
Path planning for off-road vehicles with a

simulator-in-the-loop

Thomas Hellström, thomash@cs.umu.se

Ola Ringdahl, ringdahl@cs.umu.se

UMINF 08.07

ISSN-0348-0542

Department of Comuting Science

Umeå University

SE-901 87 Umeå, Sweden

May 6, 2008

Abstract

This paper describes the development of a real-time path planner for

off-road vehicles using a simulator. The work was triggered by a need

for an obstacle-avoidance and path-planning system in our work with au-

tonomous forest machines. The general idea with the presented system

is to extend a standard path-tracking algorithm with a simulator that, in

real-time, tries to predict collisions in a window forward in time. This

simulation is based on current sensor data giving information about the

environment around the vehicle. If a collision is predicted, the vehicle

is stopped and a path-search phase is initiated. Variants of the original

path are generated and simulated until a feasible path is found. The real

vehicle then continues, now tracking the replanned path. In simulated

tests, this way of using a simulator to predict and avoid collisions works

well. The system is able to safely navigate around obstacles on and close

to the path in a way that is hard or impossible to achieve with standard

obstacle-avoidance algorithms that do not take the shape of the vehicle

into account. Another scenario, also envisioned in forest environment, is

off-line path planning of a longer route, based on map information. An ap-

proximate path given by a straight line from start to goal is then modified

in the same way as described above.

1 Introduction

Many path-planning algorithms make simplifying assumptions regarding the
robot’s geometry or kinematic behavior. Typically the robot is approximated
by either a point or a circle, and is assumed to be able to move in a predictable

1

way given by simple kinematics equations. This usually works fine for regular
indoor robots but is less suitable for large outdoor robots and autonomous
vehicles. In our research on autonomous forest machines [8, 9, 14, 10], the
principal differences between avoiding obstacles while following a path with a
small indoor robot and a 10-meter-long vehicle with articulated steering have
become evident. First, the former can indeed often be treated as circular, while
the latter has a much more complicated shape. The articulated joint between the
two vehicle parts serves as steering mechanism but also causes the physical shape
of the vehicle to change depending on the steering angle φ. As a consequence
of this, the front and rear part of the vehicle move considerably to the sides
when changing steering angle, even when standing still. For our specific vehicle
Valmet 830, φ may change from −43 to +43 degrees. If not taken into account,
this may cause the vehicle to hit obstacles on the side when trying to avoid
obstacles in front. Second, the kinematics for most indoor robots is well known
and mostly accurate for flat surfaces. For an off-road vehicle, ground slip may
be significant and cause both random and partly predictable changes in motion
as described further on.

For these reasons, a system, SIMLOPP, has been developed and is described
in this paper. The general idea with SIMLOPP (SIMulator-in-the-LOop for
Path Planning) is to extend a standard path-tracking algorithm with a simu-
lator that, in real-time, tries to predict collisions in a window forward in time.
This simulation is based on current sensor data giving information about the
environment around the vehicle. If a collision is predicted, the vehicle is stopped
and a path-search phase is initiated. Variants of the original path are generated
and simulated until a feasible path is found. The real vehicle may then continue,
now tracking the replanned path.

The paper is organized as follows: Section 2 contains a brief overview of
related work. In Section 3, the developed system is described in detail. Results
from tests in a simulator environment are presented in Section 4, and in Section 5
conclusions and future work are discussed. Appendix A describes the kinematic
equations used in the simulator to model a vehicle with articulated steering.

2 Related work

This work was initiated by a need for an obstacle-avoidance and path-planning
system in our work with autonomous forest machines. In our previous work
[14] [8] we implemented the well known algorithm VFH+ [16] which works well
for regular indoor robots. For a forest machine it performs reasonably well
at avoiding obstacles in open areas, but has difficulties with narrow passages
between obstacles close to both sides of the vehicle. This is due to the fact
that the algorithm does not distinguish between obstacles in front and on the
sides of the vehicle. Furthermore, all obstacles are enlarged with the length of
the front part of the vehicle (which is larger than the width). Due to this, an
obstacle close to the side of the vehicle may be regarded as being partly in the
way of the vehicle. Ulrich and Borenstein, the authors of VFH+, have developed

2

an enhanced obstacle-avoidance algorithm with look-ahead verification, called
VHF* [17]. VFH+ calculates a number of suitable directions to travel, assigns a
cost value to each of them, and selects the direction with the lowest cost as the
new direction of travel. In contrast, VFH* analyzes the further consequences of
going in each of these directions before making a final decision. This is done by
computing where the vehicle would be in the next time step if it should go in
each target direction. VFH+ is then applied for the vehicle’s new poses and the
cost of going in each new direction is calculated. By repeating this process, a
search tree is created, and the A* search algorithm is applied to select the best
direction to move. This helps to avoid local trap situations that the original
VFH+ algorithm would not detect. Still, the improved algorithm has the same
strategy for prediction of collisions. It treats the vehicle as a point and expands
the obstacles to the size of the vehicle. Furthermore, the algorithm does not
take into account that the rear part of a large vehicle may hit an obstacle even
after the front part has passed it when the steering angle is changed.

Thrun et.al. [15] use an online path planner that calculates possible trajec-
tories to avoid obstacles. This is done by adding a lateral offset to a reference
path, and also a rate at which the vehicle will attempt to adjust to this new
trajectory. The planner is implemented as a search algorithm that minimizes
a linear combination of continuous cost functions. The vehicle model includes
several kinematic and dynamic constraints, such as maximum steering angle,
maximum steering rate and maximum deceleration. The cost functions pe-
nalizes running over obstacles and leaving the specified corridor the vehicle is
allowed to be within.

Noguchi and Terao [13] have developed a simulator for an agricultural robot
using a neural network. This simulator applies a genetic algorithm to plan an
optimal path given the required initial and final states of the vehicle. To check
if the vehicle collides with an obstacle the distance between the vehicle position
and an enlarged obstacle is computed. The genetic algorithm generates steering
angles and changes in steering angles. These are then sent to the neural network
which simulates each generated path.

Capozzi [4] uses evolution-based path planners to find optimal and collision-
free paths through environments containing both static and dynamic obstacles
and target locations. In this work, a genetic algorithm is used with a simulator
to guide air vehicles to their destination without colliding with obstacles. To
detect collision with obstacles, minimally enclosing rectangles are used. Bound-
ing rectangles are first fitted around the vehicle and each obstacle. The overlap
between the vehicle rectangle and each obstacle rectangle is then computed.
Capozzi concludes that the computation time mainly is spent at collision detec-
tion, and that faster methods should be found. The author also suggests that
the method to generate a new path by moving the original one a distance to the
side can be generalized to a sequence of maneuvers. Such maneuvers could be,
for example, turn left slowly and turn right quickly.

3

Steering
Commands

Path Tracker

Sensor
Data

Reference Path

Collision Prediction

Simulator
Search

Algorithm

Collision
detected

No
collision
detected

Vehicle

New
Reference

Path

Figure 1: System description of the simulator-driven path planner. The collision
prediction module uses a simulator to track the path about 5 meters ahead of
the current position while computing the nearest distance to any obstacles. If
no collision is detected, the path tracker guides the real vehicle along this path.
If a collision is detected, the system tries to find a new path. This is solved as
a search problem in which candidate paths are evaluated by the simulator to
predict the outcome of path tracking along the candidate path. When a new
feasible path is found, it replaces the reference path and is used by the path
tracker to guide the real vehicle around the obstacles.

3 System Description

In this section, the simulator-driven path-planning system is described in detail.
Pseudo-code for the top-level routine is given in Algorithm 1. The main loop
performs regular path tracking (Line 10) with the wanted path p. Every meter,
the path is evaluated in a simulated path-tracking 5 meters forward to predict
the risk for collision (Line 3). To track the path, the simulator uses the path-
tracking algorithm Follow the Past [9]. Other path-tracking algorithms may be
used as well, provided they are based on the perpendicular distance to the path,
and do not aim at the path further ahead (i.e., the Pure Pursuit algorithm
[6] does not work well in this context). The simulation is performed by the
SimCheck function described in Algorithm 3. If no collision is predicted, path
tracking along p continues until the goal is reached. If a collision is predicted, a
new path is constructed (Line 5) by modifying p. This is done by the PathSearch
function described in Algorithm 2. If a feasible path can be constructed, it
replaces the reference path and is used by the path tracker to guide the real
vehicle around the obstacles. A graphical overview of the system is given in
Figure 1 and the main components are described in detail below.

4

−26 −24 −22 −20 −18 −16 −14 −12 −10 −8
12

14

16

18

20

22

24

Original Path
Altered Path

Figure 2: 10 meters of the original path in front of the vehicle are divided into
5 segments. By offsetting each segment perpendicular to the original path the
search function tries to find a combination of offsets that allow the vehicle to
avoid the obstacles.

3.1 Path searching

The PathSearch function in Algorithm 2 attempts to find a candidate path,
similar to the original path that a simulated vehicle can track for 10 meters
without hitting any obstacle or straying too far away from the original path.
This path evaluation is done by simulated path tracking along the candidate
path and is performed by the SimCheck function (see Algorithm 3) that returns
a fitness value for the candidate path. The fitness concept is further described
in Section 3.2.

The search problem formulated in Algorithm 2 aims at finding a vector
xopt such that the candidate path generated by the function p(xopt) has a high
enough fitness value.

The p(x) function works as follows. 10 meters of the original path in front
of the vehicle is extracted and equally divided into five segments. The elements
of the x vector represent lateral offsets for the segments, such that they are
shifted perpendicular to the original path, thus creating a modified candidate
path, as illustrated in Figure 2. The search algorithm tries to find an acceptable
combination of these five offsets. Initially, a sequence of offsets to the steering
commands from the path-tracking algorithm were used instead of modifying the
reference path, as suggested by Capozzi [4]. This is hard to combine with path
tracking that tries to keep the vehicle on the path. An offset steering command
causes the vehicle to deviate from the path. The path tracker then commands
the vehicle to turn back towards the path to compensate, thereby counteracting
the offset.

Figure 3 illustrates how an offset segment makes it possible for the vehicle
to avoid obstacles. In this paper we have implemented and evaluated three
different search algorithms that are described in more detail in Section 3.3.

5

15 20 25 30 35 40 45
0

2

4

6

8

10

12

X [m]

Y
 [m

]

Original path
Vehicle position
Obstacles

15 20 25 30 35 40 45
0

2

4

6

8

10

12

X [m]

Y
 [m

]

Altered path
Original path
Vehicle position
Obstacles

Figure 3: If the simulation predicts a collision with an obstacle, as in the upper
figure, the path is replanned such that the obstacles are avoided, as shown in
the lower figure. The figures show the original position of the vehicle and the
area it would cover while tracking the path (the gray area). In the lower figure,
the altered replanned path can be seen as well.

6

3.2 Evaluating paths

As described above, paths are evaluated at two places in the system: In the
main loop to decide if the vehicle can go on tracking the path, and in the Path-
Search function, used to generate alternative paths. In both cases, the function
SimCheck performs the evaluation as described in Algorithm 3. SimCheck sim-
ulates path tracking for a fixed distance D ahead on the path. For each meter,
performance is computed such that the performance for the path as a whole
can be returned as the minimum of all momentary performance values. The
kinematics of a forest machine with an articulated joint is more complex than
for many other vehicles and robots. This is, as described above, part of the
motivation for the development of the simulator-based path planner, and is also
a necessary component of the real-time simulator. Appendix A describes the
kinematics for the simulated articulated forest machine in more detail.

A momentary performance is computed by the fitness function comprising
two parts. One part is related to the distance between the vehicle and the
obstacles, and the other is related to the distance between the vehicle and the
original reference path p0. In many off-road environments it is not safe to
stray too far away from the reference path because of obstacles that can not be
detected by the vehicle’s sensors, e.g mire ground or deep trenches. Therefore,
in addition to avoiding obstacles, the vehicle must also stay reasonably close to
the reference path. In our particular implementation, the fitness takes values
between 0 and 10, where 10 is best, and 0 means either that the vehicle almost
collides with an obstacle (distance smaller than 0.1 meter) or strays too far from
the path (distance larger than 2.5 meters). The fitness function is illustrated
graphically in Figure 4. In the experiments reported in this paper the minimum
accepted fitness value is 5, which is the value of the constant minfitness referred
to at many places in the listed algorithms. Fitness 5 corresponds to a minimum
distance of 0.5 meters between any part of the vehicle and any obstacle, and a
maximum distance of 2.5 meters between the vehicle and the path.

It is important to distinguish between the momentary fitness for a single
point, computed by the fitness function, and the fitness for a whole path, which
is computed as the minimum of the fitness values for all vehicle positions when
simulating path-tracking along the path. This path fitness is computed by the
function SimCheck in Algorithm 3.

3.2.1 Distance between vehicle and obstacles

At each simulated time step the shortest distance between the vehicle and all ob-
stacles is calculated (Algorithm 3, line 3). This is a key operation in the system
and has to be both fast and accurate. The sensor data provides an updated view
of the environment around the vehicle. This is used by the simulator together
with a geometrical model of the vehicle to detect collisions with obstacles. The
vehicle is modeled by eight lines, four for the front part and four for the rear
part, connecting the vehicle’s corners. The distance between the vehicle and an
obstacle is defined as the shortest distance between the obstacle, defined as a

7

Algorithm 1 Simulator-driven path planner

Given an initial reference path p0

1: p = p0

2: while not at goal do
3: pathfitness = SimCheck(p, 5, p0) {simulate 5m along p (Alg.

3)}
4: if pathfitness < minfitness then {path not feasible}
5: p = PathSearch(p0) {try to generate a modified path (Alg.

2)}
6: if p = NULL then
7: EXIT
8: end if
9: end if

10: use p for 1 meter of path tracking with the target vehicle
11: end while

minfitness is the minimum accepted fitness value, set to 5 in our experiments

Algorithm 2 The function PathSearch finds and returns a 10-meter-long mod-
ified feasible path

function PathSearch(p0)
Given a path p0, search for a vector xopt such that

SimCheck(p(xopt), 10, p0) ≥ minfitness
and

−maxdev < xopt(i) < maxdev,∀i

where
p(xopt): A new path generated by offsetting the segments of p0

perpendicular to the left or right by amounts given by the vector
xopt

maxdev: The maximal allowed distance between the original path and the
vehicle, set to 2.5 meters in our experiments.

if search successful then
return p(xopt)

else
return NULL

end if

8

Algorithm 3 The function SimCheck simulates path tracking D meters along
p1, and computes the path fitness as the smallest of all fitness values along the
path:

function SimCheck(p1, D, p0)

1: d=0; collision=FALSE; pathfitness=inf
2: while d < d and pathfitness > 0 do
3: d1 = shortest distance between the vehicle and the obstacles within a 5.3

meter large radius around the vehicle’s articulation link
4: d2 = shortest distance between the vehicle and the original reference path

p0

5: pathfitness = min(fitness(d1, d2)pathfitness)
6: simulate 1 meter path tracking along p1

7: d = d + simulated covered distance
8: end while
9: return pathfitness

fitness is a function that computes how desirable it is to have the vehicle d1

meters away from the nearest obstacle and d2 meters away from the original
path (refer to Figure 4).

0
0

0 0 0

1

1

1 1 1

2
2

2 2

3
3

3 3

4
4

4

5

5 5

6

6 6

7

7

8

8

9

Distance to obstacles [m]

D
is

ta
nc

e
to

 p
at

h
[m

]

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

Figure 4: Level curve for the fitness function used for path search. The fit-
ness value is a function of the vehicle’s shortest distance to any obstacle and
its distance to the original reference path. If the fitness value is 5 or above,
the path is regarded as traversable at this particular point. An entire path is
regarded traversable if all points the vehicle passes through in path-tracking are
traversable.

9

−5 0 5
−5

0

5

Figure 5: To speed up the computation of the smallest distance between ob-
stacles and the vehicle, only the continuous lines in the figure are used. The
dotted lines can never be closest to an obstacle due to the the vehicle’s geome-
try, unless a collision was detected in a previous time step. Furthermore, only
obstacles within the bounding circle drawn around the vehicle are considered in
the computation.

point, and each of these lines. To speed up the computation, two things are
done: first, only obstacles within a radius of 5.3 meters around the vehicle’s ar-
ticulation joint are considered. The radius is calculated as the the length of the
front part of the vehicle plus a safety margin of one meter; second, line-obstacle
distances are only computed for six of the eight lines, as illustrated in Figure
5. This is based on the assumption that the two lines closest to the articulation
link can never be closest to an obstacle, unless a collision was detected in a
previous time step, due to the the vehicle’s geometry.

3.3 Search algorithms

Three different algorithms have been evaluated for the informed search task
described in Section 3.1; DIRECT [11] which is a numerical optimization algo-
rithm using no derivatives, a genetic algorithm (GA) [5] and, as a benchmark, a
random search algorithm. Each algorithm generates a population P consisting
of N individuals Ii, 1 ≤ i ≤ N , each one representing a candidate path iden-
tified by the offset values xi(1), ..., xi(5). The principal difference between the
algorithms is the way in which new individuals are generated/selected based on
the previous population (i.e. the p function in Algorithm 2). Random search
generates random individuals. This method is used as a benchmark for the
other two algorithms.

The genetic algorithm is implemented using the Genetic Algorithm Tool-
box [5] for Matlab. The basic steps in the genetic algorithm are described in
Algorithm 4. It is inspired by nature’s way of improving a population over sev-
eral generations by combining genes from successful parents. To increase the
chances of finding a global maximum, the mutation operation is introduced. It
selects one or more chromosomes xi(j) in an individual i and randomly changes
them. This random process is often seen as a (theoretical) assurance that the
probability of finding any given individual is never zero [7]. To avoid testing

10

the same solution more than once in each generation, an individual is not con-
sidered if an equal one has already been generated in the same generation. Two
individuals I1 and I2 are considered equal if max

j
|x1(j) − x2(j)| ≤ 0.01, i.e.

if all corresponding chromosomes in the two individuals differ by less than 1
centimeter.

We use a Matlab implementation gblSolve [3] of the global optimization al-
gorithm DIRECT [11]. The first step in the DIRECT algorithm is to transform
the search space to a unit hypercube. The fitness function is then sampled at
the center-point of this cube. The algorithm identifies a set of potentially opti-
mal rectangles in each iteration. All potentially optimal rectangles are further
divided into smaller rectangles, whose center-points are sampled. Conventional
optimization algorithms like DIRECT aim at minimizing an object function, as
opposed to genetic algorithms, which aim at maximization. The search condition
SimCheck(p(xopt), 10, p0) ≥ minfitness in Algorithm 2 is therefore changed to
-SimCheck(p(xopt), 10, p0) ≤ −minfitness when using the DIRECT algorithm.
To speed up execution, DIRECT has been modified to return immediately if an
object function value < −minfitness is found.

4 Results

To evaluate the developed system and the three different search algorithms an
additional vehicle simulator is used. The simulator tracks each of the 5 paths
in Figure 6 100 times with the 3 algorithms1. To test the algorithms’ ability to
plan collision-free paths in difficult situations, the obstacles are placed such that
the original paths cause collision and need careful modifications to be feasible.
However, in most real situations, the vehicle has much more space to maneuver.

As described in Section 3, the path-tracking simulator is called every me-
ter and the search module is called if a collision is predicted (or rather if the
predicted path fitness is too low). Depending on the path and the obstacles in
the environment each search either finds a solution or fails within the allowed
maximum number of iterations. Figure 7 shows the result of replanning a path
with DIRECT. Note that the vehicle drives along a smooth trajectory, even if
the replanned path is not smooth. Tables 1 to 5 summarize the results for the
three search algorithms for the five paths. GA denotes the genetic algorithm,
DIR denotes the DIRECT algorithm, and Rand denotes the random search.
The results presented in the tables are:

1DIRECT is a deterministic algorithm, i.e the result for each of the 100 runs will be exactly

the same. However, for a uniformed presentation of results, 100 runs are presented also for

the DIRECT algorithm.

11

Algorithm 4 Genetic algorithm for path search

1: t = 0 {generation}
2: Create an initial population P0, consisting of N individuals I1, . . . , IN , each

one consisting of 5 chromosomes x(1), . . . , x(5)
3: repeat {max 3 times}
4: Compute path fitness pf for each individual (performed by the function

SimCheck in Algorithm 3)
5: Replace all individuals with pf = 0 with new randomly generated

ones
6: until nFit > 6 or maxFit≥ 5 {obtain a large enough population for breed-

ing}
7: while maxFit < minfitness and t < 25 do
8: t = t + 1
9: Use roulette wheel selection [2] to select the best 90% individuals from the

last population Pt−1. These individuals are denoted parents.
10: Generate new individuals, denoted children, consisting of a combination

of chromosomes from two parents each. In our case, this is done by
intermediate recombination [12].

11: Mutate the genes in each individual with probability 0.2. This means
that in average, one chromosome per individual will be mutated, i.e get
a random value within the allowed range.

12: Evaluate the new individuals according to the fitness function
13: Let Pt consist of the N most successful individuals from the parents and

children.
14: xopt = best individual
15: end while

where
maxFit = max(pf(I1), ..., pf(IN))

nFit = |{Ii|pf(Ii) > 0}|.

12

Algorithm GA DIR Rand

Successful searches [%] 96 100 44
Average search time [s] 12 17 24
Average no. of fitness evals 109 152 625
Average time to halt [s] 90 - 78
No. of search operations 581 900 170

Table 1: Results for path 1

Successful searches: Number of solved search problems
Average search time: Computed for all successful search problems
Average no. of fitness evals: Computed for all successful search problems
Average time to halt: Computed for all failed search problems

(maximum allowed iterations was reached):
No. of search operations: The number of times the algorithm was called

(total for 100 runs).
In general, the genetic and DIRECT algorithms have roughly the same per-

formance while the random search usually does not solve as many situations and
also takes longer. This is to be expected, as random search just tries random
solutions, while the other two algorithms try to solve the search problem in a
systematic way. In almost all test cases, the DIRECT and genetic algorithms
manage to safely navigate the vehicle along the whole path, but the performance
for path 2 is not as good as for the other paths. This path contains particu-
larly difficult situations, making it hard to find a traversable path. The reasons
for this may be that a path correction in the beginning of the path leads the
vehicle into an impossible situation further on. This is confirmed by the good
results for the random algorithm for the same path, and also by the relatively
higher performance for the genetic algorithm which contains a larger element
of randomness than does the DIRECT algorithm. The problem is related to
the limited 10 meter prediction window. Traversable paths may be possible to
generate if the size of this window is increased, of course at the price of longer
simulation times.

The time it takes to solve a search problem depends on the necessary number
of calls to the fitness function. It also depends on how far along the path the
simulator has to run for each candidate path to find out if the vehicle will
collide with an obstacle or stray too far from the reference path, i.e if the fitness
becomes zero. In our tests, the average time to find a solution varies between
2 and 24 seconds. Another important performance measure is the time it takes
before giving up on a problem if no solution is found. This time depends mainly
on the number of individuals evaluated, but as explained above also on how
far the simulator has to run for each individual. In our tests, this time varies
between 33 and 98 seconds.

Figure 8 shows the improvement of fitness over several generations in the ge-
netic algorithm for ten different problems. The final individuals in this example
all have acceptable fitness values (at least 5), but depending on the difficulty of

13

−20 −10 0 10

0

10

20

30

X [m]

Y
 [m

]

Path 1

0 20 40

−10

0

10

X [m]

Y
 [m

]

Path 2

0 20 40

−10

0

10

X [m]

Y
 [m

]
Path 3

0 10 20 30

−20

−10

0

X [m]

Y
 [m

]

Path 4

0 20 40
−10

0

10

X [m]

Y
 [m

]

Path 5

Figure 6: The 5 paths used to evaluate the algorithms. The vehicles are shown
in their starting positions.

Algorithm GA DIR Rand

Successful searches [%] 80 67 81
Average search time [s] 4 2 3
Average no. of fitness evals 186 111 194
Average time to halt [s] 98 33 64
No. of search operations 500 300 406

Table 2: Results for path 2

Algorithm GA DIR Rand

Successful searches [%] 100 100 99
Average search time [s] 4 2 2
Average no. of fitness evals 52 19 24
Average time to halt [s] - - 66
No. of search operations 354 500 370

Table 3: Results for path 3

14

−15 −10 −5 0 5 10 15 20

5

10

15

20

25

30

Vehicle position
Original path
Altered path
Obstacles

Figure 7: The result of replanning a path. The figure shows the original path as
well as the replanned one, and the vehicle’s position as it tracks the new path.
The vehicle is shown in its final position.

Algorithm GA DIR Rand

Successful searches [%] 99 100 87
Average search time [s] 6 8 9
Average no. of fitness evals 45 47 184
Average time to halt [s] 64 - 85
No. of search operations 421 300 362

Table 4: Results for path 4

Algorithm GA DIR Rand

Successful searches [%] 100 100 98
Average search time [s] 4 4 8
Average no. of fitness evals 25 29 81
Average time to halt [s] - - 95
No. of search operations 400 400 416

Table 5: Results for path 5

15

1 2 3 4 5 6 7
3.5

4

4.5

5

5.5

6

6.5

7

7.5

Generation

F
itn

es
s

Figure 8: Maximum path fitness in a population as a function of generation, for
ten different problems solved by the genetic algorithm. When the fitness value
becomes at least 5, the path is considered traversable and search is terminated.

the situation, it takes between 3 and 7 generations to get there.
In addition to avoiding obstacles on a predefined path, the developed SIM-

LOPP system can be used to plan a totally new path, where only start and
goal points are initially given together with an accurate map that includes all
obstacles in the environment. The planning is done off-line in advance, with
an additional simulator replacing the real vehicle. The simulated vehicle moves
along a path generated by repeated calls to the path-search mechanism that
generates feasible 10-meter-long path segments when necessary. In this scenario
the vehicle should be given more freedom to deviate from the original path, since
it only reflects the general preferred direction of motion and not a reasonable
path alternative. In our tests, the vehicle was allowed to move up to 10 meters
away from the line between start and goal. Figure 9 shows the results, where a
200-meter straight path between start and goal points is specified, and the envi-
ronment contains a random set of obstacles. The system manages to generate a
collision-free path from start to goal. Of course, this way of performing off-line
path planning can also be combined with the on-line use of the system. In this
way, obstacles that were not present on the map can be taken into account as
soon as they are seen by the vehicle’s sensors.

5 Conclusions and Future Work

The proposed SIMLOPP system can be used in various scenarios for autonomous
vehicles and robots. Referring to the forest machine application for which the

16

0 20 40 60 80 100 120 140 160 180 200
−30

−20

−10

0

10

20

30

Vehicle position
Original path
Altered path
Obstacles

,

Figure 9: A totally new path can also be planned, given only the start and goal
points. In this example, a random set of obstacles is generated. The original
path is a straight line between the start and goal points. The vehicle is allowed
to drive at most 10 meter away from this path and no closer than 0.5 meter to
any obstacle.

system is developed, the most obvious use is for improved obstacle avoidance,
where a reference path is first demonstrated by a human driver [9]. To au-
tonomously track this learnt path, the vehicle would simulate 5 meters ahead,
and stop if a collision is predicted. Alternative modifications of the reference
path will then be simulated until a feasible modified track has been generated.
If no such path can be found, the vehicle would have to take other actions such
as calling for human assistance. Of course the entire operation would take place
in real-time and obstacles would be provided by the vehicle’s sensors. This sce-
nario is illustrated in Figure 7. Our tests show that using a simulator to predict
and avoid collisions works well. The system is able to safely navigate a large
forest vehicle around obstacles on and close to the path. The system is superior
to VFH+ at handling hard situations with narrow passages, and it also takes the
whole vehicle into consideration, not only the front part. Another scenario, also
envisioned in a forest environment, is off-line path planning of a longer route,
based on map information. An approximate path given by a straight line from
start to goal is then modified in the same way as described above. An example
of this scenario can be seen in Figure 9. Of corse, the two scenarios may also be
combined such that a rough plan is first generated off-line. While tracking this
path, replanning may occur if new obstacles appear in the visible neighborhood
of the vehicle.

The presented work uses a simulator instead of the physical vehicle for the
evaluation of the developed system. The next step is to move the system to a real
forest machine to validate the results. The simulator used for path evaluation
in the path-search routine can be replaced by a physics-based simulator. We
have initiated development of such a simulator for forest machines, based on
the Colosseum3D framework [1]. This 3D-simulator includes realistic vehicle
kinematics and dynamics and can improve the quality of the path simulations,
for example by simulating ground slip. However, the current 2D-simulator runs
over 100 times faster than real time, which may be hard to match with a more

17

advanced physics-based simulator.
The efficiency of the implemented algorithms and the simulator could prob-

ably be increased if the implementation was moved from Matlab to a program
language more suited for real-time applications, e.g Java or C/C++. This also
means that the average search times reported in this paper would decrease or
allow the algorithms to evaluate additional possible solutions, or predict longer
distances ahead, in the same amount of time. This would also mean that the
vehicles most often do not really have to stop to do perform path planning.
A new feasible path may be generated in a fraction of a second such that the
vehicle can move on without interruption.

Appendix A

Kinematic equations

A simplified mechanical layout is illustrated in Figure 10. The center of each
wheel axle rotates along a circle with radius r at an angular velocity ω = v/r,
where v is the speed of the vehicle and r depends on the geometry of the ve-
hicle including the steering angle φ. The front and rear parts of the vehicle
rotate along circles with different radii. In the following, only the front part is
considered. For the front axis, the radius r is given by

r =
a + b

cos φ

tan φ
. (1)

To avoid modeling slip, r is calculated for a virtual axle located in between
the real axles of the front part. Given a vehicle position (x, y) and heading
θ, measured at the middle of the front axle at time t, the position (x′, y′) and
heading θ′ at time t + ∆t is given by

x′ = cos(ω∆t)r sin(θ) − sin(ω∆t)r cos(θ) − r sin(θ) + x

y′ = sin(ω∆t)r sin(θ) − cos(ω∆t)r cos(θ) + r cos(θ) + y

θ′ = ω∆t + θ + c∆φ

(2)

where the constant c ∈ [0, 1] describes how the change in steering angle φ affects
the vehicle’s heading θ. c is largely a function of slip, which in turn depends
on the weight distribution for the two vehicle parts: the front part moves more
if the rear part is heavily loaded. Other important factors influencing slip are
tires, surface conditions and minor obstacles which may influence the turning
motion. In this work c = 0.2 was used, corresponding to a relatively heavy front
part that moves less than the rear part of the vehicle.

18

Front

Rear

φ

θ

),(yx

φ

r

Figure 10: Definition of steering angle φ, position (x, y), heading θ, and turning
radius r for an articulated forest machine. The global coordinate system for the
pose (x, y, θ) can be seen in the upper left part of the figure.

References

[1] Anders Backman. Colosseum3d - authoring framework for virtual environ-
ments. In Proceedings of 11th EGVE Workshop, 2005.

[2] J. E Baker. Reducing bias and inefficiency in the selection algorithm. In
Proceedings of the Second International Conference on Genetic Algorithms
and their Application [ICGA2], pages 14–21, Hillsdale, New Jersey, USA,
1987. Lawrence Erlbaum Associates.

[3] Mattias Björkman and Kenneth Holmström. Global optimization using the
direct algorithm in matlab. Advanced Modeling and Optimization, 1(2):17–
37, 1999.

[4] Brian J. Capozzi. Evolution-Based Path Planning and Management for
Autonomous Vehicles. PhD thesis, University of Washington, 2001.

[5] A. J. Chipperfield and P. J. Fleming. The matlab genetic algorithm toolbox.
IEE Colloqium on Applied Control Techniques Using MATLAB, Digest,
(1995/014), 1995.

[6] R. Craig Coulter. Implementation of the pure pursuit path tracking algo-
rithm. Technical Report CMU-RI-TR-92-01, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, January 1992.

[7] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison Wesley Publishing Company, January 1989.

19

[8] Thomas Hellström, Thomas Johansson, and Ola Ringdahl. Development of
an Autonomous Forest Machine for Path Tracking, volume 25 of Springer
Tracts in Advanced Robotics, pages 603 – 614. Springer, field and service
robotics: results of the 5th international conference edition, 2006.

[9] Thomas Hellström and Ola Ringdahl. Follow the past - a path tracking
algorithm for autonomous vehicles. Int. J. Vehicle Autonomous Systems,
4(2-4):216–224, 2006.

[10] Thomas Johansson and Thomas Hellström. A software infrastructure for
sensors, actuators, and communication. In In Proceedings of The Third
Swedish Workshop on Autonomous Robotics (SWAR05), 2005.

[11] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimiza-
tion without the lipschitz constant. Journal of Optimization Theory and
Applications, 79(1):157–181, October 1993.

[12] H. Mühlenbein and D. Schlierkamp-Voosen. Predictive models for the
breeder genetic algorithm. Predictive Models for the Breeder Genetic Algo-
rithm, 1(1):25–49, 1993.

[13] Noboru Noguchi and Hideo Terao. Path planning of an agricultural mobile
robot by neural network and genetic algorithm. Computers and Electronics
in Agriculture, 18:187–204, 1997.

[14] Ola Ringdahl. Techniques and Algorithms for Autonomous Vehicles in
Forest Environment. Licentiate thesis, Department of Computing Science,
Umeå University, 2007.

[15] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley,
M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L.-E. Jen-
drossek, C. Koelen, C. Markey, C. Rummel, J. van Niekerk, E. Jensen,
P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian,
and P. Mahoney. Stanley, the robot that won the darpa grand challenge.
Journal of Field Robotic, 23(9):661–692, 2006.

[16] I. Ulrich and J. Borenstein. VFH+: Reliable obstacle avoidance for fast
mobile robots. IEEE Int. Conf. on Robotics and Automation, pages 1572–
1577, May 1998.

[17] Iwan Ulrich and Johann Borenstein. VFH*: Local obstacle avoidance with
look-ahead verification. In IEEE International Conference on Robotics and
Automation, pages 2505–2511, April 2000.

20

