
Learning Robotic Behaviors with Association Rules

THOMAS HELLSTRÖM
Department of Computing Science

Ume̊a University
901 87 Ume̊a
SWEDEN

thomash@cs.umu.se http://www.cs.umu.se/˜thomash

Abstract: - Intelligent robotics presents a number of interesting challenges for machine learning. In this
paper we look at the specific task of finding a mapping from stimuli to response for robots controlled by
reactive behaviors. The mapping will be represented by association rules which is a technique commonly
used in data mining but so far not very common in robotics. The approach for learning the association
rules is to record training data for a manually programmed controller. The data is then used to generate
a set of association rules that replaces the manually programmed controller and manages to reproduce
the demonstrated behavior. Techniques to deal with overlapping rules and no firing rules are suggested
and evaluated. The method is demonstrated with two examples: One simple wall follower behavior and
one more complex road sign problem with a mix of two wall following behaviors. The results show that
association rules are a very powerful and practical way to implement rule based controllers for reactive
robots.

Key-Words: - Learning robots, Association rules, Reactive behaviors, Intelligent robotics, Machine
learning, Autonomous robotics

1 Introduction

The field of Intelligent Robotics presents a num-
ber of interesting challenges for machine learning.
Learning problems can be formulated for a range
of tasks important for an intelligent robot. In
this paper we specifically look at the task of find-
ing a mapping from stimuli to response for robots
controlled by reactive behaviors. Commonly used
techniques in this context are fuzzy logic, neural
networks, genetic algorithms and reinforcement
learning.

The approach presented in this paper is based
on association rules [1]. Association rules have
been successfully used for data mining where the
goal is to explore complex data bases to find pat-
terns that might be useful for various purposes.
However, association rules have, to the author’s
best knowledge, so far not been used in published
research in learning robotics.

In this paper, the mapping from stimuli to re-
sponse is represented by association rules, which
are introduced in Section 2. The approach for
learning the association rules is to record training
data by observing a manually programmed con-
troller that runs the robot for simple tasks like

wall following. The training data is then used to
generate a set of association rules that replaces
the manually programmed controller. The gen-
eral method is described in Section 3. Results of
practical experiments are presented in Section 4,
including a simple wall following task and a more
complex road sign following behavior. Section 5
concludes the paper with a summary and conclu-
sions.

2 Association Rules

Association rules is a way of expressing dependen-
cies between items in databases [1]. Association
rules have the general form X ⇒ Y , where both
X and Y are sets of items. Given transactions
T ∈ D, where D is a database and each transac-
tion is a set of items, the rule X ⇒ Y expresses a
statistical correlation between X and Y. The rules
can be constructed according to different quality
measures for different purposes. The coverage of
the rule X ⇒ Y is defined as

coverage(X ⇒ Y ) = cover(X),

where cover(X) is defined as the number of trans-
actions containing all items in X, divided by the



size of the database. I.e., the coverage is the frac-
tion of transactions in the database that contain
all items in the left hand side X of the rule. The
support measures the fraction of transactions that
contain all items in both X and Y :

support(X ⇒ Y ) = cover(X ∪ Y ).

For some applications, the statistical correct-
ness of the correlation is critical. The important
measure for this quality is called strength. The
strength (sometimes also called confidence) of an
association rule X ⇒ Y is the proportion of the
transactions that contain X that also contain Y .
It can be computed as

strength(X ⇒ Y ) =
support(X ⇒ Y )
coverage(X ⇒ Y )

.

Coverage and support are of interest when es-
timating the significance of the strength, since
they quantify how many observations of X and
Y the computation of strength is based on. Some
applications are concerned with finding correla-
tions that reflect an underlying dependency be-
tween the measured, often physical, entities, i.e.
not only a statistical correlation. For example,
a rule LeftWallClose ⇒ NoFoodInSight may
have strength 0.95, meaning that the robot can
not see any food in 95% of all cases where it is
close to the left wall. However, such a rule is un-
likely to be of interest if the robot only sees food
in 5% of all cases. In such case the concepts lift
and leverage are useful. For a definition of these
concepts see [3].

3 the Learning Problem

In the experiments in this paper, control of the
robot is purely reactive and is defined by a con-
trol law B : S(t) → R(t), where S is the vector
of stimuli available at time t (a purely reactive
scheme involves only stimuli from the current time
t,) and R(t) is the response vector issued at time
t. B will be implemented as a rule base of rules
of the form S ⇒ R. S is a conjunction of boolean
expressions si = vi, where si is a discretized sen-
sor variable or derived expressions thereof and vi

is an integer value. R has the form y = a where
y is a discretized response variable and a is an
integer value. With this notation, a rule has the

general form

si = vi ∧ sj = vj ... ∧ sk = vk ⇒ y = a. (1)

In our experiment we are using a Khepera
robot with 8 infrared sensors IR0, IR1, .., IR7 to
measure distance to the closest obstacle. Each
sensor delivers an integer between 0 (correspond-
ing to a distance larger than the sensor range
which is about 4 cm.) and 1023 (corresponding
to a distance less than about 1 cm.). Each sen-
sor readout IRi is split into 3 ranges 0, 1, 2 and
represented by a discrete variable iri according to

iri =




0 if 0 ≤ IRi < 300 (long distance)
1 if 300 ≤ IRi < 900 (medium dist.)
2 if 900 ≤ IRi ≤ 1023 (short distance)

.

(2)
The robot has two wheels with independent

motor control such that both robot speed and
turning radius are controlled by setting the left
and right speed values vl and vr. vl and vr can be
set to integer values in the range [-127,127]. The
response y in our experiments is a coded combi-
nation of vl and vr according to:

y vl vr Action
3 −5 5 anti clockwise on the spot
2 0 5 anti clockwise around left wheel
1 2 5 soft anti clockwise
0 5 5 straight ahead
−1 5 2 soft clockwise
−2 5 0 clockwise around right wheel
−3 5 −5 clockwise on the spot

(3)
As an example, a rule for a left-wall-following

behavior may look like this:

ir1 = 0 ∧ ir2 = 1 ⇒ y = 1.

The rule should be interpreted as follows:

if 0 ≤ IR1 < 300 ∧ 300 ≤ IR2 < 900 then
vl = 2 and vr = 5.

In plain English this reads as:

if IR1 senses a long distance and IR2 senses a
medium distance then turn soft anti clockwise.



3.1 Extracting Rules

The rule base to control the robot will be gen-
erated from training data obtained by a manu-
ally programmed controller. A related, somewhat
more real-world approach, is to remote control
the robot to perform the required task. In either
way we obtain a set of stimuli/response pairs that
can be used to automatically generate a rule base.
This rule base will then replace the controller and
hopefully produce the same behavior as the man-
ually programmed controller. Each sample has
the form

ir0, ir1, ..., ir7, y (4)

where each iri is an infrared sensor readout and y
is the commanded velocity signals from the manu-
ally programmed controller. The rules we want to
find have the form defined in (1), where each term
is an attribute-value pair of the form s = v, where
s is a discretized sensor variable and v is an in-
teger value. Attribute-value pairs can replace the
item concept in the association rule framework
described in Section 2, and the rules (1) can be
viewed as a restricted form of all possible associ-
ation rules for the items in (4). By restricting the
right hand side of the rules to contain only the
y variable, the generated rules can be used for
control purposes since they express the mapping
S → R.

Algorithms that efficiently search large
databases for association rules have been previ-
ously developed [1]. We utilize a standard soft-
ware Magnum Opus, based on the OPUS al-
gorithm [5], to generate the association rules.
Like most algorithms for mining association rules,
OPUS performs a tree based search through the
space of all possible association rules with the
given left and right hand side terms. During
search, the algorithm can automatically filter out
rules that are likely to be of little interest. An as-
sociation rule is said to be insignificant if there is
another rule with the same right hand side, and a
subset of the left hand side for which the strength
of the former rule is not significantly higher that
the strength of the latter. A binomial test is used
to test for significance. With our settings, a rule
is rejected if the probability of obtaining the ob-
served coverage and support by chance would be
less than 0.05 if the data were a random sample
and the association’s true strength were that of
the more general rule.

The generated association rules are output
along with the quality measures coverage, support,
strength, lift and leverage (see Section 2 for defi-
nitions). In our experiments, the rules are sorted
by strength and the rules with the highest strength
are selected for the rule base in the controller. For
reference, all five quality measures are presented.

3.2 Building a Controller

The generated rules are implemented as a con-
troller in the robot. This is very simple in the
normal case. During execution, the sensed data
is matched with the left hand side of the rules. A
rule for which all terms si = vi in the left hand
side match the sensed data is said to fire. Three
cases can occur:

1. Exactly one rule fires. This case is easy. The
right hand side y = a of the rule is used to
control the robot.

2. More than one rule fires. The situation can
be viewed as command arbitration or com-
mand fusion, and different strategies are fea-
sible:

(a) One way to do command arbitration
is to select the rule with highest confi-
dence or strength (see Section 2). A
better alternative, judging from our
experiments, is to use a majority vote
among all rules that fire.

(b) Simple command fusion is possible for
scalar responses by computing the av-
erage response for all rules that fire.
A strength-weighted average is another
possibility. For discrete responses, the
average can be rounded to the nearest
discrete response value.

3. No rule fires. The task of finding a rule for
sensor data that lies outside all defined rules
can be viewed as a classification problem:
Which rule does the sample belong to? We
have successfully designed and implemented
a method called k-nearest rules, based on
the classification technique k-nearest neigh-
bors (kNN). By defining a distance between
the sensor data sample and the left hand
sides of the rules, the nearest rule can be de-
termined. This rule is then considered being



in a fire state, and the control signal is gen-
erated according to case 1 above. Applying
the algorithm with k > 1 is also possible
and will results in a case 2 situation. In the
experiments presented in this paper, k = 1
has been used. More information about this
technique can be found in [3].

Experimental results for the various cases and
approaches described above are presented in the
examples in the next section.

4 Experiments

The experiments will use the ”Programming by
Demonstration” paradigm common in robotics
In short, our experiments are divided into three
steps:

1. The robot is controlled either by a hu-
man teacher who remote control the robot,
or by a manually coded controller to per-
form a certain task. The sensor data S(t)
is recorded along with the commanded re-
sponse signal R(t).

2. The recorded data is used in a modeling,
where a control law B : S(t) → R(t) is cre-
ated. In our case B is represented by a rule
base with association rules as described in
Section 3.1.

3. The controller B is implemented in the
robot, which hopefully manages to perform
the demonstrated task autonomously.

4.1 Experiment 1

The first experiment will use a manually pro-
grammed controller to teach the robot a left-wall
following behavior. The pseudo code for the con-
troller is:

if IR1> 300
vl= 5; vr= −5

elseif IR0< 900
vl= 2; vr= 5

else
vl= 5; vr= 5

end

(5)

where vl and vr are the speed of the left and right
wheel respectively. The controller is run with a

cycle time of 0.1 seconds for 50 seconds. This re-
sults in 500 samples of training data, each sample
consisting of 8 sensor read-outs IR0, IR1, .., IR7

and one action y. These values are discretized as
described in (2) and (3). The data is then used
to automatically generate association rules. The
rules with highest strength are listed in Table 1
together with coverage, support, strength, lift and
leverage (refer to Section 2 for definitions).

A controller can be constructed from a sub-
set of the generated rules. Using only the 4 rules
with strength=1 gives a real-robot behavior that
is almost indistinguishable from the hand coded
original. This is a very satisfying result but makes
it hard to evaluate the algorithm details described
in Section 3.2. A quantitative and more objective
way of evaluating different strategies and settings
has therefore been adopted. Table 2 shows perfor-
mance for a number of different controllers with
different numbers of rules. The number of rules is
set by giving a lower limit for the strength value.
Each controller is evaluated on one row in the ta-
ble. The rules are applied to two data sets, the
500 samples big training data set which was used
to generate the rules, and a test data set which
consists of 1000 samples computed at a different
occasion. The etr and ete are the fraction of sam-
ples that gives incorrect action when compared to
the manually programmed controller 5.

The situations when more than one rule fires
are handled by computing the strength weighted
average action for the rules that fire. The situa-
tion when no rule fires is solved by the 1-nearest
rule method described in Section 3.2.

By demanding a strength value equal to 1.0,
4 rules are selected. The column labeled 0rule%
is the fraction of samples for which no matching
rule can be found in the controller’s data base.
These situations are handled by the 1-nearest rule
method. The 4 rule controller leaves 16.1% of the
samples not matched by any rule. The 1-nearest
rule handles this very well and results in 0.1% in-
correct actions on the test data set.

The column labeled 1rule% is the fraction of
samples which are covered by exactly one rule.
The rightmost 3 columns are the fractions of sam-
ples which are covered by 2, 3 and more than 3
rules respectively. These situations are handled



by computing the strength weighted average ac-
tion for the rules that cover the sample in ques-
tion. This average is then used as control sig-
nal. For strength=0.9, 11 rules are selected and
the number of samples not covered by any rule
is 0.0%. 60.9% of the samples are covered by 2
rules. The average of the rules that fire is used
as action, and the overall error increases to 7.6%.
Adding more rules to the controller’s data base
results in more ambiguity, and the error increases
as average actions for more and more rules are
computed.

The error for the training set is slightly lower
than for the test set for all controllers. This is
the normal behavior with many machine learning
techniques such as neural networks. However, the
difference is very small and there appears to be no
risk for overfitting the rule base, i.e. generating
rules that are only valid for the specific data in
the training data set.

An alternative strategy for resolving the situa-
tions when many rules fire simultaneously is eval-
uated in Table 3. A majority voting among the
rules that fire is used to generate the controller’s
action. The error for the 11-rules controller is
reduced from 7.6% to 1.1%. The errors for the
controllers with more rules are also significantly
reduced. The method with majority voting can
therefore be said to be superior to the strength
weighted average action method used in Table 2.

The function of the generated rules are often
hard to comprehend, even when they contain few
terms. A graphical presentation of the rules is
therefore informative. Figure 1 shows rules 1-5
from Table 1. These 5 rules reproduce the be-
havior of the hand coded controller in (5) and
also covers the input space completely. Referring
to the coding of sensors (2) and actions (3), the
function of the 5 rules can be understood. The
rules ir1 = 1 ⇒ y = −3 and ir1 = 2 ⇒ y = −3,
are responsible for sharp clockwise turns away
from the wall to the left of the robot. Note
that these rules cover the entire horizontal ir0

axis, since the rules themselves do not contain
the term ir0. The rule ir0 = 0 ∧ ir1 = 0 ⇒ y = 1,
is responsible for soft anti clockwise turns when
the robot loses contact with the wall. The rule
ir0 = 1 ∧ ir1 = 0 ⇒ y = 1, has the same func-
tion but for shorter distances measured by ir0.
Finally, the rule ir0 = 2 ∧ ir1 = 0 ⇒ y = 0, is

responsible for driving straight ahead, parallel to
the wall, when the robot is close to the wall but
not turned too much towards it.

4.2 Experiment 2

This experiment deals with the Road sign prob-
lem [4], in which the robot has to act on a road
sign it passed earlier. It is impossible to achieve
this in a purely reactive manner since the robot
has to choose between a left and a right turn de-
pending on past stimuli. The situation is illus-
trated in Figure 2.

Our approach is to let the robot act on pre-
processed sensor data with a perceptual decay [6].
The perception of a road sign remains even after
the stimuli has disappeared and slowly fades out
with time. In this way the behavior can still be
purely reactive since the memory is hidden in the
robot’s perception. This is indeed a simplification
of the original road sign problem, but it serves our
purpose well. The purpose of the experiment is
to see how a complex behavior can be modeled by
the rule base of automatically generated associa-
tion rules.

The behavior is manually coded as a switch-
ing between two controllers, a left-wall follower
and a right-wall follower. The switching occurs
when the robot encounters a road signs, describ-
ing the recommended way to go in the upcoming
junction. The road signs are constructed of small
bulbs attached to the walls of the robot’s maze.
The bulbs on the wall are sensed by the ambi-
ent light sensors on the Khepera robot. The sen-
sor for left and right bulb detection are denoted
ALl and ALr respectively. To make it possible for
the robot to act on a road sign that appears and
disappears before a junction, a virtual road sign
sensor RS is defined as:

RS =
{

2 if decay(ALl) > decay(ALr)
0 otherwise

. (6)

The decay function computes a perceptual de-
cay of the sensed road sign signal, and serves to
make the robot gradually forget about road signs
as time passes after the road sign has disappeared
out of sight for the robot. The RS sensor is a bi-
nary signal with the value 2 if the last seen road
sign was a left sign, and 0 otherwise. The percep-
tual decay is a slight side step from a pure reactive



design, but is a neat way of stretching the bor-
ders of the reactive paradigm when the robot’s
action has to depend on ”old” sensor data. In
our example, the RS signal will be added to the
8 infrared sensors ir0, ir1, .., ir7 as an additional
input, and will serve as a switch between the two
wall followers in the learning mode. The manu-
ally programmed controller performs a left/right
wall following task as described by the following
pseudo code:

if RS = 2
left-wall follower

else
right-wall follower

end

(7)

where the left-wall follower is the same as for Ex-
ample 1 and the right-wall follower is coded in a
mirrored fashion. In step 2 of the ”Programming
by Demonstration” method, RS is made avail-
able as an extra input in the search for associ-
ation rules, and should then (automatically) be
added as a high level condition that groups the
generated rules into two categories: left-wall fol-
lowing and right-wall following. Rules common
to both behaviors may of course be unaffected by
the value of the RS input.

The controller is run with a cycle time of 0.1
seconds for 100 seconds. This results in 1000 sam-
ples of training data, each sample consisting of
8 discretized sensor read-outs ir0−7, RS and one
discretized action y. The discretization is de-
scribed in (2) and (3). The data is then used to
automatically generate association rules. Table 4
shows performance in the same way as presented
for Example 1 above. Different numbers of rules
are selected depending on a lower set limit for the
strength value. Performance for the training data
set and, for a separately recorded 5000 samples
long test data set is presented. For strength= 1,
9.6% of the test data has sensor data such that
no rule fires. This is, as before, resolved by the 1-
nearest rule method. In 23.9% of the cases, two or
more rules fire at the same time. This is resolved
by majority voting among the rules that fire. It
is clear from the table that the best controller is
achieved from the 43 rules with strength� 0.95.
These rules give minimum error on both training
and test data. Furthermore, the number of cases
where no rule fires is reduced to zero when these
43 rules are used.

A comparison between the training set error
etr and test set error ete exhibits a difference that
would normally be diagnosed as overfitting. This
concept is largely ignored in the association rule
community [2], while it is very common in other
areas of machine learning. In our opinion, over-
fitting is a problem that has to be taken into
account also when generating association rules.
Acting on rules with very low strength or support
corresponds to adding more nodes to an artifi-
cial neural network, or adding higher degree terms
to a polynomial model. Simple techniques, such
as computing performance for both training data
and previously unseen test data should therefore
be a standard procedure when applying associ-
ation rules to most domains, in particular with
noisy data such as robot applications.

Table 5 shows that not all rules responsible
for turning (i.e. rules where y �= 0) contain the
RS variable as condition on the left hand side
of the rule. However, this is not necessarily in-
correct, since turning may occur not only when
performing a turn in a junction but also for wall
avoidance, which could be handled uniformly, re-
gardless of the road sign condition. When in-
stalled as a controller on a real Khepera robot,
the robot successfully manages to switch between
left and right wall following depending on road
marks placed along the route in the maze. Con-
siderably more rules are required to achieve a suc-
cessful behavior than was the case in the simple
task in Experiment 1. This is caused by the much
harder situation in the rule generation phase. All
learned rules for junction turning has to include
the RS variable. Even if accurate rules can be
generated, the coverage for these rules are rela-
tively low. For a more detailed analysis of the
road sign experiment, see [3].

5 Summary

We have demonstrated how association rules
can provide a powerful alternative for intelligent
robotic controllers. The presented technique au-
tomatically generates compact sets of rules that
successfully control physical robots in a simple
wall following task as well as in a more complex
road sign application. The situations when no
rule fires are resolved by the 1-nearest rule tech-
nique. The problem with overlapping rules is re-



solved with majority voting among all rules that
fire. This technique is shown to be superior to
using the strength weighted average action.

6 Acknowledgements

This work was financed by the Kempe Founda-
tions as part of their generous support of the
IFOR project. We acknowledge their support
gratefully.

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami.
Mining association rules between sets of items
in large databases. In P. Buneman and S. Ja-
jodia, editors, Proceedings of the 1993 ACM
SIGMOD International Conference on Man-
agement of Data, pages 207–216, Washington,
D.C., 26–28 1993.

[2] A. A. Freitas. Understanding the crucial
differences between classification and discov-

ery of association rules - a position paper.
SIGKDD Explorations, 2(1):65–69, 2000.

[3] T. Hellström. Association rules for learning
behavioral mappings in robotics. Technical
Report UMINF-03. ISSN-0348-0542, Depart-
ment of Computing Science Ume̊a University,
Ume̊a Sweden, 2003.

[4] F. Lin̊aker and H. Jacobsson. Mobile robot
learning of delayed response tasks through
event extraction: A solution to the road sign
problem and beyond. International Journal of
Computational Intelligence and Applications,
4(1):413–426, 2001.

[5] G. I. Webb. Opus: An efficient admissible al-
gorithm for unordered search. Journal of Ar-
tificial Intelligence Research, 3:431–465, 1995.

[6] B. B. Werger. Cooperation without deliber-
ation: A minimal behavior-based approach
to multi-robot teams. Artificial Intelligence,
110(2):293–320, 1999.

Table 1: Generated rule base for left wall follower. The 5 first rules are sufficient to emulate the wanted
behavior.

Rule No. Coverage Support Strength Lift Lev.
ir1 = 2 ⇒ y = −3 1 9 9 1.00 5.68 0.01
ir0 = 0 ∧ ir1 = 0 ⇒ y = 1 2 35 35 1.00 2.46 0.04
ir0 = 1 ∧ ir1 = 0 ⇒ y = 1 3 167 167 1.00 2.46 0.20
ir0 = 2 ∧ ir1 = 0 ⇒ y = 0 4 209 209 1.00 2.39 0.24
ir1 = 1 ⇒ y = −3 5 80 79 0.99 5.61 0.13
ir0 = 0 ∧ ir2 = 0 ⇒ y = 1 6 36 35 0.97 2.39 0.04
ir0 = 1 ∧ ir3 = 0 ∧ ir7 = 0 ⇒ y = 1 7 147 139 0.95 2.33 0.16
ir0 = 1 ∧ ir2 = 0 ∧ ir7 = 0 ⇒ y = 1 8 140 132 0.94 2.32 0.15
ir2 = 2 ⇒ y = −3 9 13 12 0.92 5.24 0.02
ir0 = 2 ⇒ y = 0 10 228 209 0.92 2.19 0.23

Table 2: Performance for left-wall follower. Strength weighted average actions are used when more than
one rule fires.

Strength #rules etr% ete% 0rule% 1rule% 2rules% 3rules% >3rules%
1.00 4 0.2 0.1 16.1 83.9 0.0 0.0 0.0
0.98 5 0.2 0.1 0.0 100.0 0.0 0.0 0.0
0.90 11 6.6 7.6 0.0 11.2 60.9 27.9 0.0
0.80 18 15.2 16.7 0.0 0.8 50.5 17.6 31.1
0.70 22 20.8 21.5 0.0 0.0 38.5 16.2 45.3



Table 3: Performance for left-wall follower. Majority voting is used when more than one rule fires.

Strength #rules etr% ete% 0rule% 1rule% 2rules% 3rules% >3rules%
1.00 4 0.2 0.1 16.1 83.9 0.0 0.0 0.0
0.98 5 0.2 0.1 0.0 100.0 0.0 0.0 0.0
0.90 11 1.4 1.1 0.0 11.2 60.9 27.9 0.0
0.80 18 4.0 4.3 0.0 0.8 50.5 17.6 31.1
0.70 22 6.4 6.9 0.0 0.0 38.5 16.2 45.3

0 1 2 3
0

1

2

3

ir
0

ir
1

ir
1
=2⇒ y=−3

ir
0
=0∧ ir

1
=0⇒ y=1 ir

0
=1∧ ir

1
=0⇒ y=1 ir

0
=2∧ ir

1
=0⇒ y=0

ir
1
=1⇒ y=−3

Figure 1: Graphical representation of rule 1-5 from Table 1. These 5 rules are automatically generated
and reproduce the behavior of the hand coded controller in program listing (5).

Table 4: Performance for road sign controller. Majority voting is used when more than one rule fires.
The error rate is much higher than for the simple wall following task. The difference between the
training error etr and test error ete is an indication of overfitting.

Strength #rules etr% ete% 0rule% 1rule% 2rules% 3rules% >3rules%
1.00 31 1.0 5.0 9.6 66.5 18.9 3.2 1.8
0.98 33 0.9 4.9 6.5 66.8 20.7 4.0 1.9
0.95 43 0.5 2.4 0.0 26.8 46.9 10.2 16.1
0.90 56 3.1 4.7 0.0 7.7 44.4 21.1 26.8
0.85 66 4.7 6.0 0.0 7.1 26.8 31.1 35.0
0.80 76 4.2 6.2 0.0 6.2 23.2 2.8 67.8
0.75 87 7.1 9.9 0.0 5.9 0.6 9.1 84.4
0.70 97 6.0 9.1 0.0 5.9 0.3 6.4 87.4



Turn Left ! Turn Right !

Goal

Robot

Figure 2: The road sign problem, adapted from [4], in which the robot has to decide on a left or right
turn in each junction, depending on the past stimuli from the road signs. Our approach is to add a
perceptual decay to the road sign perception. The robot switches between a left and right wall following
behavior.

Table 5: Part of generated rule base for road sign controller. The binary RS variable controls left and
right wall following.

Rule No. Coverage Support Strength Lift Lev.
ir1 = 2 ∧ ir2 = 2 ⇒ y = −3 1 4 4 1.00 13.70 0.00
ir0 = 1 ∧ ir1 = 2 ⇒ y = −3 2 4 4 1.00 13.70 0.00
ir1 = 2 ∧ RS = 2 ⇒ y = −3 3 6 6 1.00 13.70 0.01
ir0 = 1 ∧ ir2 = 1 ∧ ir6 = 1 ⇒ y = −3 4 3 3 1.00 13.70 0.00
ir1 = 1 ∧ RS = 2 ⇒ y = −3 5 67 67 1.00 13.70 0.06
ir2 = 2 ∧ ir3 = 0 ⇒ y = −3 6 2 2 1.00 13.70 0.00
ir2 = 1 ∧ ir6 = 2 ∧ ir7 = 1 ⇒ y = 3 7 2 2 1.00 10.53 0.00
ir4 = 2 ∧ ir6 = 1 ⇒ y = 3 8 7 7 1.00 10.53 0.01
ir4 = 2 ∧ ir7 = 1 ⇒ y = 3 9 2 2 1.00 10.53 0.00
ir2 = 1 ∧ ir4 = 1 ⇒ y = 3 10 26 26 1.00 10.53 0.02
ir1 = 1 ∧ ir4 = 2 ⇒ y = 3 11 4 4 1.00 10.53 0.00
ir0 = 1 ∧ ir4 = 2 ⇒ y = 3 12 2 2 1.00 10.53 0.00
ir4 = 2 ∧ RS = 0 ⇒ y = 3 13 25 25 1.00 10.53 0.02
ir3 = 2 ∧ RS = 0 ⇒ y = 3 14 32 32 1.00 10.53 0.03
ir0 = 2 ∧ ir1 = 0 ∧ RS = 2 ⇒ y = 0 15 94 94 1.00 4.13 0.07
ir4 = 0 ∧ ir5 = 2 ∧ RS = 0 ⇒ y = 0 16 148 148 1.00 4.13 0.11
ir1 = 2 ∧ RS = 0 ⇒ y = −1 17 8 8 1.00 3.89 0.01
ir1 = 2 ∧ ir2 = 0 ⇒ y = −1 18 6 6 1.00 3.89 0.00
ir0 = 1 ∧ ir5 = 1 ∧ ir6 = 1 ⇒ y = −1 19 3 3 1.00 3.89 0.00
ir0 = 1 ∧ ir6 = 1 ∧ RS = 0 ⇒ y = −1 20 3 3 1.00 3.89 0.00
ir0 = 1 ∧ ir7 = 1 ∧ RS = 0 ⇒ y = −1 21 7 7 1.00 3.89 0.01
ir0 = 2 ∧ RS = 0 ⇒ y = −1 22 13 13 1.00 3.89 0.01
ir3 = 0 ∧ ir5 = 1 ∧ ir6 = 0 ∧ RS = 0 ⇒ y = −1 23 116 116 1.00 3.89 0.09
ir4 = 0 ∧ ir5 = 1 ∧ RS = 0 ⇒ y = −1 24 142 142 1.00 3.89 0.11
ir4 = 1 ∧ RS = 2 ⇒ y = 1 25 13 13 1.00 3.00 0.01
ir1 = 0 ∧ ir2 = 2 ∧ RS = 2 ⇒ y = 1 26 101 101 1.00 3.00 0.07


