Data Snooping in the Stock Market

The Second International School on Actuarial and Financial Mathematics **Kyiv Ukraine** 10th of June 1999

> Thomas Heliström University of Umeå Sweden

http://www.cs.umu.se/~thomash/ email: thomash@cs.umu.se

Thomas Hellström

- # "Industrial" background:
- Ionospheric research at EISCAT
- Product development in my own company Seapacer AB
 - Optimisation and Control computers for ferries
 - Real-time data analysis
- Teaching Artificial Intelligence at the Department of Computing Science, Umeå University, Sweden
- Research interests: Stock predictions, Computational intelligence

Contents

- ✓ Common viewpoints
- ✓ What data are we using
- Two formulations of the Prediction task
- Benchmarks
- ✔ Performance measures
- Data snooping
- Guidelines

What's so Special about **Predictions of Stock Time Series?**

Θ

✔ A hard problem! Is it even possible?

✓ Looks very much like a random walk!

- ✓ The process is "regime shifting". The markets move in and out of periods of "turbulence", "hause" and "baise". Hard for traditional algorithms!
- The evaluation of predictability is extremely hard! When have we learned and when have we memorized?

A successful prediction algorithm does not have to provide predictions for all points in the time series. Can we predict predictability?

Two viewpoints

The Efficient Market Hypothesis: "The price reflects all available! information. Prediction is therefore impossible!" You might as well look into a crystal ball!"

The Market Professional: "By utilizing our advanced methods we can predict much better than our competitors'

What Does the Data Look Like?

Clear Trending behaviour in two time series

Technical Analysis: Triangles

300 Upper Break out. BUY!
250 100 200 300 400 500 600
day number

Does the Dow Jones index Follow a Random Walk?

750

650

250 x 450 x 500 x 500 x 500 x 500

350

- Normal distribution is a consequence of pure random walk. Statistics for daily changes
 Dow. Jones 1984-1996:
- Dow Jones 1984-1996: Mean=0.05% Std. dev.=1.1
- Question

How often can we expect a crash like November 1987 (-28% in one day)?

	P(R <r)< th=""><th>Years between events</th><th>No. of real obs.</th></r)<>	Years between events	No. of real obs.
O	5.00E-01	0	1063
-1	2.00E-01	0	201
-2	4.00E-02	0	56
-3	4.00E-02	1	19
-4	2.00E-04	23	9
-5	4.00E-06	982	3
-6	5.00E-08	88244	3
-7	3.00E-10	20,000,000	1
-8	6.00E-13	7000,000,000	1
-9	7.00E-16	6000,000,000,000	1

Data Available in Technical Analysis

Only historical price information:

For each day:

滦"Close": Last paid ☆"High": Highest paid 滦"Low": Lowest paid

※"Volume" : Number of traded stocks

Derived entities:

溦"Return" : (Close(T) - Close(T-1)) / Close(T) 溦"Volatilitet": standard deviation for "Return"

in a window backwards

10

© Thomas Helseröm 1999

Chart of Technical Analysis

Derived Entities

$$R_{k}(t) = \frac{Close(t) - Close(t-k)}{Close(t-k)} \approx log \left(\frac{Close(t)}{Close(t-k)}\right)$$

✓ Moving average of order k:

$$mav_{y,k}(t) \equiv \frac{1}{k} \sum_{i=0}^{k-1} y(t-i)$$

The time series *y* can be, for example, Close, High, Low or Volume

D Ti omas Helsiróm 1999

Derived Entities

${m arepsilon}$ Volatility (standard deviation of the log returns) :

$$V = \sqrt{\frac{1}{N-1} \sum_{t=1}^{N} In \left(\frac{Close(t)}{Close(t-1)} \right) - m}$$
 where

$$m = \sqrt{\frac{1}{N} \sum_{t=1}^{N} In \left(\frac{Close(t)}{Close(t-1)} \right)}$$

© Thomas Hells:röm 1999

13

Data in Fundamental Analysis

- 1) The general economy
 - Inflation
 - Interest rates
 - Trade balance etc.
- 2) The condition of the industry
 - Other stocks' prices, normally presented as indexes
 - The prices of related commodities such as oil, metal prices, and currencies
 - The value on competitor stocks

© Thomas Hellström 1999

14

Data in Fundamental Analysis

3) The condition of the company

- p/e: Stock price divided by last 12 months earning per share
- Book value per share: Net assets (assets minus liabilities) divided by total number of shares
- Net profit margin: Net income divided by total sales
- Debt ratio: Liabilities divided by total assets
- Prognoses of future profits
- Prognoses of future sales

15

Two Formulations of the Prediction Task

Methods with a fixed prediction horizon

- "The Time Series Approach"
- "The Trading Rule Approach"

Problem:

We don't necessarily intend to sell the stocks \boldsymbol{h} days after we bought them

No fixed prediction horizon:

- Simulated trading with buy- and sell-rules Problem:

Fewer points gives lower statistical significance

© Thomas He**l**sira

16

The Time Series Approach

Detrend the prices by computing "returns":

$$y(t) = \frac{\text{Close}(t) - \text{Close}(t-k)}{\text{Close}(t-k)}$$

Find a function g:

$$g(y(t), y(t-1),...,y(t-k)) \approx y(t+h)$$

Minimize the RMSE:

$$P_h(t) = \sqrt{\frac{1}{N} \sum_{t=1}^{N} (g(t) - y(t+h))^2}$$

Example of "Bias" for the Choice of the Function g:

Linear AR model:

$$y(t+h) \approx \sum_{i=0}^{k} W_i y(t-i)$$

Nonlinear neural network:

$$y(t+h) \approx \phi \left(\sum_{j} W_{j} \phi \left(\sum_{i=0}^{k} W_{i,j} y(t-i) \right) \right)$$

17

18

Feed-Forward Neural Network

- ✓ Input layer with 4 inputs
- ✓ Two Hidden layers with 3 and 5 nodes

✓ Output layer with 1 output node

The weights w are computed to minimize

$$\left| \, E \, \right| = \sqrt{ \frac{1}{N-4} \sum_{t=4}^{N-1} \left(g_w(t) - y(t+1) \right)^2 }$$

© Thomas Helk: röm 1999

Recurrent Neural Network

- ✔ Feedback to input layer
- ✓ The hidden layer stores previous values and can reconstruct the dynamics

The weights w are computed to minimize:

$$|E| = \sqrt{\frac{1}{N} \sum_{t=1}^{N-1} (g_w(t) - y(t+1))^2}$$

© Thomas Hels:röm 1999

20

Drawbacks of the Time Series Approach

The RMSE measure and the profit made by applying the prediction algorithm have different maxima.

- # The RMSE treats all predictions, small as large, equally
- The RMSE penalizes a large change in the same direction as the predicted change

Thomas Hells:röm 1999

21

The Trading Rule Approach:

 $T(t) = \begin{cases} \textbf{Buy} & : g(\textbf{X}(t)) > 0 \\ \textbf{Sell} & : g(\textbf{X}(t)) < 0 \\ \textbf{Do nothing} & : \textbf{otherwise} \end{cases}$ $\textbf{X}(t) = (\textbf{R}_1(t), ..., \textbf{R}_N(t))$

X can be:

Past values of C,H,L,V or derived entities: Volatility, Trend, ...

Learning Task:

Find a function g that gives the best performance at a fixed prediction horizon OR when applying the trading rule T

Drawback:

Statistical significance;

The Buy and Sell signals are << N

Till C

22

Technical Indicators

The tools for Technical trading include principles such as:

- The trending nature of prices
- Volume mirroring changes in price
- Support/Resistance

✓ Examples:

- Moving averages
- Formations such as triangles
- RSI the relation between the average upward price change and the average downward price change within a time window normally 14 days backwards

Example of a Technical Indicator

$$T(t) \ = \begin{cases} \textbf{Buy} & : g(\textbf{X}(t)) > 0 \\ \textbf{Sell} & : g(\textbf{X}(t)) < 0 \\ \textbf{Do nothing} & : \textbf{otherwise} \end{cases}$$

$$g \equiv \Delta (sign(mav_{C,50}(t) - mav_{C,100}(t)))$$

$$\Delta v(t) \equiv v(t) - v(t-1)$$

$$mav_{C,k}(t) \equiv \frac{1}{k} \sum_{i=0}^{k-1} Close(t-i)$$

Benchmarks

✓ Naive prediction of stock prices:

Close'(t)=Close(t-1)

✓ Naive prediction of returns:

$$R'(t) = R(t - 1)$$

The naive predictors are local minimum in many models e.g AR-models (but also Neural Networks):

$$R'(t) = \sum_{i=1}^{K} a_i R(t - i)$$

✓ Buy and hold:

Buy at day 1 and sell at day N. For multi-stock predictions or portfolio management: Buy and hold of a index (Dow Jones, FTSE, DAX etc.)

27

28

Another Relevant Benchmark

How often is this guy as successful as we are?

Performance Measures

✓ Theil coefficient:

Compares the RMSE (root mean square error) for our predictions with the naive price predictions

Predicting {Close(t), t=1,N} with {Close'(t), t=1,N}

$$T = \frac{\sqrt{\sum_{i=1}^{N} \left(\text{ Close(t)} - \text{Close' (t)} \right)^2}}{\sqrt{\sum_{i=1}^{N} \left(\text{ Close(t)} - \text{Close(t - 1)} \right)^2}}$$

T<1 for real predictive power

Performance Measures

✓ Directional prediction "Hit rate"

Predicting $\{R(t), t=1,N\}$ with $\{R'(t), t=1,N\}$

$$H = \frac{\left| \left. \left\{ t \mid R(t)R' \left(t \right) > 0, \, t = 1, N \right. \right\} \right|}{\left| \left\{ t \mid R(t)R' \left(t \right) \neq 0, \, t = 1, N \right. \right\} \right|}$$

For the naive return predictor:

$$H_{N} = \frac{\left|\left.\left\{\,t\,\left|R(t)R(t\,\,\text{-}\,1)>0,\,t=1,N\,\,\right.\right\}\right|}{\left|\left.\left\{\,t\,\left|R(t)R(t\,\,\text{-}\,1)\neq0,\,t=1,N\,\,\right.\right\}\right|}$$

✓ Normalized hit rate:

$$H_0 = \frac{H}{H_N}$$
 $H_0 > 1$ for real predictive power

Performance Measures

Mean profit per trading day:

✓ Fixed horizon predictions C'(t) of the close price C(t). A trade is assumed at every time step, in the direction of the predicted change:

$$100 \frac{1}{h} \frac{1}{N-h} \sum_{t=h+1}^{N} sign(C'(t)-C(t-h)) \frac{(C(t)-C(t-h))}{C(t-h)}$$

Benchmark: Mean daily return for a Buy and Hold strategy

Mean profit per year:

✓ Trading simulation: — "Run" the trading and compute the mean profit Benchmark: Annual returns for Buy and Hold on index

30

What Is a Reasonable Goal?

- Efficient market hypothesis implies random walk, which is impossible to predict!
- ✓ Published research (with proper evaluation) often shows about <u>54%</u> hit rate. I.e: correct prediction of the sign of the future return y(t+h).
- ✔ Even 54% real hit rate is enough to make a fortune!
- Compare with a casino: They don't know what number comes up next, they just improve the odds by adding the 0 and 00.

©71 cmus Wills room 1999

Data Snooping with the Time Series Approach

- ✓ We are predicting a stock with equal numbers of moves up and down during one year of 250 trading days.
- ✔ Apply a totally random prediction algorithm on each day
- ✓ What is the probability that the hit rate>54%?

The distribution for number of hits is given by:

$$P(H = x) = {250 \choose x} 0.5^{x} 0.5^{250-x}$$

 $P(H > x) = 1 - P(H \le x) = 1 - binocdf(x,250,0.5)$

x=0.54*250=135 gives P(H>135)=0.092

I.e.There is a 9% risk that a random algorithm gives 54% hit rate.

32

Data Snooping with the Trading Rule Approach

- ✓ We want to compare 100 indicators, each producing Sell and Buy signals once a week on average. The test period is 10 years! We demand 55% hit rate!
- ✔ Apply 100 totally random indicators on each week of data.
- $\ensuremath{\boldsymbol{\nu}}$ The probability that one specific indicator gets more than x hits is:

$$P(H > x) = 1 - P(H \le x) = 1 - binocdf(x,500,0.5)$$

P(H>0.55*500)=0.0112

The probability that ANY one of the 100 indicators produces 55% hit rate is 1-minus the probability that all are less than 55%:

$$1 - (1 - 0.0112)^{100} = 0.68$$

l.e: The probability for a type II error (accepting a false hypothesis) is 68%.

omis Hellardm 1999

Evaluating Performance

Algorithm evaluation is part of the learning process because it involves searching and selecting the best performing algorithm.

Therefore:

33

35

- ✓ It must be done "in sample" and not on the test set.
 Best: A final test on data that didn't exist at the time of the development of the algorithm
- ✓ It is sensitive to "over training".
- ✔ Be aware of the data-snooping problem!

© Thomas Helstrim 1999

34

Some Guide Lines for Developing Prediction Algorithms

- ✓ Ensure high data quality. Watch out for outliers
- ✓ Handle missing data correctly
- When predicting one-step ahead, make sure this is what you are really doing. "off-by-one" errors are seldom more fatal than in financial predictions.

Some Guide Lines for Evaluating Prediction Algorithms

- ✓ Evaluate on previously non-used data!
- ✓ Use a lot of data; many stocks and long time periods
- ✓ Compute annual performance results
- ✓ Test the algorithm on random-walk data
- ✓ For comparison: test a random algorithm on the data

Troms Helprim 1999