected to another computer. This kind
of replacement is often a major part of the development and
research process, where different kinds of algorithms, sensors,
and setups have to be evaluated and compared. Sometimes
another computer is involved, if some modules require more
computing power. Furthermore, interchangeability is alsooften
needed in a running robot. For example, a satellite navigator
may have to be replaced by odometry if the satellite signals
are occluded, or a laser scanner used for obstacle detection
may have to be replaced by a radar sensor due to weather
changes.

At a higher level, the target vehicle for the developed system
is often changed during the work process. This is a practical
and efficient approach, especially when developing systems
for large autonomous vehicles [7], [13]. Furthermore, support
for this level of interchangeability will become more and more
important as generic robotics systems are developed for many
types of tasks and platforms.

Interchangeability can be implemented in robotics software
in many ways, also without any special tools supporting
it. However, as robotics systems become more and more
complex, such tools become invaluable.

III. D ESIGN CRITERIA

The aim of the presented work is to provide a flexible
and generic link between physical sensors, actuators, and
similar components, and higher-level control softwares (e.g
path-tracking). It has been driven primarily by three basic
requirements:

- Interchangeability- Similar hardware components and
their corresponding driver routines should have a common
interface (”look and feel”) to enable interchanging them at
an appropriate level, without the need for modifications of the
rest of the system. In fact, the system is designed so higher-
level routines would have limited knowledge of the actual
implementation.

- Virtual modules - Instead of rewriting a sensor, e.g
to implement sensor fusion, a new module responsible only
for this function is developed, then used in place of the old
sensor, and also uses the old sensor for input data. In the
same way we can have a virtual vehicle that extends the
functionality of a real vehicle. For example a small robot could
mimic the behavior of a larger vehicle (e.g. slower steering
response). Several such virtual sensors or vehicles could be
strung together.

- Distributed processing- The system should be adaptable
to both differing demands of computing power and different
configurations during test and “production”. During in-office

testing, all modules could be loaded on to a single more
powerful computer, but in field trials two (or more) mobile
computers may share the processing load.

Vital for understanding the difference between virtual mod-
ules and interchangeability is that the latter deals with replac-
ing one sort of software module with another, similar module
- two different speed sensors for instance. A virtual speed
sensor, on the other hand, is not really a piece of software
directly communicating with a sensor; it can be a filter or a
network proxy that serves in the sensor’s place while adding
some functionality.

From these requirements a set of more detailed goals can
be specified to facilitate the design of the system:

- Modularity: A softwaremoduleis the basic building block
of the system. Modules exist in a type hierarchy, with subtypes
being, among others, sensors, vehicles, and actuators. At the
top level in the hierarchy all modules have a common interface,
i.e. they can perform a common set of operations, such as
close, open, and return status. This property of modules is
used by the system to load, start, stop, and interrogate modules
on a high level, without knowing the detailed function of
the particular module. A common loader for all types, which
processes an initialization file with module names and actual
types, loads the modules. On a lower level, all modules of a
certain subtype, such as all speed sensors, can be interchanged
and still handled similarly by the sensor users.

- Extensibility and flexibility: New modules and module
types should be easy to add to the system without any changes
to the existing software. An important feature of the systemis
the low coupling between modules, i.e. they are effectively
isolated from one another regarding internal representation
of data and functions. Only the exposed external interface is
shown, and if a new module of a certain type is added, it
can be treated as any other module of this type. An example
would be a speed sensor type, which only has the function
getSpeed. This leaves it up to the implementers to design the
module in any way they want, as long as the module delivers
data via its getSpeed function. In a practical system there may
exist several speed sensors, which take data from the machine
itself or from a GPS receiver, but the rest of the system does
not know and does not need to know, the actual sensor used
at any given time. If a new type of speed sensor is installed,
its corresponding speed sensor module can be added to the
system without any changes to existing code. Which sensor to
use can be configured at start-up or dynamically changed at
runtime.

- Cohesion: The modules are designed for high cohesion,
i.e. a module does just one thing, but does it well. An example
would be a sensor that requires some form of filtering of its
data. Instead of incorporating filter code in the sensor module
(and thus in all sensor modules that require it), a special filter
module is developed. The filter module would have the same
type as the sensor, and in effect would be a virtual sensor,
which is used in the normal sensor’s place. The filter module
then uses the actual sensor as its data source. This virtual
sensor will for all intents and purposes look exactly like a
“real” sensor to the users of the sensor data. In addition, the
modules have to have low coupling, i.e. a low dependency on

2



other modules.
- Multithreading: Every module should have its own

execution thread, and thus run independently of other modules.
Polling loops are discouraged; instead, an event-driven system
is used with multiple independently executing threads. The
threads normally sleep and only wake up if a message arrives
from another module, from the network, or a user.

- Network Communication: Modules can be located on
several host systems, and there must be a way they can com-
municate transparently, regardless of the actual configuration,
i.e. modules should not be aware of whether they are located
on the same computer as the modules they communicate with,
or a different one.

IV. M ODULES

NAV2000 uses Java Interfaces for different sub-trees in the
architecture: The top root is a Module, under which there
are a Sensor tree, a Vehicle tree, a Proxy tree, and so on. In
parallel to the interface hierarchy there are also abstractbase
classes that supply common functionality to the subclasses.
One example is BasicModule that implements the interface
Module. This abstract class contains a lot of the internal
workings that a module might need; loading of parameters,
status reporting, and logging initialization. The class Basic-
Sensor likewise implements Sensor and inherits BasicModule.
It contains sensor-specific functionality such as data encod-
ing and decoding functions, conversion between little/big-
endianness, and support for message notification (observer-
subject-pattern). The classes implemented in the NAV2000
system broadly represent different types of components in a
robotics system:

• Sensors - represent hardware units that deliver sensor
data, e.g. speed, heading, and position.

• Actuators - represent hardware units that control external
equipment, e.g. throttle, steering angle, and brakes.

• Vehicles - several implementations of real and virtual
vehicles.

• Controllers - process sensor data and compute control
signals for actuators.

• Proxies and servers - facilitate transfer of sensor data and
control commands over a network (Ethernet or WLAN).
These modules hide the actual structures needed to use
the network, so a module has the same look and feel
whether it is used over a network or not.

All modules have a few methods and data elements (attributes)
in common:

init: initialize the module
finish: general housekeeping at shutdown
open: activate the module
close: deactivate the module
getName: return the name of the module
getStatus: return the status (e.g. errors)
setParameter: set any parameter (e.g. calibration)
getParameter: return the value of a parameter

Parameters are special persistent data elements, i.e. theyare
kept on permanent storage between runs. An example would

be calibration parameters that, once set, are reloaded at every
start of the system.

A Sensor has only one more method than the Module
base class, the getPose method. It returns the actual position
and attitude of a sensor relative to the vehicle it is mounted
on. Further down the hierarchy there are special versions
of Sensors, for example the RangeArraySensor, an array of
range sensors, such as sonars. This class specifies a few more
methods:

getRanges: return the range to each obstacle as measured by
the range sensors.

getPoses: return the mounting pose of each range sensor.
getPoses: return the time when the last measurement was

made for each range sensor.

A PositionSensor contains both the mounting pose returned by
the getPose method, and the position measured by the sensor,
returned by getPosition. Timestamp is also incorporated into
the data returned by all sensor classes, to facilitate correct
time stamping of data. In general, all data, be it speed,
steering angle, or gyro temperature, are timestamped, since
it is important for higher-level routines and fusion systems
to be able to match data taken by different sensors that are
not always synchronized. Also, this timestamping is used for
health checks and as a means for estimating the performance
of the system, in particular the network communication.

At the bottom of the class hierarchy the actual implemen-
tation classes exist, i.e. classes that can be instantiated. An
example would be a HTUSpeedSensor, which in the forest
machine is the Hydraulic Transmission Unit Speed Sensor.
This sensor reads system data via the vehicle’s own control and
data bus, a so-called CAN bus, common in vehicle systems. A
class diagram for parts of the forest machine system is shown
in Figure 1.

V. I NTER-MODULE DATA FLOW

One of the central tasks of the system is the swift delivery
of data from sensor to user, be it a control loop or a module for
remote-controlling (teleoperate) the vehicle. In many systems
the data-flow is based on “polling”, where interested modules
must ask for sensor data, without knowing if there are any
new data available. The data flow in our system is event-
driven, meaning that when a module has new data to deliver,
it signals other interested modules. Since all modules are
autonomous, this allows them to deliver data at their own
pace. For this to function, there are two requirements: “user-
modules” must be able to find the data sources, and have to
be able to register interest in the data. The modules can find
each other with the help of theRegistry, described later in this
section. To set up and remove a module’s interests in data, the
two methodsaddObserverand deleteObserverare used. An
observer,also calledlistener, is a special property that can be
assigned to any class, and asubjectis something an observer
observes [5]. Observers and subjects are part of the event-
driven data flow, which is the dominant and preferred way to
move data through the system. Its basic mechanism consists of
subjects, for instance sensors that notify its observers whenever
a new measurement value is available. The listeners, which in

3



+getRanges()
+getPoses()
+getTimeStamps()

+getSpeed()
+getTimeStamp()

+getSteeringAngle()
+getTimeStamp()

+setSpeed()
+setAngle()
+setThrottle()
+setTurnRate()

+setEnabled()

+getPosition()
+getTimeStamp()

+getHeading()
+getTimeStamp()

+init()
+finish()
+open()
+close()
+getName()
+getStatus()
+setParameter()
+getParameter()

+getPose()
+getTimeStamp()

+getPose()

+getRoll()
+getPitch()
+getYaw()
+getTimeStamp()

Sensor

PositionSensor

AttitudeSensor

SpeedSensor

AngleSensor

RangeArraySensor

VehicleAngle

GpsSpeed

GpsHeading

Gyro

Odometry

HeadingSensor

GpsPosition

Odometry

LaserScanner

Radar

Sonar

Module

Actuator

Vehicle

Controller

Server

Proxy

HTUSpeedSensor

Figure 1. Class diagram for parts of the forest machine system. Only the
sensor subclasses are fully described in this diagram. All “real” sensors are
instances of one of the implementation classes shown to the far right. All
other classes implement general functionality inherited by their subclasses.
Some of the methods that must be implemented are shown in the respective
class.

turn may be subjects, process this data and then notify their
observers, and so on. The data finally reaches the end user,
normally a control loop in the system or an external system,
e.g. a Matlab program. Matlab is not easily amendable to
the event-driven paradigm, so the last step in the chain is a
standard polling of data. A subject can have any number of
listeners, and an observer can observe any number of subjects.
An example would be a display that presents some combined
and interdependent data, for instance a map that listens to both
a position sensor and a heading sensor, and plots the vehicle’s
position and direction.

A set of support classes is available for all modules, and
the two most important ones areLoader and Registry. The
Loader is the class responsible for loading, opening, closing,
and finishing all modules, and can deliver a list of all loaded
modules within a specified class, for instance all loaded speed
sensors. The Health Monitoring system (further described in
Section VIII) uses this to keep track of all modules and
periodically query them for their status. Since all modules
must have a getStatus-method, the Health Monitor can do this
knowing only that it is dealing with a subclass to Module.

The Registry keeps track of the names given to all loaded
modules, so an actual module can be found by its name.
This functionality is used by most modules to identify and
find their subjects, i.e. the other modules it wants to observe.
The Registry can also hold arbitrary data, like default network

GpsSpeedSensor

SpeedServer

Current 
speed

SpeedProxy

Matlab control loop

Vehicle

VehicleServer

New set 
speed

VehicleProxy

Current 
speed

New set 
speed

WLAN

Mobile computer

Stationary computer

Figure 2. With Server-Proxy-pairs, the system can be used with two or more
computers, connected via a network. The Proxy acts as a virtual module, so
the user does not have to know whether a network is used or not.

addresses for the local and remote systems, default timeouts,
what module is the current TimeSensor (used by the logging
facility), and what level of debugging should be used. Debug-
ging can be customized for every module, from none to very
detailed, and also on a top level, enabling a user to turn on
and off all debugging from a central point.

VI. COMMUNICATION

The modules in the system may reside on different com-
puters. The communication routines in NAV2000 take care
of the data routing, and make the actual location of each
module transparent to other modules. Every module of the type
SpeedSensor, PositionSensor, etc., has a virtual companion
used in place of the real sensor when it is located on another
computer. This virtual sensor is of the type Proxy, so there
are SpeedProxies, PositionProxies, etc. Every Proxy communi-
cates with a Server, which is its counterpart on the other side of
the network. A simple connection between a user of data, e.g.
a Matlab program, and a sensor, will be extended by a Proxy-
Server-pair as illustrated in Figure 2. In this example, a speed-
measurement is sent from the GpsSpeedSensor (which listens
to a physical sensor) to the SpeedServer. The server sends
the package over a network connection, where a matching
proxy receives it. Since all servers broadcast their data onthe
network, proxies on several different computers can pick it
up. A Matlab control program asks the SpeedProxy for the
current speed, determines a new set speed, and sends it to the
VehicleProxy. Here the data is again sent over the network,
received by the VehicleServer, which in turn passes it on to
the Vehicle object. This object is responsible for adjusting the
speed on the physical vehicle.

Since a SpeedProxy also inherits all methods from the
SpeedSensor class, it can be regarded as a sensor in its own
right, although it is only a virtual sensor. This is one of
the fundamental characteristics of this proposed architecture:
modules that are not sensors can act as if they were. The
concept of virtual sensors makes it possible to locate sensors
and users of data on different computers without the user of
the data ever having to know this. This places special demands
on the Server-Proxy-pair, since it has to deliver that data as
swiftly as possible, and also implement the routines for getting
and setting parameters over the network.

4



Reorganizing a system from a single-computer operation to
several computers involves loading proxies instead of sensors
on the ”user-computer”, and loading servers instead of users
on the ”sensor-computer”. No changes have to be made to
either user or sensor code; all is accomplished by modifying
configuration files as described in Section VII.

Communication between separate computers is done by
Ethernet network, either directly through a cable or via a
Wireless Local Area Network (WLAN). For this, the standard
network equipment for wireless PC:s and laptops with speeds
from 11 up to 54 MBps (IEEE 802.11g) is used. The WLAN is
used for controlling the vehicle, but since the communication
handling is transparent to the system, debug and in-office tests
can be done by either a cable or direct communication within
the computer.

The network communication uses datagrams (by the Internet
UDP protocol), i.e. small packets of data transmitted with no
control over their arrival, and therefore no acknowledgment
of received packets is obtained. The alternative would be TCP
streams, which guarantee the order, integrity, and completeness
of the data. The reason for this choice is threefold:

1) Datagrams can be broadcast to more than one receiver;
so several computers can “listen-in” on data from the
sensors.

2) Datagrams delineate the data on the network. The data
is conveniently seen as small units, as opposed to a
data stream, where the software would have to find the
beginning and end of each data packet.

3) With datagrams, lost packets are quickly replaced by
new data. A streaming model would resend lost packets,
but would also impose a variable delay, and with high
data rates there would be new data available by the time
the original one arrives. TCP also uses bigger packets.
Small packets have a greater chance of getting through
the network, and the loss of a few packets is normally
tolerable. Up-to-date data is often more important than a
complete data stream. For protection against a complete
loss of control should the network fail, there are several
timeouts built into the system.

VII. C ONFIGURATION

The software drivers for sensors, actuators, and target vehi-
cles have parameters describing their function. For a sensor,
this may include sampling rate, amplification level, network
address, and pose. Furthermore, the integration of a target
vehicle, sensors, and actuators into a complete system has to
be handled in a flexible way. To facilitate this, every module
has an associated initialization file with properties that control
the module’s behavior. Most of these properties are set once
and for all, while others are changed either by the user or by
the module itself. The module can also save the changes so
they take effect upon the next time the system is run. One
example would be an experiment to find the most appropriate
gain for a specific sensor; when a suitable value is found, the
sensor can store it in its initialization file. The next time the
sensor is run, it automatically uses the saved value.

The files are stored in separate file folders, one per con-
figuration. Together with the initialization files there is a

configuration file that describes the system (choice of target
vehicles, sensors, actuators, etc.) and which modules to load.
Usually this startup configuration file is stored together with
the initialization files for the modules to load in that particular
configuration. To start the system, a small boot-loader program
reads the configuration from a file, and proceeds to load the
appropriate modules. The user can select the configuration to
load from a menu, or its name could be hard-coded into the
boot loader. In this way, different versions (choices of sensors,
filters, etc.) can be easily available during development.

The forest machine system contains more than 100 different
modules, with initialization files. To facilitate changes and
provide an overview a graphical configuration manager has
been developed. The configuration manager gives the user an
overview of how every module is connected to other mod-
ules. It is possible to reroute connections, add new modules,
duplicate existing ones, or remove them. The configuration
manager can also be used to modify individual properties for
the module such as the mounting pose of the sensor, update
frequency, and the level of debugging.

VIII. H EALTH MONITORING AND OTHER SUPPORT

SYSTEMS

The system has a powerful set of support systems. Among
the more important are the Health Monitor and the Logging
System. The latter uses a class hierarchy for the output of log
data, with Logger as the base class. The most common output
channel is a log file (accomplished by the FileLogger), but
by substituting other classes the logging can be rerouted to
a database, or a memory buffer if time tests demand a low
time loss impact from the logging. Logging can be enabled
and disabled at a global level and also at the module level,
by using instructions in the initialization files. A log record
has a number of columns that can be turned on or off. They
contain actual time, time elapsed since the start of the log,
class, method, and line number of the logging instruction in
the code. The columns can also contain a comment supplied
in the argument to the log command, and a list of the enabling
flags in effect. These flags make it possible to turn on or
off a special type of logging event, e.g. UPDATE for data
broadcasting, NETWORK for network events, EXCEPTION
for error reporting, and LOWLEVEL for detailed logging of,
for instance, character-by-character processing in a commu-
nications module. The actual logging command takes such a
flag as an argument and only contributes to the output if the
corresponding flag is enabled.

Reliable procedures for checking the status of both sensors
and actuators become increasingly important as the complexity
of robot systems grows. The NAV2000 system will in itself
increase the need for such procedures, since it introduces
new levels of abstraction between the hardware and the user
program, and also since it offers flexible and configurable
setups. The use of timeouts, ”watch-dogs”, and ”heart-beats”
addresses the same need, but not sufficiently for a complex
system with numerous asynchronous communication chan-
nels and interconnected subsystems. To accomplish sufficient
health monitoring, a dedicated system keeps track of all

5



Figure 3. The Health Monitor system keeps track of all loadedmodules in
the system, and warns if any error occurs. A filled icon in front of a module’s
name means that it functions properly. If the icon is striped, the module has
some problem. Details about the cause of the problem are displayed when
clicking on the module’s name.

modules loaded onto the local computer, and also commu-
nicates with health monitors in all other computers running
the system. The overall health of every module as well as a
more detailed description of possible problems is available,
as seen in Figure 3. Error types fall into several groups, of
which hardware timeouts (lost communication with sensors),
configuration errors, hardware errors, and network problems
are the most prominent. From the data collected by this system
it is also possible to get statistics on the performance of the
system, mainly the time delay from a measurement until the
data arrives at its final destination. The Health Monitor is es-
sential for both development and usage of a complex robotics
system. During development, important information regarding
missing sensors or incorrect configurations can be retrieved.
During the usage of a ready-build robot, the Health Monitor
can be used to detect malfunctioning sensors, actuators, and
other equipment.

IX. CONCLUSIONS

The NAV2000 system is in daily use in the development
and research work in the forest machine project that has been
used as an example in this paper. In this project, three different
target machines are interchangeably used and a number of
varying configurations of sensors and actuators are appliedfor
testing and system integration. Currently the system consists
of over 300 different classes.

Figure 4 shows the average time delay over a network.
Because the two computers involved do not have the same time
(even if we try to synchronize them), the time it takes to send
a package over the network and back again was measured.
Half this time is the delay over the network. For about 70%
of the tested packages, the delay was less than 2 milliseconds
and it never exceeded 24 milliseconds in our tests.

Another important performance issue is the number of
packages lost over the network. This is measured by analyzing
packages containing a serial number. Each time new data
arrives the serial number is increased by one. It is fairly
uncommon that a package is lost over the network, over 97%
of the packages arrive safely. To lose two consecutive packages
or more is even less likely; 0.2% of all packages in this test.

The proposed software structure has proved to be a consis-
tent and powerful tool for the research work. It will be further

0 5 10 15 20 25
0

10

20

30

40

50

60

70

N
um

be
r 

of
 o

cc
ur

en
ce

s 
[%

]

Delay [ms]

Figure 4. The average time delay over a network measured by sending
a package over the network and back again. For about 70% of thetested
packages, the delay is less than 2 milliseconds. The maximumdelay of the
135 packages sent over the network in this test was 24 milliseconds.

extended and improved, and will serve as a general basis for
our future work with autonomous vehicles and robots.

ACKNOWLEDGMENT

We would like to thank Jürgen Börstler for his valuable
inputs on refining and improving the contents of this paper.

REFERENCES

[1] R.C Arkin. Path planning for a vision-based autonomous robot. In
Proceedings of the SPIE Conference on Mobile Robotics, 1986.

[2] R.A. Brooks. A robust layered control system for a mobilerobot. IEEE
Journal of Robotics and Automation, 1(1):1–10, 1986.

[3] Côté C., Létourneau D., Michaud F., Valin J.-M., Brosseau Y., Raïevsky
C., Lemay M., and V. Tran. Code reusability tools for programming
mobile robots. InProceedings IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1820–1825, 2004.

[4] B. Finkemeyer, M. Borchard, and F. Wahl. A robot control architecture
based on an object server. InIASTED International Conference Robotics
and Manufacturing, pages 36–40, 2001.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.
ISBN 0-201-63361-2.

[6] Object Management Group. http://www.omg.org/, 01 2007.
[7] Thomas Hellström, Thomas Johansson, and Ola Ringdahl.Development

of an Autonomous Forest Machine for Path Tracking, volume 25 of
Springer Tracts in Advanced Robotics, pages 603 – 614. Springer, field
and service robotics: results of the 5th international conference edition,
2006.

[8] C Kapoor. A Reusable Operational Software Architecture for Advanced
Robotics. PhD thesis, University of Texas at Austin, 1996.

[9] James Kramer and Matthias Scheutz. Robotic developmentenviron-
ments for autonomous mobile robots: A survey.Autonomous Robots,
22(2):101–132, 2007.

[10] A. Meystel. Knowledge based nested hierarchical control, ed. g. saridis,
jai press, greenwich, ct, 1990, pp. 63-152. In G. Saridis, editor,
Advances in Automation and Robotics, volume 2, pages 63–152. JAI
Press, Greenwich, CT, 1990.

[11] Michael Montemerlo, Nicholas Roy, and Sebastian Thrun. Perspectives
on standardization in mobile robot programming: The carnegie mellon
navigation (carmen) toolkit. InProceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS 2003),
volume 3, pages 2436–2441, Las Vegas, NV, October 2003.

[12] Anders Orebäck. A Component Framework for Autonomous Mobile
Robots. PhD thesis, Center of Autonomous Systems, Royal Instituteof
Technology, Sweden, 2004.

[13] Ola Ringdahl. Techniques and Algorithms for Autonomous Vehicles
in Forest Environment. Licentiate thesis, Department of Computing
Science, Umeå University, 2007.

[14] Hans Utz, Stefan Sablatnög, Stefan Enderle, and G. K. Kraetzschmar.
Miro – middleware for mobile robot applications.IEEE Transactions on
Robotics and Automation, Special Issue on Object-OrientedDistributed
Control Architectures, 18(4):493–497, August 2002.

6


