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What's so Special about

Contents . . .
Predictions of Stock Time Series?
0 Common viewpoints O A hard problem! Is it even possible?
O What data are we using O Looks very much like a random walk! L

O The process is “regime shifting”. The markets move

0 Two formulations of the . ! . - ”

L in and out of periods of "turbulence”, "hause” and

Prediction task “baise”’. Hard for traditional algorithms!
0 Benchmarks 0 The evaluation of predictability is extremely hard!
0O Performance measures When have we learned and when have we
. ized?

0O Data snooping memorized
0 Guidelines ®

O A successful prediction algorithm does not have to
provide predictions for all points in the time series.

Can we predict predictability?
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ﬁ\/ What Does the Data Look Like?

Clear Trending behaviour in two time series

Two viewpoints|

Stock price

The Market Professional:

“By utilizing our advanced
methods we can predict
much better than our
competitors”

The Efficient Market Hypothesis:
“The price reflects all available
information. Prediction is
therefore impossible!”

You might as well look into a
crystal ball!””

100 200 300 400 500 600 700
day number
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Technical Analysis: Triangles

Clear Trending behaviour in two time series
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Does the Dow Jones index Follow a Random Walk?

Normal density function m=0.051 s=1.132

of pure random walk. Statistics for
daily changes

/ \ Dow Jones 1984-1996:
Mean=0.05% Std. dev.=1.1

* Question:

November 1987 (-28% in one day) ?

7 E
Daily change r (%)

r P(R<r) Years between events No. of real obs.
0 5.00E-01 o 1063
-1 2.00E-01 o 201
-2 4.00E-02 o 56
-3 4.00E-02 1 19
-4 2.00E-04 23 )
-5 4.00E-06 982 3
-6 5.00E-08 88244 3
-7, 3.00E-10 20,000,000 1
-8 6.00E-13 7000,000,000 1
-9 7.00E-16 6000,000,000,000 1
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Chart of Technical Analysis
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« Normal distribution is a consequence

How often can we expect a crash like

11

Ooops!

?{Trendmg behaviour in two time series
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Data Available in Technical Analysis

Only historical price information:
For each day:

3% Close”

*”High”

4 Low’

"Volume”

: Last paid

: Highest paid

: Lowest paid

: Number of traded stocks

Derived entities:
%”Return” : ( Close(T) - Close(T-1) ) / Close(T)
%”Volatilitet”: standard deviation for "Return”

in a window backwards
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Derived Entities

O k-day Returns:

Close(t)- Close(t —k) ~lo EtCIose(t)
Close(t —k) lose(t—k)

R.(t) =

0 Moving average of order k:
1 .
mav . (t) = K Z y(t—i)
=

The time series y can be, for example,
Close, High, Low or Volume
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Derived Entities

0 Volatility (standard deviation of the log returns) :

I Close(t)
v S e oeel

where

i Close(t)
m= ﬁ[; ln%lose(t—l)%

13

© Tharmas Hellstrom 1999

Data in Fundamental Analysis

3) The condition of the company

« p/e: Stock price divided by last 12 months
earning per share

* Book value per share: Net assets (assets
minus liabilities) divided by total number of
shares

* Net profit margin: Net income divided by total
sales

« Debt ratio: Liabilities divided by total assets
* Prognoses of future profits
* Prognoses of future sales

15
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The Time Series Approach

Detrend the prices by computing “returns”:
Close(t)- Close(t-k
(= Close® (t-K)
Close(t-k)

Find a function g:
gy(®), y(t-1),....y(t-k)) = y(t + h)

Minimize the RMSE:

Rt = \/; Z (0 - y(t+h)y

17
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Data in Fundamental Analysis

1) The general economy
« Inflation
¢ Interest rates
» Trade balance etc.

2) The condition of the industry
» Other stocks’ prices, normally presented as
indexes

» The prices of related commodities such as oil,
metal prices, and currencies
* The value on competitor stocks
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Two Formulations of the Prediction Task
Methods with a fixed prediction horizon
- "The Time Series Approach”
- "The Trading Rule Approach”

Problem:
We don’t necessarily intend to sell the stocks / days

after we bought them

No fixed prediction horizon:
- Simulated trading with buy- and sell-rules
Problem:
Fewer points gives lower statistical significance

16
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Example of “Bias”
for the Choice of the Function g:

Linear AR model:
k -
y(t+h)==_=ZOWi y(t-i)

Nonlinear neural network:

yit+h)=0 s WS Wy(t-ifi

18
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Feed-Forward Neural Network

O Input layer with 4 inputs
0 Two Hidden layers with 3 and 5 nodes
0 OQutput layer with 1 output node

The weights w are computed to minimize

E[= e Y @, 0~y Dy

19
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Drawbacks of the Time Series Approach

The RMSE measure and the profit made by applying the
prediction algorithm have different maxima.

@ The RMSE treats all predictions, small as large, equally

% The RMSE penalizes a large change in the same
direction as the predicted change

21
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Technical Indicators

0 The tools for Technical trading include principles
such as:
— The trending nature of prices
— Volume mirroring changes in price
— Support/Resistance

0 Examples:
- Moving averages
— Formations such as triangles
— RSI - the relation between the average upward price
change and the average downward price change
within a time window normally 14 days backwards

23
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Recurrent Neural Network

O Feedback to input layer
0 The hidden layer stores previous values and can
reconstruct the dynamics
9.(1)

y(1)

The weights w are computed to minimize:

E]= 23 @0 -y D)

=

it
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The Trading Rule Approach:

Buy :g(X() >0
T(t) = Hsell g(X(@®) <0
Ebo nothing :otherwise

X(t) = (R 4(t)-.., Ry(t)
X can be:

Past values of C,H,L,V
or derived entities: Volatility, Trend, ...

Learning Task:

Find a function g that gives the best performance at a
fixed prediction horizon OR

when applying the trading rule T

Drawback:

Statistical significance;

The Buy and Sell signals are << N
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Example of a Technical Indicator

[Buy 1g(X(@®) >0
T(t) = HSell S g(X (@) <0
Ebo nothing : otherwise

g= A( Sign(mavc,so(t) _mavc,loo(t)) )
Av(t) =v(t)-v(t-1)

kZjCIose(t— i)

x|

mav, (t) =
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g = A(sign{mav g,(t) —mav ¢ ,4,(1) )

180 50 and 100 day moving averages SELL

g(t)

Stock price C(t)
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Another Relevant Benchmark

How often is this guy as successful as we are?

27
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Performance Measures

O Directional prediction “Hit rate”
Predicting {R(t), t=1,N} with {R’(t), t=1,N}
_H{tIR®R 1) >0,t=1,N }|
C[{tIROR () #0,t=1,N }|

For the naive return predictor:
_H{tIR®R( -1) >0, t=1,N }|
" I{tIROR(E -1) 20, t=1,N }|

O Normalized hit rate:

H, > 1 for real predictive power

29

Benchmarks
O Naive prediction of stock prices:
Close’(t)=Close(t-1)

0 Naive prediction of returns:

R'(t) =R(t -1)
The naive predictors are local minimum in many models
e.g AR-models (but also Neural Networks):

R’ (t) =i a, R(t -i)

0 Buy and hold:
Buy at day 1 and sell at day N.
For multi-stock predictions or portfolio management:
Buy and hold of a index (Dow Jones, FTSE, DAX etc.)
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Performance Measures

0 Theil coefficient:

Compares the RMSE (root mean square error) for our
predictions with the naive price predictions

Predicting {Close(t), t=1,N} with {Close’(t), t=1,N}

\/i ( Close(t) — Close’ (t) )?
T= 15

\/i (Close(t) -Close(t -1))?

T<1 for real predictive power
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Performance Measures

Mean profit per trading day:

0 Fixed horizon predictions C’(t) of the close price C(t).
A trade is assumed at every time step, in the
direction of the predicted change:

L 1 sign(c(y-chy COCEN)

C(t-h)

Benchmark: Mean daily return for a Buy and Hold strategy

100 = =
hN-h

Mean profit per year:

0 Trading simulation:
— “Run” the trading and compute the mean profit
Benchmark: Annual returns for Buy and Hold on index
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What Is a Reasonable Goal?

0 Efficient market hypothesis implies random walk,
which is impossible to predict!

0O Published research (with proper evaluation) often
shows about §4% hit rate. l.e: correct prediction of
the sign of the future return y(t+h).

0 Even 54% real hit rate is enough to make a fortune!

0 Compare with a casino: They don’t know what number
comes up next, they just improve the odds by adding
the 0 and 00.

31
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Data Snooping with the Trading Rule Approach

0 We want to compare 100 indicators, each producing
Sell and Buy signals once a week on average.
The test period is 10 years! We demand 55% hit rate!

0O Apply 100 totally random indicators on each week of data.

0 The probability that one specific indicator gets more than x hits is:

P(H> x) =1-P(H < x) = 1-binocdf(x500,0.5)

P(H>0.55*500)=0.0112
The probability that ANY one of the 100 indicators produces 55%
hit rate is 1-minus the probability that all are less than 55%:

1-(1-0.0112)* =0.68

I.e: The probability for a type Il error (accepting a false
hypothesis) is 68%.

33
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Some Guide Lines for
Developing Prediction Algorithms

O Ensure high data quality. Watch out for outliers
O Handle missing data correctly

0 When predicting one-step ahead, make sure this is what
you are really doing. “off-by-one” errors are seldom more

fatal than in financial predictions.

35
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Data Snooping with the Time Series Approach

0 We are predicting a stock with equal numbers of moves up
and down during one year of 250 trading days.

0 Apply a totally random prediction algorithm on each day
0 What is the probability that the hit rate>54% ?

The distribution for number of hits is given by:

P(H=x)= %250 E}.S* 0.5207
X

P(H > x) =1-P(H < x) = 1-binocdf(x,250,0.5)
x=0.54*250=135 gives P(H>135)=0.092

l.e.There is a 9% risk that a random algorithm gives 54%
hit rate.
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Evaluating Performance

Algorithm evaluation is part of the learning process
because it involves searching and selecting the
best performing algorithm.

Therefore:

O It must be done “in sample” and not on the test set.

Best: A final test on data that didn't exist at the time of the
development of the algorithm
0 It is sensitive to “over training”.

0 Be aware of the data-snooping problem!
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Some Guide Lines for
Evaluating Prediction Algorithms

0 Evaluate on previously non-used data!

0 Use a lot of data; many stocks and long time periods
0 Compute annual performance results

O Test the algorithm on random-walk data

O For comparison: test a random algorithm on the data
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