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Abstract

Intelligent robotics presents a number of interesting challenges for machine learning. In
this paper we look at the speci¯c task of ¯nding a mapping from stimuli to response for
robots controlled by reactive behaviors. The mapping will be represented by association rules
which is a technique commonly used in data mining but so far not very common in robotics.
The approach for learning the association rules is to record training data for a manually
programmed controller. The data is then used to generate a set of association rules that
replaces the manually programmed controller and manages to reproduce the demonstrated
behavior. Techniques to deal with overlapping rules and no ¯ring rules are suggested and
evaluated. The method is demonstrated with two examples: One simple wall follower behavior
and one more complex road sign problem with a mix of two wall following behaviors. The
results show that association rules are a very powerful and practical way to implement rule
based controllers for reactive robots.

1 Introduction
The ¯eld of Intelligent Robotics presents a number of interesting challenges for machine learning.
Learning problems can be formulated for a range of tasks important for an intelligent robot.
In this paper we speci¯cally look at the task of ¯nding a mapping from stimuli to response for
robots controlled by reactive behaviors. Commonly used techniques in this context are fuzzy logic
[20, 3, 9], neural networks [13, 25], genetic algorithms [15, 14, 18] and reinforcement learning [16].

The approach presented in this paper is based on association rules [1]. Association rules have
been successfully used for data mining where the goal is to explore complex data bases to ¯nd
patterns that might be useful for various purposes. Typical areas of application are market basket
analysis [1, 4], direct marketing [19], intrusion detection [11] and also scienti¯c applications such
as analysis of image data [17] and genome analysis [2]. However, association rules have, to the
author's best knowledge, so far not been used in published research in learning robotics.

In this paper, the mapping from stimuli to response is represented by association rules, which
are introduced in Section 2. The approach for learning the association rules is to record training
data by observing a manually programmed controller that runs the robot for simple tasks like
wall following. The training data is then used to generate a set of association rules that replaces
the manually programmed controller. The general method is described in Section 3. Results of
practical experiments are presented in Section 4, including a simple wall following task and a more
complex road sign following behavior. Techniques to deal with the situation when no rules ¯re are
discussed in Section 5. Section 6 contains suggestions for future research and Section 7 concludes
the paper with a summary and conclusions.
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2 Association Rules
Association rules is a way of expressing dependencies between items in databases [1]. Association
rules have the general form X ) Y , where both X and Y are sets of items. Given transactions
T 2 D; where D is a database and each transaction is a set of items, the rule X ) Y expresses a
statistical correlation between X and Y: The rules can be constructed according to di®erent quality
measures for di®erent purposes. The de¯nitions below follow the notation in [23].

The coverage of the rule X ) Y is de¯ned as

coverage(X ) Y ) = cover(X),

where cover(X) is de¯ned as the number of transactions containing all items in X; divided by the
size of the database. I.e., the coverage is the fraction of transactions in the database that contain
all items in the left hand side X of the rule.

The support measures the fraction of transactions that contain all items in both X and Y :

support(X ) Y ) = cover(X [ Y ):

For some applications, the statistical correctness of the correlation is critical. The important
measure for this quality is called strength. The strength (sometimes also called con¯dence) of an
association rule X ) Y is the proportion of the transactions that contain X that also contain Y .
It can be computed as

strength(X ) Y ) =
support(X ) Y )
coverage(X ) Y )

:

Coverage and support are of interest when estimating the signi¯cance of the strength, since
they quantify how many observations of X and Y the computation of strength is based on.

Some applications are concerned with ¯nding correlations that re°ect an underlying dependency
between the measured, often physical, entities, i.e. not only a statistical correlation. For example,
a rule LeftWallClose ) NoFoodInSight may have strength 0.95, meaning that the robot can not
see any food in 95% of all cases where it is close to the left wall. However, such a rule is unlikely
to be of interest if the robot only sees food in 5% of all cases. In such case the concepts lift and
leverage are useful. The lift is de¯ned as

lift(X ) Y ) =
support(X ) Y )

cover(X) ¢ cover(Y )
,

which is the ratio of the joint frequency of X and Y and the frequency that would be expected
if the two were independent. Values signi¯cantly higher or lower than 1 indicate a dependence
between X and Y . One problem with this de¯nition is that a rule with a high lift still may be of
little interest because it appears very infrequently. The concept leverage, de¯ned as

leverage(X ) Y ) = support(X ) Y ) ¡ cover(X) ¢ cover(Y )

is therefore often preferred since it measures the number of appearing transactions above or beyond
those that should be expected if one assumes independence.

In general, the process of ¯nding association rules has to deal with two problems [10]. First,
Algorithmic complexity. The number of possible rules grows exponentially with the number of
items in the database. Modern algorithms have been constructed to e±ciently prune the search
space based on given thresholds for quality measures on the rules. The second problem is to know
which of the generated rules, often many thousands, one should use once they are generated. Also
for this problem, di®erent quality measures are useful.

In this paper, all experiments utilize a standard software Magnum Opus [8] based on the OPUS
algorithm [21] to generate the association rules. A survey and comparison of algorithms for mining
association rules can be found in [10].
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3 Formulating the Learning Problem
In the experiments in this paper, control of the robot is purely reactive and is de¯ned by a control
law B : S(t) ! R(t), where S is the vector of stimuli available at time t (a purely reactive scheme
involves only stimuli from the current time t,) and R(t) is the response vector issued at time t.
B will be implemented as a rule base of rules of the form S ) R. S is a conjunction of boolean
expressions si = vi, where si is a discretized sensor variable or derived expressions thereof and vi
is an integer value. R has the form y = a where y is a discretized response variable and a is an
integer value. With this notation, a rule has the general form

si = vi ^ sj = vj ::: ^ sk = vk ) y = a: (1)

In our experiment we are using a Khepera robot (Figure 1) with 8 infrared sensors IR0; IR1; ::; IR7
to measure distance to the closest obstacle. Each sensor delivers an integer between 0 (correspond-

IR0

IR1

IR2 IR3

IR4

IR5

IR6IR7

Left engine Right engine

Figure 1: The Khepera robot used in all experiments. The infrared sensors react on re°ections
from walls closer then approximately 50mm. The two engines control speed and turning.

ing to a distance larger than the sensor range which is about 4 cm.) and 1023 (corresponding
to a distance less than about 1 cm.). Each sensor readout IRi is split into 3 ranges 0; 1; 2 and
represented by a discrete variable iri according to

iri =

8
<
:

0 if 0 · IRi < 300 (long distance)
1 if 300 · IRi < 900 (medium distance)
2 if 900 · IRi · 1023 (short distance)

: (2)

The robot has two wheels with independent motor control such that both robot speed and
turning radius are controlled by setting the left and right speed values vl and vr. vl and vr can
be set to integer values in the range [-127,127]. The response y in our experiments is a coded
combination of vl and vr according to:

y vl vr Action
3 ¡5 5 anti clockwise on the spot
2 0 5 anti clockwise around left wheel
1 2 5 soft anti clockwise
0 5 5 straight ahead
¡1 5 2 soft clockwise
¡2 5 0 clockwise around right wheel
¡3 5 ¡5 clockwise on the spot

(3)

As an example, a rule for a left-wall-following behavior may look like this:

ir1 = 0 ^ ir2 = 1 ) y = 1:

3



The rule should be interpreted as follows:

if 0 · IR1 < 300 ^ 300 · IR2 < 900 then vl = 2 and vr = 5:

In plain English this reads as:

if IR1 senses a long distance and IR2 senses a medium distance then turn soft anti clockwise:

3.1 Extracting Rules from Training Data
The rule base to control the robot will be generated from training data obtained by a manually
programmed controller. A related, somewhat more real-world approach, is to remote control the
robot to perform the required task. In either way we obtain a set of stimuli/response pairs that
can be used to automatically generate a rule base. This rule base will then replace the controller
and hopefully produce the same behavior as the manually programmed controller. Each sample
has the form

ir0; ir1; :::; ir7; y (4)

where each iri is an infrared sensor readout and y is the commanded velocity signals from the
manually programmed controller. The rules we want to ¯nd have the form de¯ned in (1), where
each term is an attribute-value pair of the form s = v; where s is a discretized sensor variable
and v is an integer value. Attribute-value pairs can replace the item concept in the association
rule framework described in Section 2, and the rules (1) can be viewed as a restricted form of all
possible association rules for the items in (4). By restricting the right hand side of the rules to
contain only the y variable, the generated rules can be used for control purposes since they express
the mapping S ! R:

Algorithms that e±ciently search large databases for association rules have been previously
developed [1, 10]. We utilize a standard software Magnum Opus, based on the OPUS algorithm,
to generate the association rules. Like most algorithms for mining association rules, OPUS performs
a tree based search through the space of all possible association rules with the given left and right
hand side terms. During search, the algorithm can automatically ¯lter out rules that are likely
to be of little interest. An association rule is said to be insigni¯cant if there is another rule with
the same right hand side, and a subset of the left hand side for which the strength of the former
rule is not signi¯cantly higher that the strength of the latter. A binomial test is used to test
for signi¯cance. With our settings, a rule is rejected if the probability of obtaining the observed
coverage and support by chance would be less than 0.05 if the data were a random sample and the
association's true strength were that of the more general rule. For more details refer to [22].

The generated association rules are output along with the quality measures coverage, support,
strength, lift and leverage (see Section 2 for de¯nitions). In our experiments, the rules are sorted
by strength and the rules with the highest strength are selected for the rule base in the controller.
However, for reference and completeness, all tables include all ¯ve quality measures.

3.2 Building a Controller
The generated rules are implemented as a controller in the robot. This is very simple in the normal
case. During execution, the sensed data is matched with the left hand side of the rules. A rule for
which all terms si = vi in the left hand side match the sensed data is said to ¯re. Three cases can
occur:

1. Exactly one rule ¯res. This case is easy. The right hand side y = a of the rule is used to
control the robot.

2. More than one rule ¯res. The situation can be viewed as command arbitration or command
fusion, and di®erent strategies are feasible:

(a) One way to do command arbitration is to select the rule with highest con¯dence or
strength (see Section 2). A better alternative, judging from our experiments, is to use
a majority vote among all rules that ¯re.
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(b) Simple command fusion is possible for scalar responses by computing the average re-
sponse for all rules that ¯re. A strength-weighted average is another possibility. For
discrete responses, the average can be rounded to the nearest discrete response value.

3. No rule ¯res. The task of ¯nding a rule for sensor data that lies outside all de¯ned rules
can be viewed as a classi¯cation problem: Which rule does the sample belong to? We
have successfully designed and implemented a method called k-nearest rules, based on the
classi¯cation technique k-nearest neighbors (kNN). By de¯ning a distance between the sensor
data sample and the left hand sides of the rules, the nearest rule can be determined. This
rule is then considered being in a ¯re state, and the control signal is generated according to
case 1 above. Applying the algorithm with k > 1 is also possible and will results in a case 2
situation. In the experiments presented in this paper, k = 1 has been used. The method is
described in more detail in Section 5.

Experimental results for the various cases and approaches described above are presented in the
examples in the next section.

4 Experiments
The experiments will use the "Programming by Demonstration" paradigm common in robotics.
An overview and survey can be found in [6]. In short, our experiments are divided into three steps:

1. The robot is controlled either by a human teacher who remote control the robot, or by a
manually coded controller to perform a certain task. The sensor data S(t) is recorded along
with the commanded response signal R(t).

2. The recorded data is used in a modeling, where a control law B : S(t) ! R(t) is created. In
our case B is represented by a rule base with association rules as described in Section 3.1.

3. The controller B is implemented in the robot, which hopefully manages to perform the
demonstrated task autonomously.

4.1 Experiment 1
The ¯rst experiment will use a manually programmed controller to teach the robot a left-wall-
following behavior. The pseudo code for the controller is:

if IR1> 300
vl= 5
vr= ¡5

elseif IR0< 900
vl= 2
vr= 5

else
vl= 5
vr= 5

end

(5)

where vl and vr are the speed of the left and right wheel respectively. The controller is run with
a cycle time of 0.1 seconds for 50 seconds. This results in 500 samples of training data, each sample
consisting of 8 sensor read-outs IR0; IR1; ::; IR7 and one action y. These values are discretized as
described in (2) and (3). The data is then used to automatically generate association rules. The
rules with highest strength are listed in Table 1 together with coverage, support, strength, lift and
leverage (refer to Section 2 for de¯nitions).

A controller can be constructed from a subset of the generated rules. Using only the 4 rules
with strength=1 gives a real-robot behavior that is almost indistinguishable from the hand coded
original. This is a very satisfying result but makes it hard to evaluate the algorithm details
described in Section 3.2. A quantitative and more objective way of evaluating di®erent strategies
and settings has therefore been adopted. Table 2 shows performance for a number of di®erent
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Table 1: Generated rule base for left wall follower. The 5 ¯rst rules are su±cient to emulate the
wanted behavior.

Rule No. Coverage Support Strength Lift Lev.
ir1 = 2) y = ¡3 1 9 9 1.00 5.68 0.01
ir0 = 0 ^ ir1 = 0) y = 1 2 35 35 1.00 2.46 0.04
ir0 = 1 ^ ir1 = 0) y = 1 3 167 167 1.00 2.46 0.20
ir0 = 2 ^ ir1 = 0) y = 0 4 209 209 1.00 2.39 0.24
ir1 = 1) y = ¡3 5 80 79 0.99 5.61 0.13
ir0 = 0 ^ ir2 = 0) y = 1 6 36 35 0.97 2.39 0.04
ir0 = 1 ^ ir3 = 0 ^ ir7 = 0) y = 1 7 147 139 0.95 2.33 0.16
ir0 = 1 ^ ir2 = 0 ^ ir7 = 0) y = 1 8 140 132 0.94 2.32 0.15
ir2 = 2) y = ¡3 9 13 12 0.92 5.24 0.02
ir0 = 2) y = 0 10 228 209 0.92 2.19 0.23
ir1 = 0 ^ ir2 = 1) y = 1 11 23 21 0.91 2.25 0.02
ir0 = 1 ^ ir2 = 0) y = 1 12 162 145 0.90 2.20 0.16
ir3 = 2) y = ¡3 13 9 8 0.89 5.05 0.01
ir0 = 1 ^ ir3 = 0) y = 1 14 177 156 0.88 2.17 0.17
ir4 = 1) y = ¡3 15 14 12 0.86 4.87 0.02
ir0 = 0) y = 1 16 42 35 0.83 2.05 0.04
ir0 = 1 ^ ir7 = 0) y = 1 17 176 145 0.82 2.03 0.15
ir1 = 0 ^ ir7 = 2) y = 1 18 11 9 0.82 2.02 0.01
ir0 = 1 ^ ir6 = 0) y = 1 19 198 158 0.80 1.97 0.16
ir2 = 0 ^ ir5 = 1) y = 0 20 29 22 0.76 1.81 0.02
ir0 = 1) y = 1 21 230 168 0.73 1.80 0.15
ir3 = 1) y = ¡3 22 55 40 0.73 4.13 0.06
ir2 = 1) y = ¡3 23 69 45 0.65 3.71 0.07
ir5 = 1) y = 0 24 41 23 0.56 1.34 0.01
ir6 = 1) y = ¡3 25 43 24 0.56 3.17 0.03
ir7 = 1) y = ¡3 26 55 30 0.55 3.10 0.04
ir1 = 0) y = 0 27 411 209 0.51 1.22 0.07
ir2 = 0) y = 0 28 418 207 0.50 1.18 0.06
ir1 = 0) y = 1 29 411 202 0.49 1.21 0.07
ir3 = 0) y = 0 30 436 205 0.47 1.12 0.05
ir7 = 0) y = 0 31 427 196 0.46 1.10 0.04
ir7 = 2) y = ¡3 32 18 7 0.39 2.21 0.01
ir0 = 1) y = ¡3 33 230 62 0.27 1.53 0.04

Table 2: Performance for left-wall follower. Strength weighted average actions are used when more
than one rule ¯res.

Strength #rules etr% ete% 0rule% 1rule% 2rules% 3rules% >3rules%
1.00 4 0.2 0.1 16.1 83.9 0.0 0.0 0.0
0.98 5 0.2 0.1 0.0 100.0 0.0 0.0 0.0
0.90 11 6.6 7.6 0.0 11.2 60.9 27.9 0.0
0.80 18 15.2 16.7 0.0 0.8 50.5 17.6 31.1
0.70 22 20.8 21.5 0.0 0.0 38.5 16.2 45.3

Table 3: Performance for left-wall follower. Majority voting is used when more than one rule ¯res.

Strength #rules etr% ete% 0rule% 1rule% 2rules% 3rules% >3rules%
1.00 4 0.2 0.1 16.1 83.9 0.0 0.0 0.0
0.98 5 0.2 0.1 0.0 100.0 0.0 0.0 0.0
0.90 11 1.4 1.1 0.0 11.2 60.9 27.9 0.0
0.80 18 4.0 4.3 0.0 0.8 50.5 17.6 31.1
0.70 22 6.4 6.9 0.0 0.0 38.5 16.2 45.3
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controllers with di®erent numbers of rules. The number of rules is set by giving a lower limit for
the strength value. Each controller is evaluated on one row in the table. The rules are applied to
two data sets, the 500 samples big training data set which was used to generate the rules, and a
test data set which consists of 1000 samples computed at a di®erent occasion. The etr and ete are
the fraction of samples that gives incorrect action when compared to the manually programmed
controller 5.

The situations when more than one rule ¯res are handled by computing the strength weighted
average action for the rules that ¯re. The situation when no rule ¯res is solved by the 1-nearest
rule method described in Section 3.2 and in more detail in Section 5.

By demanding a strength value equal to 1.0, 4 rules are selected. The column labeled 0rule%
is the fraction of samples for which no matching rule can be found in the controller's data base.
These situations are handled by the 1-nearest rule method. The 4 rule controller leaves 16:1% of
the samples not matched by any rule. The 1-nearest rule handles this very well and results in 0:1%
incorrect actions on the test data set.

The column labeled 1rule% is the fraction of samples which are covered by exactly one rule.
The rightmost 3 columns are the fractions of samples which are covered by 2, 3 and more than 3
rules respectively. These situations are handled by computing the strength weighted average action
for the rules that cover the sample in question. This average is then used as control signal. For
strength=0.9, 11 rules are selected and the number of samples not covered by any rule is 0:0%.
60:9% of the samples are covered by 2 rules. The average of the rules that ¯re is used as action,
and the overall error increases to 7:6%. Adding more rules to the controller's data base results in
more ambiguity, and the error increases as average actions for more and more rules are computed.

The error for the training set is slightly lower than for the test set for all controllers. This is the
normal behavior with many machine learning techniques such as neural networks. However, the
di®erence is very small and there appears to be no risk for over¯tting the rule base, i.e. generating
rules that are only valid for the speci¯c data in the training data set.

An alternative strategy for resolving the situations when many rules ¯re simultaneously is
evaluated in Table 3. A majority voting among the rules that ¯re is used to generate the controller's
action. The error for the 11-rules controller is reduced from 7:6% to 1:1%. The errors for the
controllers with more rules are also signi¯cantly reduced. The method with majority voting can
therefore be said to be superior to the strength weighted average action method used in Table 2.

The function of the generated rules are often hard to comprehend, even when they contain few
terms. A graphical presentation of the rules is therefore informative. Figure 2 shows rules 1-5 from
Table 1. These 5 rules reproduce the behavior of the hand coded controller in (5) and also covers
the input space completely. Referring to the coding of sensors (2) and actions (3), the function of
the 5 rules can be understood. The rules ir1 = 1 ) y = ¡3 and ir1 = 2 ) y = ¡3, are responsible
for sharp clockwise turns away from the wall to the left of the robot. Note that these rules cover
the entire horizontal ir0 axis, since the rules themselves do not contain the term ir0: The rule
ir0 = 0 ^ ir1 = 0 ) y = 1, is responsible for soft anti clockwise turns when the robot loses contact
with the wall. The rule ir0 = 1 ^ ir1 = 0 ) y = 1, has the same function but for shorter distances
measured by ir0. Finally, the rule ir0 = 2 ^ ir1 = 0 ) y = 0, is responsible for driving straight
ahead, parallel to the wall, when the robot is close to the wall but not turned too much towards
it.

4.2 Experiment 2
This experiment deals with the Road sign problem [12], in which the robot has to act on a road
sign it passed earlier. It is impossible to achieve this in a purely reactive manner since the robot
has to choose between a left and a right turn depending on past stimuli. The situation is illustrated
in Figure 3.

Our approach is to let the robot act on preprocessed sensor data with a perceptual decay [24].
The perception of a road sign remains even after the stimuli has disappeared and slowly fades out
with time. In this way the behavior can still be purely reactive since the memory is hidden in the
robot's perception. This is indeed a simpli¯cation of the original road sign problem, but it serves
our purpose well. The purpose of the experiment is to see how a complex behavior can be modeled
by the rule base of automatically generated association rules.

The behavior is manually coded as a switching between two controllers, a left-wall follower and
a right-wall follower. The switching occurs when the robot encounters a road signs, describing
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Figure 2: Graphical representation of rule 1-5 from Table 1. These 5 rules are automatically
generated and reproduce the behavior of the hand coded controller in program listing (5).

the recommended way to go in the upcoming junction. The road signs are constructed of small
bulbs attached to the walls of the robot's maze. The bulbs on the wall are sensed by the ambient
light sensors on the Khepera robot. The sensor for left and right bulb detection are denoted ALl
and ALr respectively. To make it possible for the robot to act on a road sign that appears and
disappears before a junction, a virtual road sign sensor RS is de¯ned as:

RS =
½

2 if decay(ALl) > decay(ALr)
0 otherwise : (6)

The decay function computes a perceptual decay of the sensed road sign signal, and serves to
make the robot gradually forget about road signs as time passes after the road sign has disappeared
out of sight for the robot. The RS sensor is a binary signal with the value 2 if the last seen road sign
was a left sign, and 0 otherwise. The perceptual decay is a slight side step from a pure reactive
design, but is a neat way of stretching the borders of the reactive paradigm when the robot's
action has to depend on "old" sensor data. In our example, the RS signal will be added to the 8
infrared sensors ir0; ir1; ::; ir7 as an additional input, and will serve as a switch between the two
wall followers in the learning mode. The manually programmed controller performs a left/right
wall following task and is described by the following pseudo code:
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Turn Left ! Turn Right !

Goal

Robot

Figure 3: The road sign problem, adapted from [12], in which the robot has to decide on a left or
right turn in each junction, depending on the past stimuli from the road signs. Our approach is to
add a perceptual decay to the road sign perception. The robot switches between a left and right
wall following behavior.

if RS = 2
if IR1> 300

vl= 5
vr= ¡5

elseif IR0< 900
vl= 2
vr= 5

else
vl= 5
vr= 5

end
else

if IR4> 300
vl= ¡5
vr= 5

elseif IR3< 900
vl= 5
vr= 2

else
vl= 5
vr= 5

end
end

(7)

where vi and vr are the speeds of the left and right wheel respectively. The upper block in the
code is the same as for Example 1, and performs a left-wall following behavior, while the lower
block performs a right-wall following behavior. In step 2 of the "Programming by Demonstration"
method, RS is made available as an extra input in the search for association rules, and should
then (automatically) be added as a high level condition that groups the generated rules into two
categories: left-wall following and right-wall following. Rules common to both behaviors may of
course be una®ected by the value of the RS input.

The controller is run with a cycle time of 0.1 seconds for 100 seconds. This results in 1000
samples of training data, each sample consisting of 8 discretized sensor read-outs ir0¡7;RS and
one discretized action y. The discretization is described in (2) and (3). The data is then used
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to automatically generate association rules. The rules with highest strength are listed in Table 4
together with strength and con¯dence.

Table 5 shows performance in the same way as presented for Example 1 above. Di®erent
numbers of rules are selected depending on a lower set limit for the strength value. Performance
for the training data set and, for a separately recorded 5000 samples long test data set is presented.
For strength= 1, 9:6% of the test data has sensor data such that no rule ¯res. This is, as before,
resolved by the 1-nearest rule method. In 23.9% of the cases, two or more rules ¯re at the same
time. This is resolved by majority voting among the rules that ¯re. It is clear from the table that
the best controller is achieved from the 43 rules with strength> 0:95. These rules give minimum
error on both training and test data. Furthermore, the number of cases where no rule ¯res is
reduced to zero when these 43 rules are used.

A comparison between the training set error etr and test set error ete exhibits a di®erence
that would normally be diagnosed as over¯tting. This concept is largely ignored in the association
rule community [7], while it is very common in other areas of machine learning. In our opinion,
over¯tting is a problem that has to be taken into account also when generating association rules.
Acting on rules with very low strength or support corresponds to adding more nodes to an arti¯cial
neural network, or adding higher degree terms to a polynomial model. Simple techniques, such as
computing performance for both training data and previously unseen test data should therefore be
a standard procedure when applying association rules to most domains, in particular with noisy
data such as robot applications.

Table 4 shows that not all rules responsible for turning (i.e. rules where y 6= 0) contain the RS
variable as condition on the left hand side of the rule. However, this is not necessarily incorrect,
since turning may occur not only when performing a turn in a junction but also for wall avoidance,
which could be handled uniformly, regardless of the road sign condition. When installed as a
controller on a real Khepera robot, the robot successfully manages to switch between left and
right wall following depending on road marks placed along the route in the maze. Considerably
more rules are required to achieve a successful behavior than was the case in the simple task in
Experiment 1. This is caused by the much harder situation in the rule generation phase. All
learned rules for junction turning has to include the RS variable. Even if accurate rules can be
generated, the coverage for these rules are relatively low.

Figure 4 shows rules 22 and 41 from Table 4. These rules are examples of how the system
learns how to act di®erently on the same sensor, depending on the value of the road sign variable
RS. The rule ir0 = 2 ^ RS = 0 ) y = ¡1, is responsible for soft clockwise turns away from the
left wall if it gets too close when in right-wall following mode. The rule ir0 = 0^RS = 2 ) y = 1,
is responsible for soft anti clockwise turns toward the left wall if it gets too far away from it when
in left-wall following mode.

4.3 Experiment 3
As previously mentioned, the ease by which a 5-rule controller can be automatically generated
in Example 1 is partly due to the favorable partitioning of the input space. This is illustrated
in Figure 5. The manually de¯ned rule borders (2) match the break points in the program (5)
exactly. This is of course an advantage when generating association rules to emulate the program,
and some rules get both high support and strength values. In this experiment we will therefore
approach the problem without any prior knowledge of the sensor characteristics or about the task
at hand. Each sensor readout IRi is split into 4 ranges 0; 1; 2; 3 and represented by a discrete
variable iri according to

iri =

8
>><
>>:

0 if 0 · IRi < 250 (very long distance)
1 if 250 · IRi < 500 (long distance)
2 if 500 · IRi · 750 (medium distance)
3 if 750 · IRi · 1023 (short distance)

: (8)

As before, the data is used to generate association rules. The resulting rule base is shown in
Table 6, and reveals that the situation is much harder with the blind partitioning. The strength
and also coverage of the found rules are much lower than in Table 3 for Example 1. The reason
for this is that the data for a speci¯c condition, such as "too close to left wall", more often gets
spread over boundaries in the partitioning of the input space. The performance for the generated
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Table 4: Generated rule base for road sign controller. The binary RS variable controls left and
right wall following.

Rule No. Coverage Support Strength Lift Lev.
ir1 = 2 ^ ir2 = 2) y = ¡3 1 4 4 1.00 13.70 0.00
ir0 = 1 ^ ir1 = 2) y = ¡3 2 4 4 1.00 13.70 0.00
ir1 = 2 ^ RS = 2) y = ¡3 3 6 6 1.00 13.70 0.01
ir0 = 1 ^ ir2 = 1 ^ ir6 = 1) y = ¡3 4 3 3 1.00 13.70 0.00
ir1 = 1 ^ RS = 2) y = ¡3 5 67 67 1.00 13.70 0.06
ir2 = 2 ^ ir3 = 0) y = ¡3 6 2 2 1.00 13.70 0.00
ir2 = 1 ^ ir6 = 2 ^ ir7 = 1) y = 3 7 2 2 1.00 10.53 0.00
ir4 = 2 ^ ir6 = 1) y = 3 8 7 7 1.00 10.53 0.01
ir4 = 2 ^ ir7 = 1) y = 3 9 2 2 1.00 10.53 0.00
ir2 = 1 ^ ir4 = 1) y = 3 10 26 26 1.00 10.53 0.02
ir1 = 1 ^ ir4 = 2) y = 3 11 4 4 1.00 10.53 0.00
ir0 = 1 ^ ir4 = 2) y = 3 12 2 2 1.00 10.53 0.00
ir4 = 2 ^ RS = 0) y = 3 13 25 25 1.00 10.53 0.02
ir3 = 2 ^ RS = 0) y = 3 14 32 32 1.00 10.53 0.03
ir0 = 2 ^ ir1 = 0 ^RS = 2) y = 0 15 94 94 1.00 4.13 0.07
ir4 = 0 ^ ir5 = 2 ^RS = 0) y = 0 16 148 148 1.00 4.13 0.11
ir1 = 2 ^ RS = 0) y = ¡1 17 8 8 1.00 3.89 0.01
ir1 = 2 ^ ir2 = 0) y = ¡1 18 6 6 1.00 3.89 0.00
ir0 = 1 ^ ir5 = 1 ^ ir6 = 1) y = ¡1 19 3 3 1.00 3.89 0.00
ir0 = 1 ^ ir6 = 1 ^RS = 0) y = ¡1 20 3 3 1.00 3.89 0.00
ir0 = 1 ^ ir7 = 1 ^RS = 0) y = ¡1 21 7 7 1.00 3.89 0.01
ir0 = 2 ^ RS = 0) y = ¡1 22 13 13 1.00 3.89 0.01
ir3 = 0 ^ ir5 = 1 ^ ir6 = 0 ^RS = 0) y = ¡1 23 116 116 1.00 3.89 0.09
ir4 = 0 ^ ir5 = 1 ^RS = 0) y = ¡1 24 142 142 1.00 3.89 0.11
ir4 = 1 ^ RS = 2) y = 1 25 13 13 1.00 3.00 0.01
ir1 = 0 ^ ir2 = 2 ^RS = 2) y = 1 26 101 101 1.00 3.00 0.07
ir4 = 2 ^ RS = 2) y = 1 27 133 133 1.00 3.00 0.09
ir0 = 1 ^ ir1 = 0 ^RS = 2) y = 1 28 128 128 1.00 3.00 0.09
ir1 = 0 ^ ir5 = 1 ^RS = 2) y = 1 29 43 43 1.00 3.00 0.03
ir5 = 2 ^ RS = 2) y = 1 30 107 107 1.00 3.00 0.07
ir0 = 0 ^ ir1 = 0 ^RS = 2) y = 1 31 205 205 1.00 3.00 0.14
ir4 = 1 ^ RS = 0) y = 3 32 71 70 0.99 10.38 0.06
ir2 = 2 ^ ir5 = 2) y = 1 33 60 59 0.98 2.95 0.04
ir3 = 2 ^ RS = 2) y = 1 34 133 130 0.98 2.94 0.09
ir5 = 0 ^ RS = 0) y = ¡1 35 117 114 0.97 3.79 0.08
ir1 = 0 ^ ir2 = 1 ^RS = 2) y = 1 36 35 34 0.97 2.92 0.02
ir0 = 1 ^ ir1 = 1) y = ¡3 37 33 32 0.97 13.28 0.03
ir2 = 2 ^ ir4 = 2) y = 1 38 99 96 0.97 2.91 0.06
ir2 = 0 ^ ir5 = 1 ^ ir6 = 0 ^RS = 0) y = ¡1 39 124 119 0.96 3.73 0.09
ir0 = 2 ^ ir1 = 0) y = 0 40 98 94 0.96 3.96 0.07
ir0 = 0 ^ RS = 2) y = 1 41 214 205 0.96 2.88 0.13
ir0 = 1 ^ ir1 = 0 ^ ir5 = 0) y = 1 42 133 127 0.95 2.87 0.08
ir4 = 0 ^ ir5 = 1) y = ¡1 43 149 142 0.95 3.71 0.10
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Table 5: Performance for road sign controller. Majority voting is used when more than one rule
¯res. The error rate is much higher than for the simple wall following task. The di®erence between
the training error etr and test error ete is an indication of over¯tting.

Strength #rules etr% ete% 0rule% 1rule% 2rules% 3rules% >3rules%
1.00 31 1.0 5.0 9.6 66.5 18.9 3.2 1.8
0.98 33 0.9 4.9 6.5 66.8 20.7 4.0 1.9
0.95 43 0.5 2.4 0.0 26.8 46.9 10.2 16.1
0.90 56 3.1 4.7 0.0 7.7 44.4 21.1 26.8
0.85 66 4.7 6.0 0.0 7.1 26.8 31.1 35.0
0.80 76 4.2 6.2 0.0 6.2 23.2 2.8 67.8
0.75 87 7.1 9.9 0.0 5.9 0.6 9.1 84.4
0.70 97 6.0 9.1 0.0 5.9 0.3 6.4 87.4

controllers are presented in Table 7. The error rates etr and ete are also much higher than in Table
3 for Example 1. However, by using the 19 rules with strength>0.70, the robot reasonably well
reproduces the left-wall following behavior, even if the error rate is as high as 27.1%.

Table 6: Generated rule base for left-wall follower. The input space is unformly partitioned into 4
parts.

Rule No. Coverage Support Strength Lift Lev.
ir7 = 3) y = ¡3 1 3 3 1.00 4.42 0.00
ir4 = 3) y = ¡3 2 4 4 1.00 4.42 0.01
ir1 = 2) y = ¡3 3 8 8 1.00 4.42 0.01
ir1 = 3) y = ¡3 4 16 16 1.00 4.42 0.02
ir1 = 1) y = ¡3 5 22 22 1.00 4.42 0.03
ir5 = 3) y = 1 6 11 11 1.00 1.98 0.01
ir0 = 0 ^ ir1 = 0 ^ ir2 = 0) y = 1 7 141 131 0.93 1.84 0.12
ir2 = 3) y = ¡3 8 20 18 0.90 3.98 0.03
ir0 = 3 ^ ir1 = 0) y = 0 9 92 80 0.87 3.22 0.11
ir0 = 0 ^ ir2 = 0) y = 1 10 151 131 0.87 1.72 0.11
ir0 = 0 ^ ir1 = 0) y = 1 11 158 136 0.86 1.71 0.11
ir3 = 3) y = ¡3 12 13 11 0.85 3.74 0.02
ir2 = 1) y = ¡3 13 26 21 0.81 3.57 0.03
ir0 = 1 ^ ir1 = 0) y = 1 14 136 107 0.79 1.56 0.08
ir0 = 2) y = 0 15 70 55 0.79 2.91 0.07
ir0 = 3) y = 0 16 104 80 0.77 2.85 0.10
ir0 = 0) y = 1 17 177 136 0.77 1.52 0.09
ir2 = 2) y = ¡3 18 4 3 0.75 3.32 0.00
ir0 = 1) y = 1 19 149 107 0.72 1.42 0.06
ir3 = 1) y = ¡3 20 13 9 0.69 3.06 0.01
ir1 = 0) y = 1 21 454 252 0.56 1.10 0.05

Some of the generated rules are graphically shown in Figure 5 together with the raw data. It
is obvious that it takes more rules to reproduce a behavior if the boundaries of the rules do not
coincide with the process that generates the behavior. Suggested methods to adjust the boundaries
are discussed in Section 6.

5 The k-nearest rules method
This section will describe the k-nearest rules method brie°y introduced in Section 3.2. The method
is used in cases when a certain sample does not match any of the rules in the rule base (i.e.: no
rule "¯res"). As mentioned before, the task of ¯nding a rule for such a sample can be viewed as
a classi¯cation problem: Which rule does the sample belong to? A distance measure between the
sample and the left hand sides of the rules will be de¯ned. The nearest rule is considered being
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Figure 4: Graphical representation of rules 22 and 41 from Table 4. The rules demonstrate how
the system learns how to act di®erently on sensor data depending on the road sign variable RS.

in a ¯re state, and the control signal is generated from the right hand side of that rule. Applying
the k-nearest rules technique with k>1 is also possible and will results in a situation similar to
case 2 described in Section 3.2. Multiple actions will then have to be fused into one, using either
arbitration or command fusion. In the experiments presented in this paper, k=1 is used. The
corresponding method is denoted the 1-nearest rule method.

The distance D(X;R) between a sample X : (X0; :::;Xn) and an association rule R : si =
vi ^ ::: ^ sj = vj ) y = a is de¯ned as

D(X;R) =
X

jxk ¡ vkj (9)

where the sum goes over all terms in R; and each xk is the discretized version of the sampled
variables in X, e.g. as de¯ned for the infrared sensors in (2). I.e., D is the sum of absolute

Table 7: Performance for left-wall follower. Majority voting is used when more than one rule ¯res.
The input space is unformly partitioned into 4 parts.

Strength #rules etr% ete% 0rule% 1rule% 2rules% 3rules% >3rules%
1.00 6 74.4 80.7 74.1 21.3 4.4 0.2 0.0
0.95 6 74.4 80.7 74.1 21.3 4.4 0.2 0.0
0.90 8 65.2 75.0 68.0 22.3 8.6 1.1 0.0
0.85 11 39.2 35.1 17.7 65.2 10.3 6.8 0.0
0.80 13 39.4 36.2 17.0 59.9 12.2 10.1 0.8
0.75 18 31.4 27.5 0.0 17.3 58.8 12.1 11.8
0.70 19 31.2 27.1 0.0 10.2 62.7 14.4 12.7
0.65 20 31.2 27.7 0.0 10.2 61.0 12.0 16.8
0.60 20 31.2 27.7 0.0 10.2 61.0 12.0 16.8
0.55 21 31.0 27.6 0.0 0.0 16.5 62.0 21.5
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Figure 5: Graphical representation of rule 1-5 from Table 1, with raw data plotted. The rule
borders coincide with the program that generated the data. This makes it relatively easy to ¯nd
rules that perform the wall following behavior.

di®erences for all terms in the rule. The idea is illustrated in Figure 7. A sample located anywhere
in the top row of the diagram will have the rule ir1 = 1 ) y = ¡3 as nearest neighbor (with D = 2),
and will therefore be assigned the action y = ¡3 by the 1-nearest rule algorithm. The advantage
with using discretized variables instead of raw data in the distance measure is that the e®ects of
non-linearities and scale di®erences between di®erent kinds of sensor signals are eliminated. A few
other types of distance measures have been tested, but the one in (9) gives best results, at least
for the tested examples.

The distance D will only take integer values ¸ 0, and many rules in the controller's rules base
may have the same distance to a certain sample. In Example 3 with 6 rules, 74.1% of the samples
have no rule matching them. With the 1-nearest rule method and distance measure (9), 95% of the
samples have a unique nearest rule. However, this might be application dependent and techniques
to deal with ambiguous nearest rules are among the suggestions for further research mentioned
in Section 6. The method used in the examples in this report, handle ambiguous nearest rules
by picking the one with highest strength (also this may very well be ambiguous, especially for
strength=1).

6 Suggested Continued Research
From the examples presented above, we can conclude that the error in the controllers drops signif-
icantly when enough number of rules are included to cover the entire active input space, and thus
reduce the 0rule% cases to 0. This is an indication that the 1-nearest rule technique is inferior to
adding more, possibly less accurate, rules to cover the input space. However, the 1-nearest rule
technique is useful in situations when enough rules can simply not be generated from the sampled
data, and some kind of method to generate an action has to be applied. As mentioned in the
previous section, ways to deal with ambiguous nearest rules have to be further investigated, as well
as other distance measures. Totally di®erent ways to generate an action when no rule covers the
sensor data is also a suggested topic for future research.

The successful result with a 5-rule controller being able to reproduce the wall following behavior
is partly caused by the favorable choice of discretization of the input space (2). The attempt with
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Figure 6: Graphical representation of the rules 5, 9 and 11 from Table 6, with raw data plotted.
The rule borders do not coincide with the program that generated the data. This makes it necessary
to use more rules to achieve the wall following behavior.

uniform discretization in Example 3 clearly shows this fact, but still results in controllers that
successfully reproduce the wall following task, even if the required number of rules gets higher. An
interesting continuation of this work is to develop techniques for tuning the generated rules such
that the borders in the partitioning become optimized (either on the rule base, rule or variable
level).

The proposed technique with association rules to represent stimuli ! respons mappings for
reactive robots resembles fuzzy logic controllers in many respects. While not including any fuzzy
elements, the association rules have the same form (1) as fuzzy rules commonly used in reactive
control [20, 9]. One can easily imagine extending the association rules to fuzzy counterparts. This
has already been proposed for association rules in general [5], and the same techniques could be
adapted to suit robotics applications. However, the algorithms for generation of ordinary crisp
association rules are indeed powerful, and manage to mine data with high dimensionality and huge
amounts of data records. The crisp association rules should therefore be good starting points for
generation of fuzzy rules. A proposed continuation of the presented work is to look at ways of
fuzzifying the border lines in the discrete association rules.

Finally, association rules have possible applications in many other areas in the ¯eld of intelligent
robotics. In this paper we have focused on ¯nding stimuli-response mappings of the form S ! R:
This is a restricted form of association rules and does not express the full applicability of the
technique. The more general form X ) Y , where both X and Y are conjunctions of items can be
used for a number of interesting learning tasks such as

² How the robot interacts with the world

² Common patterns in the robot's actions

² Common patterns in the robot's perception of the world

² How the robot perceives the world

² How the world evolves in time

² How innate or hard coded behaviors work
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Figure 7: Illustration of the distance measure used for the k nearest rules method. Assuming a
rule base with the 3 shown rules, a sample located anywhere in the top row of the diagram has
the rule ir1 = 1 ) y = ¡3 as nearest neighbor and will therefore be assigned the action y = ¡3
by the 1-nearest rule algorithm.

7 Summary
We have demonstrated how association rules can provide a powerful alternative for intelligent
robotic controllers. The presented technique automatically generates compact sets of rules that
successfully control physical robots in a simple wall following task as well as in a more complex road
sign application. The situations when no rule ¯res are resolved by the 1-nearest rule technique.
The problem with overlapping rules is resolved with majority voting among all rules that ¯re.
This technique is shown to be superior to using the strength weighted average action. A number
of areas in intelligent robotics are suggested as suitable for using association rules. Much remains
to be done to exploit these possibilities.
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