A Software Framework for Control and Sensing in
Mobile Robotics

Thomas Hellstrom, Thomas Johansson, Ola Ringdahl
Department of Computing Science, Umeda University, Sweden
{thomash, thomas;j, ringdahl}@cs.umu.se

Index Terms—Software engineering, Mobile-robot software, - At the intermediate level, there are a numberrafot
Autonomous vehicles middlewaresystems, e.g. OSCAR [8], MARIE [3], CARMEN

Abstract—Many of the existing mobile-robot software packages [11], Orca [12], and MIRO [14]. These are software frame-
do not include handling of sensors and actuators in a sufficigly \yorks to support different robotics paradigms and are some-

systematic and uniform way, as described later in this seatn. The . . .
software framework proposed in this paper, denotedNAV2000, times calledRobotic Development Environmer(®DE) [9].

addresses the specific need for interchangeability of compents 1hey provide data structures, functions, an.d communigatio
in robotics. At the lowest level, sensors, and sometimes als protocols as a platform to build software architecturesidrey
actuators, often have to be replaced by similar, yet not idetical, often contain high-level functions, such as path-traclang

components. At a higher level, the target vehicle often chales gpstacle avoidance, in addition to the basic robot interfac
during the work process. The presented software provides a

framework that supports these replacements and allows corgi- = At a lower level,networking middlewarsuch as CORBA
rations of_ Sensors, actuatc_)rs, and target machines to be sgiied [6], Microsoft's .NET Framework, and MIRPA-X [4], enables
and manipulated in an efficient manner. The system can be run goftware to run on several computers with different opegati

on several different computers if some software modules ragre .
more computing power. To accomplish sufficient monitoring ® systems, programming languages, and networks. They are not

the system’s health, a dedicated system keeps track of allfsware ~ deigned specifically for fObQIiCS applicatiqns, but areegah
modules loaded onto the local computer, and also communicas programming tools for distributed computing.

with health monitors in all other computers running the system. . :
The overall health of every module as well as a more detailed Many of the above-mentioned robot middleware tools over

description of possible problems is presented graphicallyin 00K importantissues regarding target machines, actsizdod
addition to this, the system uses logfiles to enable convenie Sensors. Some of the intermediate-level systems do include
debugging and performance analysis of hardware and softwar high-level handling of sensors and actuators, but not in a
modules. The software has been developed as part of, and isgyfficiently systematic and uniform way. The work presented
E;urre_ntly In use in, a R&D-project for an autonomous path- in this paper attempts to fill this gap, and provide a link
racking forest machine. . .

between physical sensors/actuators (or rather their aodtw

counterparts) and the overall control program. The system

I. INTRODUCTION proposed here, denoted NAV2QO6overs the lower level

Various tools for mobile robot software development havd @ significant part of the intermediate level. Instead of
been proposed over the last two decades. These tools exit dietworking middleware, Java is used for (among other

many levels of abstraction, and are designed to support #i¥9s) transparent network communication. The developme
development in different ways: started in 2002 as part of a project for research in the area

- At the highest level, the hierarchical, reactive, and hybrPf @utonomous path-tracking forest machines [7], [13].sThi
robotics paradigms are represented by a number of architBEI€Ct is used in this paper to exemplify the various cotgep
tures that implement the general ideas within the respecti e NAV2000 design.
paradigm. In the hierarchical paradigm, the robot senses th It should be emphasized that NAV2000 does not aim at
world, plans the next action, and then acts accordinglys Thiaking the same role as some of the robot middleware systems
paradigm focuses much on planning. The Nested Hierarchioaéntioned above. Many of these systems provide support for a
Controller (NHC) [10] is a popular architecture for hiedaical wide range of different sensors, robot platforms and albors
systems. In the reactive paradigm, the robot reacts djrect! for obstacles avoidance and path-tracking for example l&Vhi
sensor data, without any planning. The subsumption achiteve have implemented such algorithms, they are not part of
ture [2] was one of the very first architectures put forth fahe NAV2000 system. The proposed software infrastructore f
building reactive systems. The hybrid paradigm is a mix ef trcontrol and sensing should be seen as support, or a framework
other two and is the most common paradigm used today. Hé@&sis, for a complete development environment. NAV2000 is
the robot first plans how to get to the goal, then the undeglyiprogrammed in Java because of its suitability for rapidngst
reactive system takes over and acts on this information. Taed evaluation, and its support of an Object-Oriented ayste
system can re-plan when new sensor data arrives, or whenJdaga has built-in multi-tasking (threading) and also sufspo
goal has been reached. One of the first architectures foichybmetworked systems, which makes it easier to deploy thersyste
systems was the Autonomous Robot Architecture (AuRA) [1dn several computers without using networking middleware.

Il. MOTIVATION testing, all modules could be loaded on to a single more

The work has been driven by an identified need for inteRowerful computer, but in field trigls two (or more) mobile
changeability of hardware components in the developmenht afPMPuters may share the processing load.

use of robotics systems. This need surfaces at many levels jiyite! for understanding the difference between virtual mod

the systems, and at many stages in the development procé’ég.s and interchangeability is that the latter deals withlae-

At the lowest level. sensors. and sometimes also actuatdfd one sort of software module with another, similar module
often have to be replaced by similar yet not identical com- two different speed sensors for instance. A virtual speed

ponents. In a complex system, this may very well mean thsgnsor, on the other hand, is not really a piece of software

a sensor of one type has to be replaced by one of anotA&gectly communicating with a sensor; it can be a filter or a

type, which may be connected to another computer. This kif§Work proxy that serves in the sensor's place while adding
of replacement is often a major part of the development af@Mme functionality. ,
research process, where different kinds of algorithmssasn From these requirements a set of more detailed goals can

and setups have to be evaluated and compared. Someti%ﬁpecmed to facilitate the deSiQ” of the system:
another computer is involved, if some modules require more Modularity: A softwaremoduleis the basic building block

computing power. Furthermore, interchangeability is aiften of the system. Modules exist in a type hierarchy, with subtyp

needed in a running robot. For example, a satellite navigaffing: @mong others, sensors, vehicles, and actuatorfieAt t
may have to be replaced by odometry if the satellite signa{%o level in the hierarchy all modules have acommon intexfac
are occluded, or a laser scanner used for obstacle detectifn they can perform a common sgt of operations, such as
may have to be replaced by a radar sensor due to Weatﬂlgrse’ open, and return status. This propgrty of modules is
changes. used by_ the system _to load, star_t, stop, and mterrogate_iemdu
At a higher level, the target vehicle for the developed syste®” @ high level, without knowing the detailed function of
is often changed during the work process. This is a practiéQF particular m‘?‘,j”_'e- A common loader for all types, which
and efficient approach, especially when developing Systemgcesses an initialization file with module names and &ctua
for large autonomous vehicles [7], [13]. Furthermore, supp types_, loads the modules. On a lower level, all mo_dules of a
for this level of interchangeability will become more andnmo CE"ain subtype, such as all speed sensors, can be intgeghan

important as generic robotics systems are developed foy ma?r'i“_j still handled similarly by the sensor users.
types of tasks and platforms. Extensibility and flexibility New modules and module

Interchangeability can be implemented in robotics sofewafyPes shqu!d be easy to add_ to the system without any changes
the existing software. An important feature of the sysiem

in many ways, also without any special tools supportintgkg , . ,

it. However, as robotics systems become more and m low coupling between module_s, I.€. they are effectlve_ly

complex, such tools become invaluable. isolated from one another regarding internal rep_resemtatl_
of data and functions. Only the exposed external interface i

shown, and if a new module of a certain type is added, it

can be treated as any other module of this type. An example

The aim of the presented work is to provide a flexiblevould be a speed sensor type, which only has the function
and generic link between physical sensors, actuators, ayetSpeed. This leaves it up to the implementers to design the
similar components, and higher-level control softwareg (emodule in any way they want, as long as the module delivers
path-tracking). It has been driven primarily by three basiata via its getSpeed function. In a practical system thexg m
requirements: exist several speed sensors, which take data from the nechin

= Interchangeability- Similar hardware components andtself or from a GPS receiver, but the rest of the system does
their corresponding driver routines should have a commaiot know and does not need to know, the actual sensor used
interface ("look and feel”) to enable interchanging them &t any given time. If a new type of speed sensor is installed,
an appropriate level, without the need for modificationshef t its corresponding speed sensor module can be added to the
rest of the system. In fact, the system is designed so highsystem without any changes to existing code. Which sensor to
level routines would have limited knowledge of the actualse can be configured at start-up or dynamically changed at
implementation. runtime.

- \Virtual modules- Instead of rewriting a sensor, e.g — Cohesion The modules are designed for high cohesion,
to implement sensor fusion, a nhew module responsible onlg. a module does just one thing, but does it well. An example
for this function is developed, then used in place of the oldould be a sensor that requires some form of filtering of its
sensor, and also uses the old sensor for input data. In tteta. Instead of incorporating filter code in the sensor reodu
same way we can have a virtual vehicle that extends ttend thus in all sensor modules that require it), a spectal fil
functionality of a real vehicle. For example a small robatido module is developed. The filter module would have the same
mimic the behavior of a larger vehicle (e.g. slower steeringpe as the sensor, and in effect would be a virtual sensor,
response). Several such virtual sensors or vehicles caaldvihich is used in the normal sensor’s place. The filter module
strung together. then uses the actual sensor as its data source. This virtual

- Distributed processing The system should be adaptablesensor will for all intents and purposes look exactly like a
to both differing demands of computing power and differeriteal” sensor to the users of the sensor data. In addition, th
configurations during test and “production”. During in-offi modules have to have low coupling, i.e. a low dependency on

I1l. DESIGN CRITERIA

other modules. be calibration parameters that, once set, are reloadeceat ev
- Multithreading Every module should have its ownstart of the system.
execution thread, and thus run independently of other nesdul A Sensor has only one more method than the Module
Polling loops are discouraged; instead, an event-drivetesy base class, the getPose method. It returns the actualguositi
is used with multiple independently executing threads. Thand attitude of a sensor relative to the vehicle it is mounted
threads normally sleep and only wake up if a message arrives Further down the hierarchy there are special versions
from another module, from the network, or a user. of Sensors, for example the RangeArraySensor, an array of
- Network CommunicatianModules can be located onrange sensors, such as sonars. This class specifies a few more
several host systems, and there must be a way they can comethods:
municate transparently, regardless of the actual configma getRanges: return the range to each obstacle as measured by
i.e. modules should not be aware of whether they are located the range sensors.
on the same computer as the modules they communicate wibtPoses: return the mounting pose of each range sensor.
or a different one. getPoses: return the time when the last measurement was
made for each range sensor.

V. MODULES A PositionSensor contains both the mounting pose returged b
) . the getPose method, and the position measured by the sensor,
NAVZOOO uses Java Interf_aces for different sub-tr(_ees in tI?Sturned by getPosition. Timestamp is also incorporatéal in
architecture: The top roqt is a Module, under which thertﬂe data returned by all sensor classes, to facilitate corre
are a Sensor tree, a Vehicle tree, a Proxy tree, and so Ontirlﬁ'e stamping of data. In general, all data, be it speed,

pla rallel tt(;]trt]e mtelr face h|erarcfhy there Igre alsﬁ abstga:;e steering angle, or gyro temperature, are timestampede sinc
classes that supply common functionality to the subClassgsg important for higher-level routines and fusion syssem

One example is BasicModule that implements the interfa be able to match data taken by different sensors that are

Module. This abstract class contains a lot of the interng, t always synchronized. Also, this timestamping is used fo

workings that a module might need; loading of parameteig, i checks and as a means for estimating the performance
status reporting, and logging initialization. The classsiBa ?f the system, in particular the network communication.

Sensor likewise implements Sensor and inherits BasicModu At the bottom of the class hierarchy the actual implemen-
It contains sensor-specific functionality such as data dmCcfation classes exist, i.e. classes that can be instantiated

ing and decoding functions, conversion between Iittle/bi%xample would be a HTUSpeedSensor, which in the forest

end_ianness, and support for message notifi_cation (Obser\f%chine is the Hydraulic Transmission Unit Speed Sensor.
subject-pattern). The classes implemented in the NAV20 is sensor reads system data via the vehicle’s own comitbl a

system broadly represent different types of components inya,, bus, a so-called CAN bus, common in vehicle systems. A

robotics system: class diagram for parts of the forest machine system is shown
« Sensors - represent hardware units that deliver seng®iFigure 1.

data, e.g. speed, heading, and position.
« Actuators - represent hardware units that control external v

. : . INTER-MODULE DATA FLOW
equipment, e.g. throttle, steering angle, and brakes.)))
« Vehicles - several implementations of real and virtual One of the central tasks of the system is the swift delivery

vehicles. of data from sensor to user, be it a control loop or a module for
. Controllers - process sensor data and compute contfgmote-controlling (teleoperate) the vehicle. In manytesys
signals for actuators. the data-flow is based on “polling”, where interested moslule

. Proxies and servers - facilitate transfer of sensor data 8RSt ask for sensor data, without knowing if there are any
control commands over a network (Ethernet or WLAN)IeW data available. The data flow in our system is event-
These modules hide the actual structures needed to §&&€n, meaning that when a module has new data to deliver,

the network, so a module has the same look and fdkisignals other interested modules. Since all modules are

whether it is used over a network or not. autonomous, this allows them to deliver data at their own
ace. For this to function, there are two requirements:r«use

All modules have a few methods and data elements (attrmUt%Sodules” must be able to find the data sources, and have to

fn.common-. o be able to register interest in the data. The modules can find
Init: initialize the module each other with the help of tHRegistry described later in this
finish: general housekeeping at shutdown section. To set up and remove a module’s interests in daa, th
open: activate the module two methodsaddObserverand deleteObserveare used. An
close: deactivate the module observeralso calledistener,is a special property that can be
getName: return the name of the module assigned to any class, andsabjectis something an observer
getStatus: return the status (e.g. errors) observes [5]. Observers and subjects are part of the event-
setParameter: set any parameter (e.g. calibration) driven data flow, which is the dominant and preferred way to
getParameter: return the value of a parameter move data through the system. Its basic mechanism consists o

Parameters are special persistent data elements, i.eatbeysubjects, for instance sensors that notify its observeeneber
kept on permanent storage between runs. An example woalthew measurement value is available. The listeners, which i

GpsPosition Mobile computer
— +g::g;§i:’i(e)nsm ‘ GpsSpeedSensor ‘ ‘ Vehicle ‘
+getTimeStamp() Odometry Curregt New sdet
spee: spee
Proxy ‘ SpeedServer ‘ ‘VehicIeServer‘
_+991P_0560 SpeedSensor HTUSpeedSensor
+getTimeStamp()| [+gets.peed() WA
+getTimeStamp()
Server GpsSpeed Stationary computer
Vioduie ‘ SpeedProxy ‘ ‘ VehicleProxy ‘
:;?r?igh() Actuator AngleSensor VehicleAngle (:Sl;rer:z(’\‘:PV;ES;l
+open() I || +getSteeringAngle() g
+close() < +getTimeStamp() ‘ Matlab control loop ‘
+getN.
+g:t52\ntles(()) Sensor | LaserScanner |
+setParameter() reetposen [<H] Figure 2. With Server-Proxy-pairs, the system can be usédtwb or more
+getParameter(RangeArraySensor computers, connected via a network. The Proxy acts as abinodule, so
Vehicle || +getRanges(Radar | the user does not have to know whether a network is used or not.
|| +setSpeed() +getPgses()
+setAngle() +getTimeStamps()
+setThrottle()
+setTumRate(Sonar addresses for the local and remote systems, default timeout
AttitudeSensor . . .
" what module is the current TimeSensor (used by the loggin
— getRoll)
ontroller | +getPitch() HH H
etEnabled) v 4 [oo fgcmty), and what Ieyel of debugging should be used. Debug
+getTimeStamp(ging can be customized for every module, from none to very
e detailed, and also on a top level, enabling a user to turn on
|_GpsHeading |
HeadingSensor H H
B p——” and off all debugging from a central point.
+getTimeStamp()
Qdometry VI. COMMUNICATION

The modules in the system may reside on different com-
Figure 1. Class diagram for parts of the forest machine sys@nly the puters. The communication routines in NAV2000 take care
sensor subclasses are fully described in this diagram. rall” sensors are of the data routing, and make the actual location of each
other aiasses mplement general functionalty mhertsdtieir subdasses, MOdUlE transparent to other modules. Every module of the typ
Some of the methods that must be implemented are shown iretpective SpeedSensor, PositionSensor, etc., has a virtual companio
class. used in place of the real sensor when it is located on another
computer. This virtual sensor is of the type Proxy, so there
are SpeedProxies, PositionProxies, etc. Every Proxy cammu
turn may be subjects, process this data and then notify thgiites with a Server, which is its counterpart on the other sid
observers, and so on. The data finally reaches the end uggs,network. A simple connection between a user of data, e.g.
normally a control loop in the system or an external systemy,Matlab program, and a sensor, will be extended by a Proxy-
e.g. a Matlab program. Matlab is not easily amendable &rver-pair as illustrated in Figure 2. In this example, @esp
the event-driven paradigm, so the last step in the chain isyasurement is sent from the GpsSpeedSensor (which listens
standard polling of data. A subject can have any number @f 3 physical sensor) to the SpeedServer. The server sends
listeners, and an observer can observe any number of ssibjggle package over a network connection, where a matching
An example would be a display that presents some combing@xy receives it. Since all servers broadcast their datthen
and interdependent data, for instance a map that listenstho bhetwork, proxies on several different computers can pick it
a position sensor and a heading sensor, and plots the \/ehiqlﬁ,_ A Matlab control program asks the SpeedProxy for the
position and direction. current speed, determines a new set speed, and sends it to the
A set of support classes is available for all modules, anghicleProxy. Here the data is again sent over the network,
the two most important ones ateader and Registry The received by the VehicleServer, which in turn passes it on to
Loader is the class responsible for loading, opening, otpsi the Vehicle object. This object is responsible for adjugtine
and finishing all modules, and can deliver a list of all loadesheed on the physical vehicle.
modules within a specified class, for instance all loade@dpe Since a SpeedProxy also inherits all methods from the
sensors. The Health Monitoring system (further descrilmed $peedSensor class, it can be regarded as a sensor in its own
Section VIII) uses this to keep track of all modules anfight, although it is only a virtual sensor. This is one of
periodically query them for their status. Since all modulasie fundamental characteristics of this proposed ardhitec
must have a getStatus-method, the Health Monitor can do thi®dules that are not sensors can act as if they were. The
knowing only that it is dealing with a subclass to Module. concept of virtual sensors makes it possible to locate $enso
The Registry keeps track of the names given to all loadeaid users of data on different computers without the user of
modules, so an actual module can be found by its nambe data ever having to know this. This places special desand
This functionality is used by most modules to identify andn the Server-Proxy-pair, since it has to deliver that data a
find their subjects, i.e. the other modules it wants to olesenswiftly as possible, and also implement the routines fotiggt
The Registry can also hold arbitrary data, like default mekw and setting parameters over the network.

4

Reorganizing a system from a single-computer operationdonfiguration file that describes the system (choice of targe
several computers involves loading proxies instead of@snsvehicles, sensors, actuators, etc.) and which modulesath lo
on the "user-computer”, and loading servers instead ofsusétsually this startup configuration file is stored togethethwi
on the "sensor-computer”. No changes have to be madethe initialization files for the modules to load in that peutar
either user or sensor code; all is accomplished by modifyimgnfiguration. To start the system, a small boot-loader ianog
configuration files as described in Section VII. reads the configuration from a file, and proceeds to load the

Communication between separate computers is done dgypropriate modules. The user can select the configuraiion t
Ethernet network, either directly through a cable or via l@ad from a menu, or its name could be hard-coded into the
Wireless Local Area Network (WLAN). For this, the standartboot loader. In this way, different versions (choices ofsses,
network equipment for wireless PC:s and laptops with speefilters, etc.) can be easily available during development.
from 11 up to 54 MBps (IEEE 802.11g) is used. The WLAN is The forest machine system contains more than 100 different
used for controlling the vehicle, but since the commundrati modules, with initialization files. To facilitate changeada
handling is transparent to the system, debug and in-off&ts teprovide an overview a graphical configuration manager has
can be done by either a cable or direct communication withiseen developed. The configuration manager gives the user an
the computer. overview of how every module is connected to other mod-

The network communication uses datagrams (by the Interngés. It is possible to reroute connections, add new modules
UDP protocol), i.e. small packets of data transmitted with nduplicate existing ones, or remove them. The configuration
control over their arrival, and therefore no acknowledgmemanager can also be used to modify individual properties for
of received packets is obtained. The alternative would bEB T@he module such as the mounting pose of the sensor, update
streams, which guarantee the order, integrity, and compésis frequency, and the level of debugging.
of the data. The reason for this choice is threefold:

1) Datagrams can be broadcast to more than one receiver
so several computers can “listen-in” on data from the
Sensors.

2) Datagrams delineate the data on the network. The datal he system has a powerful set of support systems. Among
is conveniently seen as small units, as opposed totlee more important are the Health Monitor and the Logging
data stream, where the software would have to find tfgystem. The latter uses a class hierarchy for the outputgof lo
beginning and end of each data packet. data, with Logger as the base class. The most common output

3) With datagrams, lost packets are quickly replaced ighannel is a log file (accomplished by the FileLogger), but
new data. A streaming model would resend lost packet®y, substituting other classes the logging can be rerouted to
but would also impose a variable delay, and with high database, or a memory buffer if time tests demand a low
data rates there would be new data available by the tirtime loss impact from the logging. Logging can be enabled
the original one arrives. TCP also uses bigger packe&id disabled at a global level and also at the module level,
Small packets have a greater chance of getting throulgi using instructions in the initialization files. A log raco
the network, and the loss of a few packets is normallyas a number of columns that can be turned on or off. They
tolerable. Up-to-date data is often more important thanc@ntain actual time, time elapsed since the start of the log,
complete data stream. For protection against a completgss, method, and line number of the logging instruction in
loss of control should the network fail, there are severtie code. The columns can also contain a comment supplied

"VIII. HEALTH MONITORING AND OTHER SUPPORT
SYSTEMS

timeouts built into the system. in the argument to the log command, and a list of the enabling
flags in effect. These flags make it possible to turn on or
VIl. CONFIGURATION off a special type of logging event, e.g. UPDATE for data

The software drivers for sensors, actuators, and target vebroadcasting, NETWORK for network events, EXCEPTION
cles have parameters describing their function. For a sendor error reporting, and LOWLEVEL for detailed logging of,
this may include sampling rate, amplification level, networfor instance, character-by-character processing in a apmm
address, and pose. Furthermore, the integration of a targi@ations module. The actual logging command takes such a
vehicle, sensors, and actuators into a complete systenohafiag as an argument and only contributes to the output if the
be handled in a flexible way. To facilitate this, every moduleorresponding flag is enabled.
has an associated initialization file with properties thattomol Reliable procedures for checking the status of both sensors
the module’s behavior. Most of these properties are set orared actuators become increasingly important as the cortylex
and for all, while others are changed either by the user or b§ robot systems grows. The NAV2000 system will in itself
the module itself. The module can also save the changesiscrease the need for such procedures, since it introduces
they take effect upon the next time the system is run. Onew levels of abstraction between the hardware and the user
example would be an experiment to find the most approprigieogram, and also since it offers flexible and configurable
gain for a specific sensor; when a suitable value is found, thetups. The use of timeouts, "watch-dogs”, and "heartdjeat
sensor can store it in its initialization file. The next tinteet addresses the same need, but not sufficiently for a complex
sensor is run, it automatically uses the saved value. system with numerous asynchronous communication chan-

The files are stored in separate file folders, one per camels and interconnected subsystems. To accomplish sufficie
figuration. Together with the initialization files there is @ealth monitoring, a dedicated system keeps track of all

s mapzd

AT 00 BTGy PO SHIDNSENS OF

{:j peconirolpanel

pioneeratiitudesensor

G pioheetheadingse
{::] pioneerpositionse
G5 pionEErsOnararay
{:j pioneersonarmade;
{:j pioneerspeadsens

Mame : wehicle

Farent: EMERGIRIK
Module open with errars
Status code (17

Celay ms) .0

GO postionsensor

Saoftware erroriexception

Number of occurences [%]

GO speedsensar
valmetodometrysensar

ﬂ]] wehicle

Figure 3. The Health Monitor system keeps track of all loadestiules in

the system, and warns if any error occurs. A filled icon in froha module’s 10 Delay [ms]

name means that it functions properly. If the icon is strjptbé module has

some problem. Details about the cause of the problem ardagesb when Figure 4. The average time delay over a network measured myirge

clicking on the module’s name. a package over the network and back again. For about 70% ofettted
packages, the delay is less than 2 milliseconds. The maxichelay of the
135 packages sent over the network in this test was 24 naiflisés.

modules loaded onto the local computer, and also commu-

nicates with health monitors in all other computers running,:anded and improved, and will serve as a general basis for
the system. The overall health of every module as well as@, f,ture work with autonomous vehicles and robots.
more detailed description of possible problems is avadlabl

as seen in Figure 3. Error types fall into several groups, of ACKNOWLEDGMENT
which hardware timeouts (lost communication with sensors) \we would like to thank Jurgen Bérstler for his valuable

configuration errors, hardware errors, and network Pmblerﬁ‘\puts on refining and improving the contents of this paper.
are the most prominent. From the data collected by this syste

it is also possible to get statistics on the performance ef th REFERENCES
SyStema_ma|n|Y_the_ tme de_lay _from a measuremen_t un_t” thR] R.c Arkin. Path planning for a vision-based autonomoabot. In
data arrives at its final destination. The Health Monitords e Proceedings of the SPIE Conference on Mobile Robofié86.

; ; R.A. Brooks. A robust layered control system for a mobiéot. IEEE
sential for b(_)th development a_nd usage_of a complex _robotlé%] Journal of Robotics and Automatiph(1) 110, 1986,
system. During development, important information regagd [3] Coté C., Létourneau D., Michaud F., Valin J.-M., Broasé&a, Raievsky
missing sensors or incorrect configurations can be rettieve C., Lemay M., and V. Tran. Code reusability tools for prognaimg
P _hi1i i mobile robots. InProceedings IEEE/RSJ International Conference on
During the usage of a ready bu_lld _robot, the Health Monitor Intelligent Robots and Systensages 1820-1825. 2004,
can be used to detect malfunctioning sensors, actuatods, aja) B. Finkemeyer, M. Borchard, and F. Wahl. A robot controthitecture
other equipment. based on an object server. IKRSTED International Conference Robotics
and Manufacturing pages 36-40, 2001.
[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissid&esign Patterns:
Elements of Reusable Object-Oriented Softwawmdison-Wesley, 1994.
o)) ISBN 0-201-63361-2.
The NAV2000 system is in daily use in the developmentes] Object Management Group. http://www.omg.org/, 01 2007

and research work in the forest machine project that has be&h Thomas Hellstrom, Thomas Johansson, and Ola Ringdztelopment

. of an Autonomous Forest Machine for Path Trackinglume 25 of
used as an example in this paper. In this project, threerdite Springer Tracts in Advanced Robotigsages 603 — 614. Springer, field

target machines are interchangeably used and a number of and service robotics: results of the 5th international emerice edition,
varying configurations of sensors and actuators are apfaied 2006.

f . - . [8] C Kapoor. A Reusable Operational Software Architecture for Advanced
testing and system integration. Currently the system sts1si Robotics PhD thesis, University of Texas at Austin, 1996,

of over 300 different classes. [9] James Kramer and Matthias Scheutz. Robotic developraamiron-
Figure 4 shows the average time delay over a network. ments for autonomous mobile robots: A survejutonomous Robats

B et rers imolved do not have th i 22(2101-132, 2007,
ecause the two computers involved do not have tne same UK A Meystel. Knowledge based nested hierarchical @ned. g. saridis,

(even if we try to synchronize them), the time it takes to send * jai press, greenwich, ct, 1990, pp. 63-152. In G. Saridistoed
a package over the network and back again was measured. Advances in Automation and Robofia®lume 2, pages 63-152. JAI

N . Press, Greenwich, CT, 1990.
o , , CT,
Half this time is the delay over the network. For about 70 1/?1] Michael Montemerlo, Nicholas Roy, and Sebastian Thriaarspectives

of the tested packages, the delay was less than 2 millisscond on standardization in mobile robot programming: The camegellon

and it never exceeded 24 milliseconds in our tests. navigation (carmen) toolkit. IrProceedings of the IEEE/RSJ Inter-
Another important performance issue is the number of national Conference on Intelligent Robots and Systems SIR003)
p p volume 3, pages 2436-2441, Las Vegas, NV, October 2003.

packages lost over the network. This is measured by an@lyzjn2] Anders Oreback. A Component Framework for Autonomous Mobile
packages Conta|n|ng a serial number. Each time new data Robots PhD thesis, Center of Autonomous Systems, Royal Institite

. . L. . . Technology, Sweden, 2004.
arrives the serial number is increased by one. It is fa|rt¥3 Ola Ringdahl. Techniques and Algorithms for Autonomous Vehicles
uncommon that a package is lost over the network, over 97% in Forest Environment Licentiate thesis, Department of Computing
of the packages arrive safely. To lose two consecutive fgpska Science, Umea University, 2007.

. | likelv: 0.2% of all K in this t 4114] Hans Utz, Stefan Sablatndg, Stefan Enderle, and G. liet¢schmar.
or more 1S even less likely; 0.2% or all packages In this test. ~ yjiro _ middleware for mobile robot applicationtEEE Transactions on

The proposed software structure has proved to be a consis- Robotics and Automation, Special Issue on Object-OrieBtisttibuted
tent and powerful tool for the research work. It will be fugth Control Architectures 18(4):493-497, August 2002.

IX. CONCLUSIONS

