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Individual Stock Returns R(t) Ranking Stock Returns R(t)

The usual approach is to attempt to predict
the returns R(t) for a stock’s Close prices:

Close(t)-Uose(t—k) _ )
Close(t—k)

Close(t)
Close(t—k)

Rk(t) =

This is a well known hard problem.

to say the least...

It is not even a complete solution since we
want to SELECT among many stocks.
Picking the stock with highest predicted
return is not necessarily optimal.

© Thomas Helstrom 2000

For a stock m in a set of N stocks,

the h-day rank for day ¢ is defined as

#{R () |R ()2 R, (1)1 Si<SN}-1
N -1

The stock with highest R gets rank 0.5

The stock with lowest R gets rank -0.5

The median stock gets rank 0

Al = 0.5

Nice things about ranks:
Predicting the rank is (at least) as good as predicting
the returns.
Clear benchmark: hit rate for sign > 50%.
Uniform distribution.

The effect of global events gets automatically
incorporated.
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One-Day Memory in the Ranks

4, (t+1) tabulated as a function of 4, (¢)
207 Swedish stocks 1987-1997

A(t)
A(t+1) -0.45| -0.35[ -0.25[ -0.15] -0.05] 0.05] 0.15] 0.25[ 0.35 0.45
Fraction% >0 59.4] 529 49.1| 47.3 48| 49.6] 49.5| 48.2| 47.8 46.4
Mean rank A| 0.067 0.017[ -0.005[ -0.011] -0.011] -0.004] -0.005| -0.01f -0.014| -0.033
no. of obs. | 30878| 30866[ 31685 30837] 30434| 31009] 31258] 30539| 30951 31550

One-Day Memory in the Ranks

one curve per year 1987-1997

With 59.4% probability:

The worst performing 10% of the stocks will be in the
upper half next day.

This prediction can be done EVERY day (since there is
always a worst performing 10%).
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data from the Swedish stock market




Five-Day Memory in the Ranks

Flve-Day Memorv in the Ranks one curve per year 1987-1997

As(t+5) tabulated as a function of 4(7)

N 207 stocks
207 Swedish stocks 1987-1997 0.1
A(t)
A(t+5) 0.45] -0.35] -0.25] -0.15] -0.05] 0.05] 0.15] 0.25] 0.35] 0.45
Fraction% >0| 56.5] 51.9] 50.1] 50.3] 50| 50.2| 49.4| 48.4] 484 443 0.05
Mean rank A|_0.04] _0.01 0 0 0 0 0| -0.01] -0.01] -0.04
no. of obs. | 30692 30689] 31485 30652| 30286] 30772| 30955 30349] 30644] 31026

With 56.5% probability:

The worst performing 10% of the stocks will be in the
upper half next day.

This prediction can be done EVERY day (since there is
always a worst performing 10%).
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7 data from the Swedish stock market
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Trading the 5-day rank in ASTA. 207 stocks Refined trading rules with 5-day rank.
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Refined trading rules with 5-day rank. How About Predicting Ranks?

Standard deviation for profit above index (average:34)

150 Use the rank variables as inputs and/or
& outputs in a time series prediction.
E 1m0
3ol Notation:
& The h-day rank for stock m on day ¢ : A" (1)

The A-day prediction (computed at time ¢) : 47" (1 + h)

& B8 83 9 91 92 93 94 B 9% 7
hiean annual profits for 10 runs Trading:77 % Indes: 16%

BEREEREERE Model:
) Ay (t+h) =g, (4" (), 47 (1), 45 (2), 45 (1))

foare e b b e

Trading {left) [ndex (right)

87 83 8 80 91 92 93 84 B85 98 97
Buy: Rank5<-0.48 & Mstocks==0 Sell: Rank5>0.48 | Lose>10 | Profit=30
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A model for Prediction of the Ranks
Let’s try a linear model:
AP ()= po+ P AT () + po AT () + py Ay (0 + p A5 (1)
l.e.: The h-day rank at time t+h is predicted from the

1-day, 2-day, 5-day and 20-day ranks computed at time t.

For a market with N stocks we build N models (I m N).

To facilitate comparison the m predictions are scaled

similar to the rank definition:

#LAN O A (D)= Ay (D1<SiS Ny -1
N -1

0.5

Al (t+ 1) «

The parameter vector (p,, p,, p>, p;, P,) can be
determined by linear regression on historical data.
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Experimental Set-Up

* One-day predictions of one-day ranks 4" (¢ +1)

* 80 Swedish stocks from 1989-1997

* Sliding windows:
1000 days for modelling and the following 100 for
prediction. Step 100 days and repeat until end of data.

I T T
1000 days for modelling
(computation of (py, p,. p2. ps. P1)

* le.: xil"‘ (t+1) is based on close prices up to time 7 :
A (t+1) = py+ p Al (1) + pyAJ (1) + py AL (1) + p, Az (1)
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100 days for predictions time

Results
52.8% of all predictions >0 result in a rank >0

Table 4: 1-day predictions of 1-day ranks |1:11(1, +1)| > 0.00.

Year : 93 94 95 96 97 | 9
Hitrate, 51.3 | 534 531] 531[ 53.0[( 528
Hitrate_ 51.9| 536 | 531| 534 [ 531 530

Meanrank,. | 0.011 | 0.025 | 0.022 | 0.021 | 0.018 | 0.020
Meanrank_ | -0.014 | -0.025 | -0.021 | -0.023 | -0.019 | -0.020

Returng 0.396 | 0.101 [ 0.139 [ 0.253 | 0.190 [/0.217
Return._ 0.247 | -0.171 | -0.081 | 0.042 | -0.009 QOOG/
Returno, 0.391 | 0.027 | 0.034 | 0.143 | 0.111 | 0.142
#Pred. 7715 8321 8311 8923 8162 | 41506
#Pred_ 788 8343 8342 8942 8171 | 41664
#Pred 15503 | 16664 | 16653 | 17865 | 16333 | 83170

The mean return after a prediction >0 is 0.217%
The mean return after a prediction <0 is 0.006%
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Selected Predictions

63% of predictions >0.49 result in a rank >0

Table 6: 1-day predictions of 1-day ranks |A; (¢ +1)| > 0.49.

Year: 93 94 95 96 97 | 9
Haitrate, 57.7 67.3 63.3 65.7 60.6 & 63.0
Hitrate_ 51.8 57.0 56.4 57.5 55.5 55.7

Meanranky | 0.061 | 0.115 | 0.088 | 0.115 | 0.077 | 0.092
Meanrank_ | -0.007 | -0.070 | -0.069 | -0.046 | -0.034 | -0.045

Return, 1.202 | 0.841 | 0.618 [ 0.726 [ 0.686 |/0.827
Return_ 0.801 | -0.490 [ -0.332 | 0.073 | -0.064 [\0.003/
Returnor 0.391 | 0.027 | 0.034 | 0.143 | 0.111 | 0.T42
#Pred,, 215 214 218 230 213 | 1092
#Pred_ 220 221 220 233 218 | 1114
#Pred 15503 | 16664 | 16653 | 17865 | 16333 | 83170

The mean return after a prediction >0.49 is 0.827%
The mean return after a prediction <-0.49 is 0.003%
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Simulated Trading

We are using ASTA to execute the following trading strategy:

Buy rule: | prank1>0.49 & nstocks==
Sell rule: |prank1<=0.49

* The function prank1 implements the described one-day
predictions 4" (1 +1).

* We are buying the predicted 1% best performing stock(s)
every day If they are not already in the portfolio.

* We are selling every day if the stock wont generate a buy
signal again.

* Transaction costs: 0.15%
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Simulated Trading
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Simulated Trading

Equity curves for Trading (5267%) and Index (222%)
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Statistics for the Simulated Trading

%* The number of trades is high. This increases
the statistical significance.

* “Only” 56.2% profitable trades seems to be
enough to generate a huge profit

Number of sell orders 812 )

Mean profit per trade 270

Trades with profit>0 456 £56.2%
Trades with profit<0 212 £26.1% |
Trades with profit=0 144 7.7%/
Total Increase 5266.8 %
Total increase for index 221.9 %
Annual Profit 123.6%
Annual Profit for index 27.4%
Median Excess profit 115.8%
Number of ignored buy signals | 148 (15.4%)
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Where Did We Cheat ?

The results actually look too good...

Is this a clear example of market inefficiency and a refutation
of the Efficient Market Hypothesis ?

Possible “explanation”:

* The prediction 4" (¢ +1) is based on close prices y:
Vut-k), ..., y,(9). l.e.: The trades performed on day ¢ assume
knowledge of the close prices for day ¢.

* This is not possible!
* However, it is very often ignored when one-day predictions are
evaluated.

* Another explanation: The excess profit for the trading
strategy is paid by increased risk (this argument can
always be used)
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Simulated Trading

The predictions use stock prices up to the day BEFORE the portfolio rebalancing.
(this is not very realistic either....)

Equity curves for Trading (-56%) and Index (222%)
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Conclusions

* A real evaluation of the trading strategy has to
involve open prices or intra-day data to be realistic.

* It indicates market inefficiencies and casts doubts on
the Efficient Market Hypothesis.

* The shown rank predictions are in sharp
contradiction with the Random Walk Hypothesis for
stock prices. We are able to predict the sign of the
rank consistently over a 5-year-period of daily
predictions.

* The general idea of predicting ranks instead of
individual returns seems to be successful.

* Non linear rank models such as Neural Networks is
an interesting topic for future research.
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