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Overview of the talkOverview of the talk

✸ Portfolio theory

✸ Predictions of Covariance matrices
and return vectors

✸ The Naive Prediction

✸ An algorithm to remove outliers
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Modern Portfolio TheoryModern Portfolio Theory

                    Harry Markowitz, William Sharpe

✸ Investors hold portfolios of assets and are therefore
focused on the return and risk for the whole portfolio, not
for individual assets.

✸ The risk is quantified by the standard deviation for  the
portfolio.

✸ For a given expected return we can get different
expected standard deviation depending on the mix of
assets (due to varying correlations between the assets).

✸ The optimal portfolio can be determined by solving a
    quadratic optimisation problem.
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✸ The stock prices are r.v. with returns r1,…, rn with :
Expected values µ1,…, µ n≡ R
Covariances       σ11, σ12 …, σ nn ≡ C

✸ The portfolio is defined by the weights  w=w1,…, wn  and has:

a return

    with expectation

    and a variance

Modern Portfolio TheoryModern Portfolio Theory
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✸ The risk adjusted return RADJ is defined as

α Rp - σp
2

  = αwTR- wT C w

    The risk tolerance factor α expresses
the relative importance of the risk and return
(often set to 0.5)

✸ Optimization problem :

Modern Portfolio TheoryModern Portfolio Theory

     max αwTR - wT C w
       w
     s.t:
     wi 0, i=1,…,n
     Σ wi=1
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1. Estimate with historical data:
✸ The individual returns µ1,…, µ n≡ R
✸ The covariance matrix C

2. Solve
    wOPT =max αwTR - wT C w
                  w
    for “optimal” portfolio weights wOPT

3. Rebalance the portfolio

Repeat from 1. every n:th day.

Question: How optimal are the weights ?

Procedure for Portfolio Procedure for Portfolio OptimizationOptimization



7
© Thomas Hellström 2000

Estimation of C and R
and optimization

How optimal are the weightsHow optimal are the weights

Evaluation:                      time
Computation of RADJ

Answer: It depends on the stationarity of
              the price processes

                         C  ≈   C    ?
                     R  ≈   R    ?
                 wOPT ≈ wOPT ?
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Estimation of  R and C
and optimization

How Stationary are the Processes ?How Stationary are the Processes ?
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Evaluation:                      time
Computation of RADJ

                         C  ≈   C    ?
                     R  ≈   R    ?
                 wOPT ≈ wOPT ?
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    We have to PREDICT    We have to PREDICT
     covariances      covariances C and returns RC and returns R

    Common methods:

1. The “Naive prediction”:
    The sample covariances and returns
    in a window backwards.
2.  Exponentially Weighted Moving Average
3.  ARCH, GARCH, D-GARCH ….
.
.
.
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The Naive PredictionThe Naive Prediction

At time T:
Use stock prices  Closei (t), i=1,…,n   t∈ {T-w,…,T-1}
to compute sample covariances and returns:
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Assume that these values are valid for t∈ {T,…,T+v}
and optimize away
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The Naive PredictionThe Naive Prediction

How much past data (w) should we use ?

Empirical investigation:

w days for
estimation of  R and C,
optimization and
computation of RADJ

20 days for                     time
estimation of  R and C,
optimization and
computation of RADJ

For w = 20,40,60,…,300 :
Sliding window testing with
two data sets with data from 1988-1997 :
24 Swedish stocks
29 American stocks
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Sliding WindowsSliding Windows

Prediction 1
Prediction 2
Prediction 2
.                                                         .
.              v days step                             .
.                                                         .
Prediction K

The performance is computed as the average
performance for the K predictions

time
w days for modelling v days for evaluation

Necessary since we can’t use cross validation
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The Naive PredictionThe Naive Prediction

How much past data should we use ?
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The Naive PredictionThe Naive Prediction

200 days looks like a good choice
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Improving the Naive PredictionImproving the Naive Prediction

Assumption: The Naive Prediction gains from removing certain
days which can be regarded as Outliers  or Noise.
The “Outlier” property for a day generalises into the future.
I.e. The same day should be removed in the next step.

Idea:
For each step in the sliding window predictions:
      Compute a prediction where all days t with
      “Contamination Factor” Kt>Klimit have been removed
       For each day t in the modelling data window:
              Remove day t, build models and predict C and R.
              Compare the prediction with one without removals.
              Update Kt depending on this comparision.
       next day t
next step
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The The RemoveRemove Algorithm Algorithm:
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The Contamination Factors KThe Contamination Factors Ktt
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Large Kt means that day t should be removed
when calculating C and R
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Number of Removed DaysNumber of Removed Days
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                                                           ∧
              for each monthly prediction C(t) .
A day j is removed iff Kj >Klimit        (Klimit=3 in the examples)

Swedish stocks

Average
11.9 days
removed
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Improvement Relative the Naive PredictionImprovement Relative the Naive Prediction
Improvement measured as RMSE
for the covariance predictions
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The Contamination Factors KThe Contamination Factors Ktt
Large Kt means that day t should be removed
when calculating C and R

American stocks
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Number of Removed DaysNumber of Removed Days

American stocks
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              for each monthly prediction C(t) .
A day j is removed iff Kj >Klimit        (Klimit=3 in the examples)

Average
11.7 days
removed
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Improvement Relative the Naive PredictionImprovement Relative the Naive Prediction
Improvement measured as RMSE
for the covariance predictions
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3.5%
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Results from PortfolioResults from Portfolio Optimization Optimization

Swedish stocks 88-97 :

American stocks 88-97 :

24
© Thomas Hellström 2000

Artificial DataArtificial Data
Every 50th trading day has a random noise
added to the stock prices

Swedish stocks 88-97 :
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days are
clearly
detected and
removed by
the algorithm
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Summary and ConclusionsSummary and Conclusions
✸ The RMSE for covariances is reduced by:

8.9% for the Swedish data
3.5% for the American data

✸ The increase in Risk Adjusted Return RADJ is:
2.5% for the Swedish data
1.9% for the American data

✸ Conclusion: Outliers don’t affect the computation of
optimal portfolios very much ?

✸ The Remove algorithm successfully detects and
removes outliers in data.

✸ Ref: Outlier Removal for Prediction of Covariance
Matrices with an Application to Portfolio Optimization
Thomas Hellström. Technical report UMINF 00.19 Department of
Computing Science, Umeå University


