10p Examensarbete
Version 1.0

Matthias Grimrath
Email: m.grimrath@tu-bs.de

June 3, 1999

Abstract

This 10p examensarbete describes the efforts to measure the distance and angel
of a robot to a wall by image analysis. The wall was marked with a black-and-
white stripe pattern. Passive CCD camera optics were used to sample pictures
of the pattern. The distance and angel from these pictures was extracted by
methods developed in this examensarbete. Further it explains the porting of
the Khepera robot communication libraries from the Microsoft(f) Windows(®)
to the Unix(® environment.

Contents

1 Background

1.1 Imtroduction
1.2 Overview e
2 Setup
2.1 The Kheperarobot
2.2 Thevision turret oL
2.3 Configuration
2.4 Tasks for this examensarbete
2.5 Definitions
2.6 FFTanalysis
3 Porting to Unix/Solaris
3.1 The Khepera Communication API
3.2 Interfacing to MATLAB
3.3 Imterfacing to Unix
3.4 Portability and Compatibility,
4 Camera Input Preprocessing
4.1 Noise. o e
4.2 Brightness weakness 0
4.3 Lowcontrast
4.4 Gamma correction
44.1 Howtocorrect
4.4.2 Type of correction function
4.4.3 Amount of correction Lo
4.4.4 Separating black from white pixels
4.5 Low passfiltering L
4.6 Preprocessed vsraw
5 Measuring Distance by Image Analysis
5.1 Methodsused
5.2 Distance calculation o oL
5.3 Determining the frequency o 0oL
5.4 Advantages, caveats and shortcomings of the FFT method
5.5 An alternative - Measuring the width
5.6 Algorithm in brief
5.7 Results.

6 Measuring Distance and Angle by Image Analysis 27

6.1 Setup 27
6.2 Methodsused 28
6.3 Measurement of width o000 28
6.4 FFTanalysis 28
6.5 Handling the changing width 29
6.6 Continuous FFT analysis 29
6.7 Approximation of the peak line 31
6.8 Measuring distanceo 31
6.9 Measuring angle 32
6.10 Robustness 32
A Source Code 34
A1 Robot APT-kopen, 34
A2 Robot API-ksend, 37
A3 Robot APT-kclose oo 39
A4 Direct measuring of stripe width 40
A.5 Measuring the distance 43
A.6 Measuring the angle 43

Chapter 1

Background

1.1

This

Introduction

“examensarbete” (Swedish for thesis project) was developed during the

spring semester 1999 (mid January - beg June) at the Department of Computing
Science, Umea University, Sweden.

The author was an exchange student from the Technical University of Braun-
schweig, Germany. He can be reached by email at <m.grimrath@tu-bs.de>.

This examensarbete was supervised by Thomas Hellstrom <thomash@cs.umu.se>.

If you have any questions or wish to get the full sources please write an email
to the author. I am always happy about feedback! :-)

1.2

Overview

Here is a little abstract of what you will find in the following chapters.

Chapter 2 describes the environment and tools that have been used in this
examensarbete. The description of the setup is followed by the tasks that
were subject of this work and some definitions.

Chapter 3 describes the effort to port over existing software that runs
under MS Windows to Unix/Solaris.

Chapter 4 describes various filters and processes that helped improving
the overall results of the image analyzing algorithms.

Chapter 5 describes in detail the distance measuring, what problems
showed up and some approaches to accomplish this goal.

Chapter 6 describes in detail the angle measuring, various problems and
approaches.

Appendix A includes all of the important source code developed during
this examensarbete.

Chapter 2

Setup

2.1 The Khepera robot

R T

1[3AL

Figure 2.1: The Khepera Robot. Source: K-Team

Figure 2.1 and 2.2 shows the Khepera Robot used during this examensarbete.
It is a small little robot with the ability to add extension modules to it. One
extension available is a so-called “vision turret”. The robot has other features
and more extension are available, but they are left out here because they are
not important for this examensarbete.

Top view Side view Bottom view

o
%]
[v]
Q
©
8]
=

Figure 2.2: The Khepera Robot, schematic view. Source: K-Team
2.2 The vision turret

Top view

il I1I1I1I1I'II1I

SRR ”

Figure 2.3: The Vision Turret, schematic view. Source: K-Team

The vision turret is an extension module with a camera on it. This camera has
64 pixel light sensors. Each sensor samples 256 different grey levels. It samples
one-dimensional images along the field view, i.e. the field view gets rastered into
64 smaller field views. The whole field view has an angle of 36 degrees. The
pixel sensor numbering starts from the left of the field view with number 0, i.e.
pixel sensor 0 samples the light of the leftmost area of the whole field view.

There is also an ambient light sensor in this vision turret. It is used to adjust
the sensitivity of the pixel sensors to the overall light level. This adaption to
the ambient light is handled automatically by the vision turret’s internal logic.

The manufacturer’s[4] recommended operation’s distance for a sharp picture
range from 5cm to 50cm.

striped wal |
? 4

4
4
4

4 r obot
74

Figure 2.4: Sketch of the working environment used during this examensarbete

2.3 Configuration

Figure 2.4 shows a schematic illustration of the configuration/environment the
robot was operated in.

The camera is looking at a “wall” with equally spaced black-and-white
stripes printed on it, i.e. each black stripe has the same width than a white
stripe. In theory this “wall” is unlimited, but in practice the robot was posi-
tioned in such a way the camera does not view beyond the stripes.

To have a simple start, it was made sure that no major disturbances occur,
for example interruptions of the stripe pattern or non-uniform lumination of the
scene. There also may only exist one “wall” so there is no need to take care of
conditions looking at edges of two connected “walls”.

Later in the development of the various analysis codes it was possible to tell
at least under some but not all circumstances if the above constraints were not
met.

2.4 Tasks for this examensarbete

When starting to work with the robot it was found that the number of existing
Unix workstations in the Department of Computing Science outnumbered the
amount of MS Windows PCs, the architecture the robot software already runs
on. Furthermore the Windows PCs were frequently busy. Therefore it was
decided to evaluate the possibility of porting the Khepera robot software to
Unix as the first task.

The next decision was to make use of the vision turret. The one-dimensional,

grey scale optics of the camera (see also 2.2) led to the idea to evaluate the
possibilities of display analysis of black and white stripes. After a little more
investigating it was found it should be possible to measure both the distance to
the stripes and the viewing angle to them.

To summarize, the tasks were:
e Implement robot communication API on Unix.
e Measuring the distance to a striped wall with the vision turret’s camera.

e Measuring the viewing angle between the camera view line and the wall.

2.5 Definitions

Figure 2.5: Equally spaced stripes used to measure the distance and angel

To make further explaining more comprehensive some definitions are introduced

here.

Since this examensarbete used a lot of signal processing methods its

definitions are used here and adapted appropriately.

e The Wall is in practical terms a paper with equally spaced black-and-

white stripes printed on it. See Figure 2.5 for an example. A more formal
description is an unlimited line that has an alternating black and white
pattern, where the black and white parts have the same width. Looking
at it in signal-processing terms it is a periodic rectangular signal.

The Period is the width of a white stripe plus the width of a black one. In
signal-processing terms it is the period of the rectangular signal. Please
note that the period here is measured in camera pixels when referring to
sampled images.

The Width is the width of one stripe. This is equal to half the period.

The Frequency is the fraction how often a pair of black-and-white stripes
is appears in a camera image. In signal-processing terms it means how
often a periodic signal repeats in a fixed time. The equation is period -
frequency = 64 pixels to describe how many stripes are sampled in a
camera image.

At times it is important to distinguish between the width of the physically
printed stripes (this is chosen at printing time and fixed) and the width of stripes
(defined above as half the period) as it appears in the camera image. The first
is measured as a length unit, while the second is measured in pixels.

2.6 FFT analysis

You will find many references to the “FFT” throughout this examensarbete.
What follows here is a very brief description of the FFT for those readers that
have not heart about it. If you would like to learn more about the FFT and get
a better understanding of the theory behind and around it, read a book about
signal processing, for example[5].

The “Fourier Transform” transforms a signal (for example a sinusoidal wave-
form) from the time domain into the frequency domain. The mathematical
funding behind this transformation is that almost any signal can be decomposed
into sinusoidal waves of different amplitudes, frequencies and phases. The sum
(“overlapping”) of all these waves results into the original signal.

The general formula for each sine wave is y = asin(bz + ¢). a is called the
amplitude, b is called the frequency and c is the phase.

The Fourier Transformation returns for a given signal in the time domain
for every frequency the sine wave’s amplitude and phase.

|
0 0.5 1 1.5 2 2.5 3 35 4 4.5 5
Time

Figure 2.6: An example signal given in the time domain.

Figures 2.6, 2.7 and 2.8 give an example. The function to create this example
signal is
y = 0.58in(2 - 27z + 0.257) 4+ 2sin(0.5 - 27z + O7)

“FFT” is an abbreviation for “Fast Fourier Transformation”. It is an al-
gorithm to transform a signal from the time into the frequency domain. The
above example figures were produced with the FFT. There you can also see that
the FFT mirrors the frequencies. This is a property of the FFT algorithm, and
a “real” Fourier Transform would not show this behavior.

Amplitude
N w iy u [o2] ~
o o o o o o

10

|
1.5 2 2.5 3 3.5
Frequency

Figure 2.7: The signal from figure 2.6 decomposed into the frequency domain;
amplitudes shown here

pi

pi/2

Phase
o

0 0.5 1 1.5 2 25 3 35 4 4.5 5
Frequency

Figure 2.8: The signal from figure 2.6 decomposed into the frequency domain;
phases shown here

Chapter 3

Porting to Unix/Solaris

Up to now the supplied MATLAB environment from the manufacturer to com-
municate to the Khepera robot only runs on MS Windows operating systems.
Further investigation revealed that the porting effort was limited to operating
system specific differences on accessing the serial port.

In-house developed software already written on Window PCs in MATLAB
runned smoothly on the MATLAB version for Unix machines except for some
minor glitches regarding case-sensitivity. These could be fixed very easily.

On the hardware side, the Khepera peripherals connect to a standard RS232
serial port. The Unix/Solaris workstation this examensarbete was developed on
features such a serial port, thus no special adapter was needed to connect the
robot to the workstation.

3.1 The Khepera Communication API

Examining the source and documentation of the supplied MATLAB environ-
ment shows that the communication to and from the robot goes through the
following functions: kopen, kclose and ksend!.

The task of porting the MATLAB environment could now be clearly defined:

1. Find out what the above mentioned functions are doing

2. Find out how these functions can be implemented in the Unix/Solaris
version of MATLAB.

3. Find out how to access the serial port on Unix/Solaris and how to configure
it to the correct baud rate, number of data bits, etc. ..

The first point was quite simple. The purpose and behavior of these three
functions could be determined easily from the documentation from the manu-
facturer of the robot [4] and the already existing software making use of them.

The second point required more work. After some searching in the MATLAB
online manuals it turns out that MATLAB provides a way to call binary code
from within your own MATLAB programs. This makes it possible to write your

In the Windows version of the communication software there also exists a function called
ksends. Since this function only differs in implementation from ksend and is not used in
in-house software its porting was omitted

10

MATLAB functions for example in C, compile it, and then make use of it in your
MATLAB software. Having a way to incorporate programs written in C, the
traditional Unix programming language, it is possible to use a lot of features
Unix offers and at the same time providing them to the MATLAB software.
This was necessary for the third point, accessing the serial port.

3.2 Interfacing to MATLAB

Writing a MATLAB function in C is not like writing a normal program in
Unix, since the C code must run under control of MATLAB in order to access
variables, return values and the like. For this special purpose MATLAB comes
with a special compiling front-end called “mex” which takes care of linking
special libraries against the code and producing a binary format understood by
MATLAB. The C source itself needs to include special MATLAB library header
files and must use special MATLAB functions to not interfere with MATLAB
itself. For example, to allocate memory one must avoid the use of malloc and
instead call a special MATLAB library function. Fortunately, with little careful
programming, there are no real limitations for operations on serial ports, the
interesting part in this context. For further information on how to include C
code in MATLAB read [2], chapter “Creating C Language MEX files”.

3.3 Interfacing to Unix

Serial ports in Unix system are represented as so-called device special files. If
an application wants to send or receive data over the serial port, it has to open
these special files. This means that the same system calls are used for I/O on a
serial port as for a standard file.

Since a serial port has some properties that distinguish it from standard
files, there exist special system functions to modify aspects of the serial com-
munication such as the baud-rate. The terminology used for these functions is
a little confusing and revealed that the serial port on Unix system is mainly
used to hook terminals to it. You find the setting of the number of stop bits,
for example, is specified along with that of I/O properties for terminals.

The function definitions for serial communication were taken from [1], topic
“Low-Level Terminal Interface”.

3.4 Portability and Compatibility

A lot of versions of Unix are around, and though the function definitions to
alter the serial communication is covered by the POSIX standard, minor differ-
ences between different flavors exist. In order to make porting easier for other
Unices (in particular Linux) the freely available software package minicom[3]
was examined. This software runs on many platforms and thus served as a
good source of information about incompatibility. Fortunately, for this special
task of making the robot available to MATLAB, no special considerations re-
garding incompatibility need to be taken care of as long as the system is POSIX
compliant.

11

Source code

The source code for kopen is on page 34, ksend on page 37 and kclose is on
page 39.

12

Chapter 4

Camera Input
Preprocessing

As was discovered during this examensarbete, the camera of the vision turret
produces far from ideal image samples. Applying preprocessing to the image
data of the vision turret’s camera before it was further used notably bettered
image quality and thus improved the output of the algorithms that extract
distance and angel from the camera images.

1

0.8

0.6

0.4

0.2

Figure 4.1: A theoretical, ideal image sample.

Figure 4.1 shows how the image data would like if the camera is an ideal
device.

For a quick demonstration, figure 4.4 is a real image sample, far from being
perfect. The following sections describe in detail what problems were discovered
and how they were dealed with.

4.1 Noise

In figure 4.2 the camera was looking at a white piece of paper. Ideally every
camera pixel would have sampled the same value somewhere in the bright.
However, there are some minor deviations from the ideal line. Since the noise
is not that strong it was a rather small problem compared to the others.

13

o
©
T

o
)
T

Brightness
o
~
T

o
)
T

|
0 10 20 30 40 50 60
Camerapixels

Figure 4.2: An image sample looking at a white paper. Pixel values have been
“normalized” to [0 1] with increasing brightness towards 1. The quality suffers
from a little brightness weakness in the corners. You can also see the noise while
sampling the image.

4.2 Brightness weakness

Figure 4.2 also shows that the supposed to be line looks dragged down at both
sides. Figure 4.3 is based on the same image data but visualized differently.
There one can clearly see that the camera samples darker values at the edges.
It may not look dramatically here, but this effect increases if the camera is
looking at stripes. For an example, take a look at figure 4.5. The reason for
this weakness was not explored further.

0.7

o
o
T

Brightness
o
[}
T

I
~

0.3
10 20 30 40 50 60

Camerapixels

o

Figure 4.3: This figure is based on the same image date as those in figure
4.2. Here the image is printed as a bar graph and zoomed to better show the

brightness weakness.

4.3 Low contrast

Figure 4.4 shows another weakness of the vision turret’s camera. It doesn’t have
a sharp view on the stripes. Since the stripes are printed black on white, with
no grey levels in between, the image values should “jump” up and down with no
intermediate ones. However this is not the case. Especially when operating the

14

0.8 N

0.2 ,

0 I I I I I I
0 10 20 30 40 50 60

Figure 4.4: A real image sample from the vision turret’s camera. The camera is
looking perpendicularly at stripes of lcm width from a distance of 20cm. The
camera hasn’t an ideal sharp view on the black and white stripes but some grey
levels in between.

camera at very close distances, below the distance the manufacturer recommends
(see also section 2.2), the stripes become smooth rounded hills. This is probably
due to the fixed lens of the camera, therefore it cannot adapt to various distances
like for example the human eye.

An interesting possibility would be to compensate for this systematic error.
If the distance is somewhat know (this could be done as described in chapter 5
and 6) it might be possible to recalculate the image data, compensating the
insharpness to a certain extent. However, this approach was not examined
further in this examensarbete.

4.4 Gamma correction

o o o
N [} [e¢]
T T T
1 1 1

Brightness

o
N
T
|

|
0 10 20 30 40 50 60
Camerapixels

Figure 4.5: Another snapshot of stripes. This time so far away it comes close
the cameras resolution. The brightness weakness is even more apparent here
than in the previous figures.

In order to compensate for the brightness weakness, it was decided to gamma
correct the image, i.e. increase low image values in the corners of the picture.
The problem was to find a good correction method.

15

4.4.1 How to correct

Looking at the type of gamma error (for example figure 4.3) the error becomes
stronger towards the corners while the middle of the image does not need gamma
correction.

Also, gamma correction needs to be different for the black or white camera
pixels. Figure 4.5 shows a stronger error on the white pixels than on the black.
Therefore it is necessary to separate the white pixels from the black, and apply
a different gamma correction to each.

4.4.2 Type of correction function

0 Il Il Il Il Il Il Il Il Il J

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.6: Some root functions used as an example to demonstrate the use of
this kind of functions for gamma correction

The basic correction function chosen was the general root function, y = z*,0 > a > 1.
To demonstrate how these functions work take a look at figure 4.6. These func-
tions only produce good results with respect to gamma correction in the range
from 0 to 1. Since our camera’s pixel values have a limited range also it is easy
to scale the pixel’s value to the interval [0; 1].

If a low pixel value is given as an input to the root functions, the resulting
value will be relatively higher as if a high pixel value is given to a root function.
For example, z = 0.1 for y = 2%% results in 0.31, whereas z = 0.9 gives 0.94.
The first value is scaled by a factor of 3, while the second one hardly changes.

The effect of these functions is that values towards 0 are stretched more than

16

values towards 1, i.e. “dark” pixels are getting brighter while “bright” pixels
almost stay the same.

4.4.3 Amount of correction

As described earlier, the brightness error get worse towards the corners. There-
fore it was decided to apply a different gamma correction function for each pixel.
The result is that the parameter a in the function y = z® varies from pixel to
pixel. Based upon the look on how the error develops towards the corner and to
have a simple function a parable aka polynomial of grade 2 (y = c2z® +ci12+co)
was chosen, where 1/y is placed into the a parameter.

(Note: 1/y reflects how this gamma correction was developed. First it was
thought of as the nth root, and this viewpoint was quite convenient to develop
the parameters for the parable. Root and exponents can equally be converted
into each other by the multiplicative inverse.)

This polynomial is shifted so that the y value of the apex has a value of 1
for the x value of 32, i.e. in the middle of the camera image which consists of
64 pixels.

Additionally, it should be controllable how much correction is applied in the
corners of the camera image.

The general formula for this special purpose is

y = %(1‘—32)2—#1, x=0,1,...,63

where s gives the maximal amount of correction +1, i.e. in the corners pixel
values are corrected with the sth root. For example, if s = 3, z = 1 results in
y = 4, thus the processed pixel value is the 4th root.

The outcome of these intertwined functions is that no gamma correction is
done in the middle of the camera image (y = 1 for pixel 32) with increasing
correction towards the corners. The highest correction is applied to the corner
pixels, i.e. pixel number 1 and 64. The maximum correction is given by the
above mentioned s.

4.4.4 Separating black from white pixels

As mentioned in 4.4.1, the brightness error is different for dark image values
than for bright ones. By experimenting the following functions were found to
be useful:

—4(32)2 +1 =0,1,...,63
y_322x) .’If—,,...,

for the white pixels and

0.5

:@(a:—32)2+1, r=0,1,...,63

Y

for the black ones.

“Separating” introduces another problem: Which pixel values should be
treated as white, which as black, and which as nothing? For this examensarbete
a rather simple method was used. This method and its associated parameters
were - again - found by trial-and-error.

The pixel values must have already been scaled to [0;1]. In brief, the algo-
rithm is as follows:

17

Brightness

Figure 4.7: Based on the same input data than the figure 4.5, this picture
gamma-corrected to compensate for the brightness weakness

correcting images that are not images of striped walls.

corrw = ones(1,64)./((4/(32%32))*([0:63]-32).72+1);

corrb = ones(1,64)./((0.5/(32%32))*([0:63]-32)."2+1);

function [ret] = gamma_correct(vis,corrw,corrb)

1. A value is calculated that separates “black” from “white” pixels. This

value is the average of all camera pixels.

2. Every pixel value that is too close to the separation value is regarded as

neither white nor black and eliminated.

3. The remaining pixels are gamma corrected.

o
o
T

=}
~
T

o
N
T

I
20 30

Camerapixels

40

50

60

is

Some other (primitive) checks are done to avoid dividing by zero and gamma

Figure 4.7 shows the results of the above mentioned gamma correction.
To help understanding this gamma correction method, the important MAT-

LAB source code is printed below.
‘corrw’ and ’corrb’ are the gamma correction function tables for black and

white pixel respectively.

'vis’ is the camera image consisting of 64 pixels, already scaled to [0; 1].

avg = mean(vis);

vis = vis - avg;

vl = (vis > 0.1).*vis;
v2 = (vis <= -0.1) .*vis;

if max(v1)>=0.1

vl = (vl./max(v1l)). corrw;
end
if min(v2)<=-0.1

v2 = (v2./min(v2)). corrb;
end

ret = vl - v2 + max(v2);

18

if max(ret)~ =0
ret = ret./max(ret);
end

4.5 Low pass filtering

Brightness
o o
o [ee]
T T
| |

I
~
T
|

o
N
T
|

0 I I I I I
0 50 100 150 200 250

Camerapixels

Figure 4.8: The next step after gamma-correcting the picture (see figure 4.7)
is to eliminate noise. This is done by applying a low-pass filter to the data,
“smoothing” the signal. Please note the changed x-axis labeling: The original
input data was upsampled to better approximate the low frequencies of the
filtered image.

Another less crucial step is to apply a low pass filter to the camera image. As
mentioned earlier this step removes noise that typically appears in the higher
frequencies. Since there is only one frequency that is interesting - the one that
results from the printed stripes - and this frequency is expected to be low, higher
frequencies can be safely cut off.

Low pass filtering is not really necessary, since a Fourier transform is used by
the distance and angle measuring methods to transform the signal into the fre-
quency domain. Once in the frequency representation, a similar high frequency
cut can be achieved by ignoring higher frequencies.

Low pass filtering seemed to improve the results when measuring the an-
gle (see chapter 6). The method used there requires a clear peak to produce
good results. This seeming improvement was not explored further during this
examensarbete however.

The MATLAB code that filters the input data is rather simple. Filter is a
MATLAB provided function that performs filtering with the specified filter on
digitized input data.

filtered_image = filter(hanning(8),1,image);

4.6 Preprocessed vs raw

Figure 4.9 and 4.10 shows the difference between the raw camera image (figure
4.5) and the gamma corrected and filtered image (figure 4.8). While the dif-
ference doesn’t seem to be much, it is enough to extend the number of camera

19

0 1
5 10 15 20 25 30
Frequency

Figure 4.9: The FFT analysis of the data in figure 4.5.

images that can be analyzed. Especially when the images are less cleaner than
the often referenced image in figure 4.5 the effort is worth it.

These graphs (4.9 and 4.10) demonstrate the effect of the gamma correction
and low pass filtering. It is the FFT analysis of either the raw and the prepro-
cessed image of figure 4.5. Both have their peak at the same index (17), and
the peak of the filtered image is a little bit cleaner.

0 ! ! !
5 10 15 20 25 30

Frequency

Figure 4.10: FFT analysis of the preprocessed image. Only the interesting part
i.e. the first 32 frequencies of the analysis is printed here.

20

Chapter 5

Measuring Distance by
Image Analysis

Di st ance

= 36°
~

\mEEREEERRY
/
/
/
/
Il B BN B B B =

Figure 5.1: The setup for measuring the distance. The camera is looking per-
pendicular at a striped wall.

For the second task, measuring the distance, the setup was as shown in figure
5.1. The camera has to look perpendicular at the wall. This made it easier to
get a working algorithm. In chapter 6 a different method was developed that
can measure the distance even if the camera is not looking perpendicular. The
method used there evolved out of the earlier written routines described in this
chapter.

21

5.1 Methods used

The first and basic thing to do was to find out how to use the sampled image to
calculate the distance. Two basic methods have been found, but other superior
methods may exists nonetheless.

1. Measure the number of continuous pixels in the sample that supposedly
belong to a stripe. From that measured “width” and the known printed
“width” the distance may be calculated.

2. Count the total number of stripes, then multiply this number with the
known printed width of each stripe. This gives the length of the area seen
by the camera.

The above methods can also be explained by the equation given in definition
section 2.5, period - frequency = 64 pixels. The first method measures the
period of the stripes as sampled in the camera image. From the period the
frequency may be calculated. On the other hand, if the frequency is known (the
second mentioned method), the period may be calculated.

Both approaches have their pros and cons. The first method has problems
with the images not having a sharp contrast (see figure 4.4) and with noise.
Also the accuracy drops with increasing distance, but on the other hand is
quite accurate on short distances or big stripes respectively.

It should be noted that by applying intelligent filtering beforehand it should
be possible to get good results with the first mentioned method too. It was not
really explored further, due to the fact that the second approach gave surpris-
ingly good results. That little that was done is described in 5.5. Nonetheless,
further research may come up with equal results for the first method.

5.2 Distance calculation

Given the number of periods (which is to know the frequency), the length of
the visible wall is frequency-2-width-of-printed-stripe. Using the known viewing
angle of the camera, the formula to calculate the distance from the length of

the visible area is
d— length of visible wall /2

tan 18°
See figure 5.2 and section 2.2 for reference.

5.3 Determining the frequency

As can be seen in the previous section, the relationship between the length of
the visible area and the distance is quite straightforward. The tricky part is
to find out the actual length of the visible area. This is supposed to be done
through the camera image.

The width of the stripes is known as it is chosen when the stripes are printed
on the wall. The first attempt was to count the number of periods, i.e. find the
sampled image stripe frequency.

22

€¢
‘sisATeue 10UgIng moyjim Iepnduwod o) jou nq ‘sediigs 9
oY} SoZIu30001 A[Iesd oAo Urewiny oy, ‘odewl [eal ® Jo ojdwexe Uy :¢'C oIndij

09 0S oy o€ 0c¢ 0T OO
T T T T T T

‘F°G 9INBY Ul UMOYS SI
€'¢ 2Ingy ut eyep o9yl Jo (WyILIose I,4,4 oy 3uisn) sisA[eur 1o1moq oY) ‘ojdurexs
Uue Sy "1991100 sem uorpdwinsse oy} et} pemoys Junjuowtiodxo pajoodxe sy

‘seloueNboIy Mmo] oY) Ul
oIy mowos yead © 9A13 pinoys ojdures ogewil RISUIRD B YONS JO SISATRUR IOLINO] ®
sny T, (LA 9y? Jo uoryeur[dxe 1I10Ys ® 10J Q' UOIIDS 99G) SISA[RUR ISLINO] oY)
Sursn Jo eopl oY) 0} Po[SIY[, "YonIjs s[euSIs 1Yo 3m podde[1oao aaem dTUOU
-1ey Aouonbal} MOl ® UM SeTyLIR[IUIS o) ‘(g'¢ oInSi]) oFewr viowred [ed1dL)
' 98 SUI{0oO] o[IyM ‘©19(IesUolreXs ST} I0J YIom oy} Jo Juruurdoq oY) Ul 0§

"odew] vIOWRD € UI spolied JO SIoquuInu oY) N0 PuUy 03 MOY PoIop
-UOM SeM 91 ‘oFewl RIOWRD) e Sur{oo] oand Aq A[UO ‘9)9(IRSUSTIRXD SIY) UL
INO PAYIOM Ud(sey Aouonboiy pue spouod woem)oq drysuorie[ol oY) 910jog

“e9IR 9(ISIA
oY} JO YIBUS[oY) WO} dOURISIP O} 9Je[NI[RD 0} AIJPWI0d3 dIsey :g'C 9INJIg

frequency * 2 * width

I
I
I
I
I
I 08T
I
I
I
I
I

visible area

10

8 |
8 6l
2
2
< 4r

2 -

O —r

10 20 30
Frequency

Figure 5.4: The FFT analysis of the data in figure 5.3 (absolute values). The
“strongest” frequency caused by the stripes gives a clear peak. The mirroring
of the frequency spectrum is caused by the properties of the FFT algorithm.
Please note that the index of the highest peak (7) is one more than the number
of seen stripes.

There is a clear peak at index 7. The actual number of stripes is one less.
Sampling a camera image at various distances revealed that the index with the
highest peak is always one more than the number of periods. This is for sure no
coincidence, but further investigation into the FFT algorithm and the particular
MATLAB implementation to validate this assumption was not done.

So the first and simple approach to get the number of periods was to Fourier
transform the camera image, look for the maximum peak in the range of rea-
sonable frequencies, and use that index as the number of periods. Once the
frequency is known, the distance can be calculated easily as shown in the pre-
vious section.

5.4 Advantages, caveats and shortcomings of the
FFT method

On the positive side, the following things were discovered:

e Transforming the camera image into the frequency/energy domain makes
it quite robust against noise that is often high frequencies overlapping
lower ones.

e The FFT “looks” at the whole image, not only a part of it, so sampling
differences between the various stripes are averaged out.

e If the camera is not looking perpendicular at the wall, or not even looking
at a wall at all, the peak in the FFT display disappears. Together with
further processing on the FFT data this makes it possible to tell whether
the artificial environment of a stripe wall is present. This does not work
in all cases, but filters out a fair amount of invalid pictures.

One problem is that it only works for a limited number of periods. Dur-
ing experimenting it was found that the accuracy of the calculated distance

24

decreases when the camera stood closer to the wall. This is clear when one
imagines that it takes a longer way to move until the number of periods change
in the display if the camera is standing close to the wall. If it is further away it
takes a shorter way until a new stripe moves into the visible area.

Likewise, the accuracy increases if more periods were in the camera image,
but then the FFT data gets less accurate, because the peak moves more and
more into the higher frequencies making it less distinguishable from noise. For
practical reasons the number of periods regarded as resulting from a valid image
ranged from 3 to 20.

Unfortunately the FFT algorithm returns discrete frequencies. Especially
for the lower frequencies it would be nice if the “frequency resolution” would be
finer. As a result from this limitation, when the number of visible periods are
between two discrete values, the FFT data does not show a clear peak for one
frequencies, but more like a hill ranging over 2 frequencies. To compensate for
an image on a limit some extra code was written to discover such hills and take
the average frequency, assuming the real frequency is between the two discrete
values reported by the FFT analysis.

Source code

The MATLAB source code for the above described method can be found on
page 43.

5.5 An alternative - Measuring the width

As mentioned earlier, this method was not really explored to its best.

5.6 Algorithm in brief

The main problem in developing a good algorithm was the insharp camera image
and thus to make a good bet which pixel values belong to a white stripe and
which to a black one.

Since the camera samples best in the middle, it was decided to start looking
for a stripe in the middle and from there move away to the left and to right
until the probable end of the stripe.

A careful reader may observe in the source code that there is also a procedure
included that counts the total number of stripes and their width. In an early
version instead of focusing on the stripe in the middle of the camera image all
stripes in the image were measured and the average of all visible stripes was
taken.

This approach was dropped because it provided hardly better results than
only examining the stripe in the middle and tends to become even less accurate
when not looking perpendicular to the wall. But the procedure that counts the
total number of stripes is useful to make it more robust against bad camera
images.

The first step was to separate pixels in black and white ones. All pixel values
are “normalized” to the interval [0;1] first, O is absolute black and 1 brightest
possible white. Then the separation was done using a hard coded threshold.

25

Brightness
o o o
e () [o2)
T T T

o
N
T

O 1 N3 N 1 1 N3
10 20 30 40 50 60
Camerapixels

Figure 5.5: This figure visualizes the algorithm for direct measurement of the
width of the stripes. ’x’ mark pixels that have been identified as white or black
and ’o’ that could not be classified. Please note that this image has been gamma
corrected before.

Anything greater than 0.6 is regarded as white and anything lower 0.4 as black.
Of course this is a very simple approach and it tends to count too few pixels
that correctly would belong to a stripe.

For an example of how this algorithm analyses an image take a look at
figure 5.5.

5.7 Results

Though the above mentioned algorithm is rather simple its accuracy was better
than those of the FFT method if only a few stripes were visible. On the other
hand, if the number of visible stripes increases the FFT method produced better
results.

So it seems best to combine these two methods: FFT for long ranges and
width measurement for close ones.

But the width measuring has some practical problems. It is less robust than
the FFT method when fed with camera images that do not show the stripe
pattern. With the FFT method it was easier to recognize bogus images. Also
is the width measuring algorithm more complex than the FFT one.

Careful programming and further research may develop a more robust width
measurement than the simple approach developed in this examensarbete.

It should ne noted that neither the width measurement nor the FFT method
developed in this examensarbete are able to identify all bogus camera images.

Source code

The source code of the width measurement method described above is in the
Appendix on page 40.

26

Chapter 6

Measuring Distance and
Angle by Image Analysis

| wal l

Figure 6.1: Sketch to visualize the camera’s angel towards the wall

So far the setup was that the robot’s camera is looking perpendicular at a striped
wall. This made distance calculation easier, because perspective distortion of
the stripes need not to be taken care of.

The next task was to examine if it is possible to measure the distance if the
camera is not looking perpendicular at the wall. Furthermore it was investigated
if it is possible to measure the angel of the camera position.

6.1 Setup

Figure 6.1 shows a sketch of the robot setup. The distance is the shortest way
from the camera’s lens to wall. The angle is the angle between the distance line

27

Canera | ens proj ect ed
stripes

Figure 6.2: Sketch to demonstrate the perspective distortion.

and the line that is perpendicular to the wall. The rest of the setup is same as
described in chapter 5.

6.2 Methods used

As in the chapter describing how to measure the distance, again two methods
were found that could be used to measure the angle and distance.

1. Measure the number of continuous pixels in the sample that supposedly
belong to a stripe. From that measured “width” and the known real
“width” the distance and angle may be calculated.

2. Use again FFT analysis. How this is done in particular is described below.

Since the camera is not looking perpendicular anymore the image suffers from
a perspective distortion. This distortion however corresponds to the angle. In
particular, the width of the sampled stripes increases/decreases linearly, where
higher increases/decreases indicate a steeper angle. So the predictable distortion
of the stripes may be used to measure the angle. See also figure 6.2 to see how
the stripes are projected into the camera.

6.3 Measurement of width

Despite being possible direct measuring was not explored further, again because
the FFT analysis gave better practical results.

6.4 FFT analysis

The standard FFT analysis which looks at the whole image cannot be used
unless the camera is looking perpendicular. If the camera looks with increasing
angle towards the wall, more and more the peak in the FFT analysis becomes
a flater and broader hill.

If the camera is not looking perpendicular the sampled width of the stripes
changes constantly over the image (For an example take a look at figure 6.3).
It can be seen as if the frequency of the stripes increases/decreases constantly.
This explains why the FFT analysis does not show a clear peak, because there
is more than one frequency in the image caused by the stripe pattern.

28

o
©
T

Brightness
o
o
T

o
N
T

|
0 10 20 30 40 50 60
Camerapixels

Figure 6.3: An example image (already gamma corrected) of the vision turret’s
camera looking inperpendicular to the wall. The width of the stripes increases
from left to right indicating the camera is standing left from the wall.

6.5 Handling the changing width

A necessary precondition for analysing such image further with the method
described below is that the width of the stripes changes linearly and monoton-
ically over the image. This condition is met if one is looking at the projection
geometry involved. See figure 6.2 for reference.

Based on this precondition the idea is not to FFT the whole image, but only
a part of it, for example pixels 1 - 32 and pixels 33 - 64. This narrows the
analysis window, thus making the increase of width in the stripes less and so
reducing the frequency mix as described in 6.4. Since we know that the width of
stripes in the image changes constantly, narrowing the analysis window leaves
out the other stripe frequencies, thus the FFT analysis results in a cleaner peak.
The downside is that the original image size (64 pixels) is reduced, making the
measurement less accurate.

We know that the stripe width changes constantly. If we analyze the “left”
(pixels 1 - 32) of the image and the “right” (pixels 33 - 64) and the frequency
peak for either is different, the camera is looking sideways towards the wall. By
comparing which side has the greater frequency it is possible to tell whether the
camera is standing left- or rightwards to the wall.

See figures 6.4 and 6.5 for an example.

6.6 Continuous FFT analysis

The next step was to extend this method. Instead of analysing only the left and
right part, a window of 32 pixels was moved continuously over the 64 pixel wide
image, starting from the left. This means that first pixels 1 - 32 are Fourier
transformed, then pixels 2 - 33, 3 - 34, . .. until pixels 33 - 64. After each analysis
the index of the highest frequency peak is stored.

Since the camera is looking at a straight wall printing these indices in a
graph results in a line. Figure 6.6 shows this kind of graph for the image in
figure 6.3.

As described later using a sliding window increases the robustness and ac-

29

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
\
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 6.4: The image of figure 6.3 split up into a left and right part

10 10
8 8

6 6

4 a4

2 2

7% 10 15 2 25 30 7% 10 15 2 25 a0

Figure 6.5: The FFT analysis of the left and right parts of figure 6.4. The left
figure has its peak at index 4 and the right one at index 7

10

freq. peak index

| | | |
5 10 15 20 25 30
FFT window position

Figure 6.6: The indices of the frequencies peaks resulting from the continuous
FFT analysis of the camera image in figure 6.3. The climbing line without
disturbances indicates a good camera image and that the camera was standing
left towards the wall.

30

curacy. It also enables more accurate measuring of the distance.

6.7 Approximation of the peak line

In theory this peak line that looks as a rough approximation of a line is indeed
supposed to be a line, because the stripe “frequency” increases constantly (The
reason for this is describe in section 6.5). Since the FFT analysis only returns
discrete values this peak line only increases on ordinal number on the y-axis.

10

stripe frequency
[}
\
|

0 ! ! ! ! ! !
5 10 15 20 25 30

FFT window position

Figure 6.7: Reconstructed frequency increase line calculated from the peak line
in figure 6.6.

However, the peak line data can be used to reconstruct the ideal, theoretical
line to a certain extent. Provided in MATLAB is a function called polyfit
that returns the approximate coefficients of a polynomial that fits closest the
input data; in this case the peak line. The degree of the polynomial that should
approximate the input data is given as a parameter. In this case it is 2 to find
the closest line. Figure 6.7 shows this reconstruction.

6.8 Measuring distance

For distance measuring the same method of counting the periods was used as
described in chapter 5.

Finding the “right” frequency is easy if the camera is looking perpendicular,
since then there exists only one stripe frequency. However, in the case of non-
perpendicularity, the stripe frequency is different at each position in the image
— the stripe frequency for every position in the camera image is approximately
reconstructed as described above. An example of such reconstruction is given
in figure 6.7.

In order to calculate the distance as defined in figure 6.1 the frequency that
is present in the middle of the camera image needs to be taken. This frequency
is taken from the reconstructed stripe frequency change line (see figure 6.7) by
taking the y-value at x-pixel position 16.5. This corresponds to the middle of
the camera image.

31

6.9 Measuring angle

It was observed that whether the frequency peak line raises or falls the camera
is either looking left or right towards the wall. It was further noticed that the
amount of raising/falling is directly related to the size of the angle.

Measuring the angle in degrees proved to be difficult however. The relation-
ship between the raise of the line and the angle is not straightforward. More
important is that the amount of the raise measured is very inaccurate and
changes rapidly when the robot is moved further away from the wall on the
distance vector.

So calculating an actual degree was omitted. Instead it was only chosen to
to see whether the peak line raises or falls, and based upon this it is decided
whether the camera is looking rightwards (line raises or angle is positive) or
leftwards (line falls or angle is negative).

6.10 Robustness

As described in the previous section measuring the angle works only to a limited
extend. However, constructing a frequency peak line turned out to greatly
increase the robustness against bogus' camera images.

The algorithm used to reconstruct the stripe frequency line from the FFT
analysis returns a value called “norm of the residuals”. Effectively this norm
describes how good the input data matches an actual line. So this norm can be
used to measure the quality of the camera image. If the input data to reconstruct
the frequency line is too far away from being a line, this norm increases in value
and as such can be used to sort out bad images. Figure 6.8 and 6.9 show an
example.

© o o
~ =))
T T T

Brightness

o
N
T

0 10 20 30 40 50 60
Camerapixels

Figure 6.8: A sample image that is too bad to measure the distance from.

Source code

The source for the angle’s measuring routines is printed on page 43.

L“bogus” in the sense that the camera image does not show an image that was taken from
stripes or that the image of stripes is seriously distorted.

32

[uy
N

[y
o

[ee]
T
1

stripe frequency
IS
T T
| |

N
T
1

| | | | | |
5 10 15 20 25 30
FFT window position

Figure 6.9: The frequency peak line and reconstruction. For some positions
the continuous FFT analysis gave bad stripe frequencies. Reconstructing the
frequency line from this data returns a too high deviation of the input data from
the (ideal) frequency line. In this example the “norm of the residuals” is 6.26.
As a reference norm values above 6 are considered to be the result of too bad
input data.

33

Appendix A

Source Code

In this appendix all important source code is printed. Usually it is a direct
inclusion of the files. If you would like to get the latest versions — or simply
hesitate to type it in — contact the author to get it in electronic form. Future
revisions of this document may include pointers to home pages where you may
directly download the sources.

A.1 Robot API - kopen

YELS

* Opens the serial communication to the robot on Unix machines

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*/
#include
#include
#include
#include
#include

#include
#include

ref = kopen([portid, baudrate, timeout])

/dev/ttya (serial port A)
/dev/ttyb (serial port B)

portid: O
1

baudrate: Must be 9600.

timeout: Number of seconds to wait for the
respond of the robot.

ref: Handle to be used with the other serial
communication routines.

(C) Matthias Grimrath <m.grimrath@tu-bs.de>

<stdio.h>
<string.h>
<errno.h>
<termios.h>
<fcntl.h>

<math.h>
"mex.h"

34

/* Settings for the serial communication */

#define ROBOTDEVICE "/dev/tty"
#define MAXTIMEOUT 10000000 /* equals 10s */

static int kopen(int portid, int baudrate)
{

int fd;

int i;

struct termios tio;

char devname[sizeof (ROBOTDEVICE)+10];

/* create device name */
strcpy(devname, ROBOTDEVICE) ;
if (portid==0)
strcat(devname, "a");
else
strcat(devname, "b");

/* Open modem device for reading and writing and not as
* controlling tty because we don’t want to get killed if
* linenoise sends CTRL-C. x/
fd = open(devname, 0_RDWR | O_NOCTTY);
if (fd < 0)
return fd;
tcgetattr(fd,&tio); /* save current modem settings */

/*
* Ignore bytes with parity errors and make terminal raw and dumb.
*/
tio.c_iflag = IGNPAR|IGNBRK;
/*
* Raw output.
*/
tio.c_oflag = 0;
/*
* Don’t echo characters
*/

tio.c_lflag = 0;

/* Set bps rate and hardware flow control and 8n2 (8bit,no
* parity,2 stopbit).
*/

tio.c_cflag = CLOCAL|CREAD|CSTOPB|CSS8;

switch (baudrate) {

case 9600: baudrate = B9600; break;

35

case 19200: baudrate = B19200; break;
case 38400: baudrate = B38400; break;

default: baudrate = -1;

}

i = cfsetospeed(&tio, baudrate);
i |= cfsetispeed(&tio, baudrate);
if (1)

goto close_exit;

tio.c_cc[VMIN]=0;
tio.c_cc[VTIME]=0;

/* now clean the serial line and activate settings */
tcflush(fd, TCIFLUSH);
tcsetattr(fd,TCSANOW,&tio) ;

return fd;

close_exit:
close(fd);
return -1;

/* Gateway to MATLAB */

void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])

int portid;

int baudrate;

int timeoutvalue;
int retval;
double *arg;

/* Check for proper number of arguments */
if (nrhs !'= 1) {

mexErrMsgTxt ("KOPEN requires one input argument.");
} else if (nlhs > 1) {

mexErrMsgTxt ("KOPEN requires one output argument.");

}

/* Check the dimensions */
if ((mxGetM(prhs[0])!=1) || (mxGetN(prhs[0])!=3)) {
mexErrMsgTxt ("KOPEN requires argument to be [portid,baudrate,timeout].");

X
if (!'mxIsDouble(prhs[0])) {

mexErrMsgTxt ("The arguments must be of type double!");
X

/* Create a matrix for the return argument */

36

plhs[0] = mxCreateDoubleMatrix(1l, 2, mxREAL);

/* Assign pointers to the various parameters */
arg = mxGetPr(prhs[0]);

portid = (int)arg[0];
baudrate = (int)argl[1];
timeoutvalue = (int) (arg[2]*1000000); /* timeout in s */

if (portid!=0 && portid!=1)
mexErrMsgTxt ("Illegal portid. Only ttya (=0) and ttyb (=1) are "
"supported!");
if (baudrate!=9600 && baudrate!=19200 && baudrate!=38400)
mexErrMsgTxt ("0Only baudrate of 9600, 19200 or 38400 is supported)!");
if (timeoutvalue==0)
mexErrMsgTxt ("You WANT to specify a timeoutvalue!");
if (timeoutvalue>=MAXTIMEOQUT)
mexErrMsgTxt ("Timeoutvalue >10s, that’s too much");

/* Open the serial port */
retval = kopen(portid, baudrate);
if (retval < 0) {
char buff[1024];
snprintf (buff,1023,"KOPEN system error: %s",strerror(errno));
buff[1023]=0;
mexErrMsgTxt (buff);

arg = mxGetPr(plhs([0]);
*(int *) (arg++) = retval; /* Store as int in double to avoid */
*(int *) (arg++) = timeoutvalue; /* conversion time */

A.2 Robot API - ksend

/%%

* See ksend.m

*

* (C) 1999 Matthias Grimrath <m.grimrathQtu-bs.de>
*/

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <termios.h>
#include <fcntl.h>

#include <math.h>
#include "mex.h"

#define CMDLEN 1024

37

#define RCVLEN 1024

void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
int m;
int ret;
int fd;
int cmdlen; /* So O-bytes can be sent as well */

char cmdbuf [CMDLEN] ;
char rcvbuf [RCVLEN] ;
char *rcvptr;

int rcv;

double *arg;

int alwayswaittimeout;
int timeoutvalue;

fd_set readfds;
fd_set junkfds;
struct timeval tv;

/* Check for proper number of arguments */
if (nrhs!=2 && nrhs!=3)
mexErrMsgTxt ("KSEND requires two or three input arguments.");

/* Check and eval string argument x/
m = mxGetM(prhs[0]);
if (m!=1)
mexErrMsgTxt ("Input must be a row vector!");
if (!'mxIsChar (prhs[0]))
mexErrMsgTxt ("Input must be a string");
cmdlen = m * mxGetN(prhs[0]);
ret = mxGetString(prhs[0], cmdbuf, CMDLEN);
if (ret)
mexErrMsgTxt ("Command exceeds outputbufferlength");

/* Check and eval fd argument */

if ((mxGetM(prhs[1]1)!=1) || (mxGetN(prhs[1])!=2))
mexErrMsgTxt ("’ref’ must be reference obtained from KOPEN.");

if (!'mxIsDouble(prhs[1]))
mexErrMsgTxt ("’ref’ must be of type double!");

arg = mxGetPr(prhs[1]);

fd = *x(int *) (arg++);

timeoutvalue = *(int *) (arg++);

/* Check and eval multiline, if present */
#if O
if (nrhs==3)
mexErrMsgTxt ("Multiline unimplemented!");
#endif

38

/* Send the string */
write(fd, cmdbuf, cmdlen);

/* Wait for response */
FD_ZERO(&readfds);

FD_SET(fd, &readfds);

tv.tv_sec = timeoutvalue / 1000000;
tv.tv_usec = timeoutvalue % 1000000;

rcvptr = rcvbuf;
while (rcvptr != rcvbuf + RCVLEN) {
junkfds = readfds;
rcv = select(fd+1, &junkfds, NULL, NULL, &tv);
if (rev<0) {
if (errno!=EINTR) {
char buff[1024];
snprintf (buff,1023,"KSEND select error: %s",strerror(errno));
buff[1023]=0;
mexErrMsgTxt (buff) ;
} else
continue;
}
if (rcv==0)
break; /* timeout */
rcv = read(fd, rcvptr, rcvbuf + RCVLEN - rcvptr);
if (rev<0) {
char buff[1024];
snprintf (buff,1023,"KSEND read error: %s",strerror(errno));
buff[1023]=0;
mexErrMsgTxt (buff) ;
}
rcvptr += rcv;
/* The khepera sends both ’cr’ and ’1f’, despite the documentation
* says only ’1f’, but maybe just these stupid unix terminalmodes
* mess it up
*/
if (rcvptr-rcvbuf>=2 && strncmp(rcvptr-2,"\r\n",2)==0) {
rcvptr[-2]=0; /* Discard cr and 1f */
plhs[0]=mxCreateString(rcvbuf) ;

return;
}
}
/* Come here if no valuable response received */
plhs[0] = mxCreateString("");
3

A.3 Robot API - kclose

/%%

39

Closes the serial communication to the robot on Unix machines
kclose(ref)

ES
ES
ES
*
* ref: Reference obtained from kopen
ES
* (C) Matthias Grimrath <m.grimrath@tu-bs.de>

*/
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <termios.h>
#include <fcntl.h>

#include <math.h>
#include "mex.h"

void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{

double *arg;

/* Check for proper number of arguments */
if (nrhs !'= 1) {

mexErrMsgTxt ("KCLOSE requires one input argument.");
} else if (nlhs > 0) {

mexErrMsgTxt ("KCLOSE requires no output arguments.");

}

/* Check the dimensions */

if ((mxGetM(prhs[0])!=1) || (mxGetN(prhs[0])!=2)) {
mexErrMsgTxt ("KCLOSE requires argument to be reference obtained"

"from KOPEN.");

3

if (!'mxIsDouble(prhs[0])) {
mexErrMsgTxt ("The argument must be of type double!");

}

/* Close down serial connection */
arg = mxGetPr(prhs[0]);
close(x(int *)arg);

A.4 Direct measuring of stripe width
function [dist,distw,distb,visw,visb] = distby_count(vis,thickness)

% [dist,distw,distb,visw,visb] = distby_count(vis,thickness)

h

40

% Measures the distance by counting the thickness of stripes
% closest to the middle of the camera view

b

% Input

yA vis: vision input vector from camera in the range [0 1]
yA thickness: thickness of the stripes

b

% Output

% dist: distance to wall, -1 if it couldn’t be determined
h

yA The rest should not be used except for debugging

% separate in black and white
visw = (vis>0.6);
visb = (vis<0.4);

% Handle it
[visw, distw] = do_stripe(visw,thickness);
[visb, distb] do_stripe(visb,thickness);

if distw==-1 | distb==-1

dist = -1;
else

dist = (distw + distb)/2;
end

function [ret,dist] = do_stripe(vis,thickness)

ret = vis;
dist = -1;

stripes = count_stripes(vis);
if length(stripes)==

return;
end

% Take a close look at the middle
midblk = find(stripes(:,2)>33 & stripes(:,1)<=33);
if length(midblk)==

% try looking for a block left or right
blk = find(stripes(:,1)>33);
if length(blk)==
blk = find(stripes(:,2)<=33);
if length(blk)==0
return
else
blk

ps

33 - stripes(blk(1),:);
blk(1) - blk(2);

41

end

else
blk = stripes(blk(1),:) - 33;
ps = blk(2) - blk(1);

end

p = 32 - ps;

dist = (((pxthickness)/ps)+thickness)/tan(18%pi/180);
return

else
mid = stripes(midblk,:);

pl = 33-mid(1);

pr = mid(2)-32;

w = thickness*pr/(pr+pl);
p = pr;

ps = 32 - p;

dist = (w+(ps*w/p))/tan(18*pi/180);

return;
end

function [widths] = count_stripes(vis)
% counts

widths = [1;

state = 0;

cur = 0;

leadzero = 0;

for i=1:length(vis)
switch state

case 0

if vis(i) "= 0
start = i;
state

else

1]
-

leadzero = 1;
end

case 1
if vis(i) ==
hill = vis(start:i-1);
if leadzero™=0
hill = hill./mean(hill);
widths = [widths; start-hill(1) i-1+hill(end)];

42

end
leadzero = 1;
state = 0;
end
end
end

A.5 Measuring the distance

function [dist,frt_r,frt_a,ampl,ind] = distby_fft(vis, thickness)
% [dist,frt_r,frt_al] = distby_fft(vis)

h

% Measures the distance by counting the stripes

% trough a FFT transformation.

h

% Input

yA vis: vision input vector from camera in the range [0 1]

yA thickness: thickness of the stripes

h

% Output

% dist: distance to wall, -1 if it couldn’t be determined

% frt_r, frt_a: Distance and angel of the FFT transformation
g

% ampl: intermnal, just for debugging purposes returned

% ind: same here

frt = £fft(vis);
frt_r = abs(frt);
frt_a = angle(frt);

ampl = frt_r(1:32); J Cut off high frequencies
ampl(1) = 0; % This contains a bogus value

ampl = ampl./max(ampl);

ampl = ampl.~”3;
ampl = (ampl > 0.4).*ampl;
ind = find(ampl);
ind = median(ind);
if ind < 3.5
dist = -1;
else
dist = (thickness*(ind-1)) / (tan(18*pi/180));
end

A.6 Measuring the angle

function vision

43

global finished debugg

GUIsetup
debugg=0;

comm_open(2,9600,1,debugg) ;

finished=0;
fak=4;
datsize=64xfak;

cam_ax = subplot(’Position’,[0.1 0.8 0.8 0.15]);
cam_hd = plot(0:63);

set(cam_ax,’YLim’, [0 1]);

set(cam_ax,’XLim’, [0 63]);

cam2_ax = subplot(’Position’,[0.1 0.6 0.8 0.15]);
cam2_hd = plot(0:datsize-1);
set(cam2_ax,’YLim’, [0 1]);

set(cam2_ax,’XLim’, [0 datsize-1]);

pll_ax = subplot(’Position’,[0.1 0.4 0.8 0.15]);
plli_hd = plot(0:datsize/2-1);
set(pll_ax,’YLim’, [0 12]);

set(pli_ax,’XLim’, [0 datsize/2-1]);

pl2_ax = subplot(’Position’,[0.1 0.2 0.8 0.15]);
pl2_hd = plot(0:datsize/2-1);
set(pl2_ax,’YLim’, [0 15]);

set(pl2_ax,’XLim’, [0 datsize/2-1]);

% Gamme correction table for camera. The contrast gets worse
% in the corners

corrw = ones(1,64)./((4/(32%32))*([0:63]-32).72+1);

corrb = ones(1,64)./((0.5/(32%32))*([0:63]-32).72+1);

wavelen = 0.01;
lowpass = hanning(8);

% Loop until global finished is set by the End command button:
while “finished
while “"finished

[cameravals ok] = read_vt_cam;
vis2 = cameravals’./256;

vis = gamma_correct(vis2,corrw,corrb);

vislin = [interpl(1:64,vis,1:1/fak:64) 0.5%ones(1,3)];
vislin = filter(lowpass,l,vislin);

44

vislin = vislin - min(vislin);
if (max(vislin)~=0)

vislin = vislin./max(vislin);
end

contfrq = zeros(datsize/2,1);
contphi = zeros(datsize/2,1);
for i=1:datsize/2
a = fft(vislin(i+1l:i+datsize/2));
a = [0 0 a(3:datsize/4)];
[dump, contfrq(i,1)] = max(abs(a));
if dump < 6.4
contfrq(i,1) = 0;
end

end
[coef,s] = polyfit(0:datsize/2-1,contfrq’,1);

if (s.normr >= 6) | (coef(2) < 2.5)
disp(’Not a striped wall’);
else
if coef(1) < -0.01
disp(’looking from the right’);
end
if coef(1) > 0.01
disp(’looking from the left’);
end
if (coef(1) >= -0.01) & (coef(1) <= 0.01)
disp(’looking straight’);
end
end

ind = polyval(coef,datsize/4);
tanphi = tan(18%pi/180);
dist = (wavelen*(ind-1)) / tanphi;

disp([dist coef(1)]);
disp([coef s.normr dump]);

% Display it
set(cam_hd,’YData’,vis);
set(cam2_hd, ’YData’,vislin);
set(pli_hd,’YData’,contfrq’);
set(pl2_hd,’YData’,polyval(coef,0:datsize/2-1));
%while “finished
pause(0.5);
%end
end

45

% If no evalution possible, just display camera input
set (cam_hd,’YData’,vis);
end

comm_close;
close all % close windows
return

function [ret] = gamma_correct(vis,corrw,corrb)

avg = mean(vis);

vis = vis - avg;

vl = (vis > 0.1).*vis;
v2 = (vis <= -0.1) .*xvis;

if max(v1)>=0.1

vl = (vl./max(v1l)). corrw;
end
if min(v2)<=-0.1

v2 = (v2./min(v2)). corrb;
end

ret = vl - v2 + max(v2);
if max(ret) =0
ret = ret./max(ret);

end

return;

function [ret] = linear_interpolate(vis,fak)

ret = zeros(1l,length(vis)*fak);
for i=1l:length(vis)-1
d = (vis(i+1)-vis(i))/fak;

ret((i-1)*fak+1:ixfak) = linspace(vis(i),vis(i+1)-d,fak);
end

function reach_pos(dist,pos,err)
tomove = dist - pos;

if abs(tomove) > (err/2)
if (tomove>0.1)
tomove=0.1;
end
move (tomove*x1000,1) ;
end

46

return

function GUIsetup

% Defines the graphical user interface.
global GUI xxxh finished

global bck

bck=[1 1 1]1;

UILinit(’- Khepera Vision output’, 6, 16)
set(gcf,’Color’,[1 1 1])
xxxh=gcf;

UIpos(’rightmost’,’bottom’)

Uldir(’left’);

UIctrl(’cmdEnd’,’End’,’cmd’,’global finished; finished=1;’);
UIctrl(’cmdTurn’,’forward’,’cmd’,’move(10,1);’);
UIctrl(’cmdTurn’, ’backward’,’cmd’, ’move(-10,1);’);
UIctrl(’txtDist’, 20.107,’edit’);

UIfinish
return %GUIsetup

47

Bibliography

[1] GNU Texinfo pages for the C library on Unix and the like. Available from
the Free Software Foundation, any good FTP server and Linux distribution.

[2] Application Programming Interface Guide, Version 5. Online version found
in {Matlab installation directory}/help/pdf_doc/matlab/api/apiguide.pdf

[3] Minicom - An Open Source software package that implements several data
transfer protocols over modem lines amoung other things. Version 1.82.1
Homepage: <http://www.clinet.fi/~walker/minicom.html>

[4] The K-Team. Homepage: <http://www.k-team.com>

[5] Digital signal processing: principles, algorithms and applications / John
G. Proakis, Dimitris G.Manolakis. — 2nd Edition, 1992, Macmillan Pub-
lishing Company.

[6] Signal Processing Toolbox User’s guide / Thomas P. Krauss, Loren Shure,
John N. Little. — February 1994, The Mathworks Inc.

48

