
CLS Version 1.0

A Work Bench for Classification Algorithms
Written in Matlab

11th of December 1999

Thomas Hellström
Department of Computing Science

Umeå University Sweden.

email: thomash@cs.umu.se



CLS Manual

Page 2



CLS Manual

Page 3

Table of Contents

CLS Version 1.0 __________________________________________1

Table of Contents_________________________________________3

Introduction _____________________________________________4

Classification_____________________________________________4

The CLS System__________________________________________5

Installation ______________________________________________6

Supplied Data Sets ________________________________________7

Supplied Classification Algorithms_____________________________7

Performance Results _______________________________________8

Statistics _______________________________________________9

Testing Procedure________________________________________12

Optimization ____________________________________________14

The Command Line Version CLS0 ____________________________16

Data Transformations _____________________________________18

Appendix 1: Data Format __________________________________19

Appendix 2: Algorithm Interface ____________________________22



CLS Manual

Page 4

Introduction
This document describes the CLS system which is a Matlab based research tool for
classification algorithms. It can be used for bench marking, testing, and developing.

The information is mainly aimed at potential users but also for those who want to get an
overview of how a work bench for algorithm development can be designed and
implemented in the Matlab environment.

Classification
A classifier is a decision rule or an algorithm that assigns a class label C to an object
with features X={x1,..xm}. The most common methods use training data (Xi,Ci), i=1,...,n
to produce a mapping d(X)→C. The aim is to produce a rule that works well on
previously unseen data. I.e. the decision rule should "generalize" well. Examples of
classification problems can be found in all sort of branches:

 q Medical diagnosis
Data from a medical examination (blood pressure, age, pain indications, etc.)
is used to identify patients likely to have a certain illness.

 q Bankruptcy prediction
Given a set of variables (turnover, sales prognoses, annual profit, growth, etc.)
those companies likely to bankrupt within a year are identified. This
information can be used by a bank when a company applies for more credit.

 q Loan approval
A loan approval process involves filling out forms, which are then used by a
loan officer to take a decision. Typical variables of interest are age,
occupation, salary, car, family status, etc.

 q Potential customer analysis for the creation of mailing lists
Given a set of variables (age, sex, hobbies, occupation) those who are likely
to respond to a planned direct sales campaign are identified.

 q Quality control in manufacturing
Aims at finding the one defective part in a hundred or a thousand. Inputs may
be: solder joints, welds, cuttings, etc.

Common techniques for classification tasks are:

 q Decision trees

 q Neural Networks

 q Fuzzy-rule bases

 q Discriminant Analysis

 q K-nearest-neighbor techniques



CLS Manual

Page 5

The evaluation of performance is critical when developing classification algorithms,
especially those based on techniques with weak modeling that makes few assumptions
about the underlying classification process. Some applications, prediction of stocks to
name one, present a delicate evaluation situation since expecting a certain
performance for a working algorithm is still hard to distinguish from doing so by tossing
a coin. Other needs for proper evaluation of performance arise when new classification
algorithms are being developed and should be tested against other methods on a large
number of benchmark problems. This is of course a time consuming process, often
neglected in both research and real applications.

The CLS System
The CLS system is a Matlab-based environment for bench marking, testing, and
developing classification algorithms.

The development of CLS was instigated by the following observations:

 q The need for a uniform bench mark for classification algorithms
It is a well-known fact that no universal classifier exists, which has a superior
performance on all sort of applications. When developing algorithms, it is
therefore important to compute the performance for the algorithms in a uniform
way.

 q The developer should not need to spend time with the relatively trivial tasks
of data handling and performance computation.

CLS addresses these issues by providing an environment where data sets and
classification algorithms can be tested, tuned, and evaluated in an efficient way.

The development of CLS has been guided by the following design criteria:

 q Interactivity
A Windows version is preferred when performing interactive testing and
development of algorithms. It is also useful for educational purposes.

 q Automation
Experience shows that data analysis is an iterative process where the
analyses have to be repeated many times when writing scientific reports, and
in general when conducting research.  A command-line version of CLS is
therefore essential and can be used to create batch files that automatically
apply a specific classifier to a large number of data sets. Likewise, a range of
classifiers can be applied to one specific data set. The results can be easily
used for presentation material or report generation.

 q Easy expansion and adaptation
New data and classification algorithms should be easy to interface to the
system. Data can be read from ASCII files with a simple and clearly defined
format. All classification algorithms are interfaced to the CLS system through a
likewise simple and clearly specified interface. New classifiers can be added
by any user and become totally integrated without any changes to the CLS
system. More information can be found in Appendices 1 and 2.



CLS Manual

Page 6

Installation
The CLS system should be installed to a new directory on the Matlab search path. A
suggested directory name is cls. The zipped installation file creates the subdirectories
data and algorithms when unzipped. All three subdirectories should be added to the
Matlab search path.

Quick Start of the Windows Version WCLS
1. To start the system type WCLS in the Matlab command prompt.

The dialog box as shown in Figure 1 is displayed.

2. Click Select Data and select from .mat or ASCII files

3. Click Select Algorithm and select from the list. The function call can be edited
and the parameters can be changed.

4. Click Train&Test. The model is trained on the training data and tested on the
test data

Figure 1



CLS Manual

Page 7

The Data

In the example shown in Figure 1. the .mat file “breastcancer” was loaded.

The Classification Algorithm

The selected classification algorithm was “K-NEAREST NEIGHBOR”. The text field of
the button Select Algorithm shows the default function call for the selected algorithm.
This field can be edited as required. The explanatory text in the larger frame below the
field contains documentation for the selected algorithm. This frame can be scrolled up
and down.

Supplied Data Sets
The following data sets are available for tests and comparison (they are stored on the
\data directory):

 q breastcancer.mat

 q down.m

 q genericascii.m

 q diabetes.m

 q letter.mat

 q sonar.m

Click Select Data to display the documentation about the data sets.

New data can be easily added to the data base. Plain text files can be read by the
genericascii interface. For further information about data formats refer to Appendix 1:
Supplied Classification Algorithms

Supplied Classification Algorithms
The following classification algorithms are implemented in CLS (these algorithms are
stored on the \algorithms directory):

 q KNN
K-nearest neighbor algorithm.

 q ANN
Artificial Neural Network. Requires Matlab Neural Network Toolbox 3.0.1

 q LINDISC
Linear Discriminant Analysis.

 q LINREG
Linear regression. Not quite a classifier but supplied to serve as a template for
new classifiers.



CLS Manual

Page 8

Click Select Algorithm to display the documentation about the implemented classifiers.
New algorithms are fairly easy to interface and require no changes in the CLS program
files. Even the line documentation (shown when the algorithm is loaded) dispalys part
of the algorithm and not of the CLS system. For further details and specifications refer
to Appendix 2.

Performance Results
Click Train&Test to start the training phase for the selected classification algorithm
using the training data. When the training is completed, the data in the test set is
classified and the performance for the classifications is computed.

Figure 2



CLS Manual

Page 9

The results of the classification on the test data are presented in the so-called
confusion matrix

67.2% hit rate (129 out of 192 cases correctly
classified)
Confusion matrix for Classifications:

              No (1)           Yes (2)          Total
No  (1)       72 ( 83.7%)      14 ( 16.3%)       86
Yes (2)       49 ( 46.2%)      57 ( 53.8%)      106

This matrix gives the classification results for all combinations of classification/real data
in the examined test data set. The most interesting entity varies with the application.
Sometimes it is extremely important to minimize the “false negative” classifications
while at others the “false positive” ones should be minimized. Often, the total hit rate is
of interest. This figure is presented in the header line, like the 67.2% in the example
above.

Statistics
The menu item Statistics contains functions for graphical and numerical display of raw
data and also of the computed classifications.

The following functions are available:

 q 2D plot
The class labels are plotted versus two of the input variables (features). In
case there are more than 2 input variables in the loaded data sets, a popup
window enables you to select 2 of them for plotting. Two graphs are
generated; one for the Training data set and one for the Test data set. In
addition to these graphs a third graph shows the decision boundary for the
computed classifier. An example is shown in Figure 3 below. The circles
denote class 1 and the dots denote class 2.

    
Figure 3



CLS Manual

Page 10

 q 3D plot
The class labels are plotted versus two of the input variables (features). In
case there are more than 3 input variables in the loaded data sets, a popup
window enables you to select 3 of them for plotting. Two graphs are
generated; one for the Training data set and one for the Test data set. In
addition to these graphs a third graph shows the decision boundary for the
computed classifier. An example is shown in Figure 4 below. The graphs may
be rotated by dragging them with the mouse. The two classes are indicated by
different colored dots in the graphs. A black and white printout might therefore
look less informative than it does in reality…

    
Figure 4

 q Class Statistics
The distribution for all input variables is presented in histogram form with
separate bars for each class, as shown in Figure 5. The mean values for each
class/input variable are shown in the header of each sub-graph. Mean values
and standard deviations are presented in tabular form in the CLS window. An
example is shown in Figure 6 (the CLS window can be scrolled if not all the
data fits.)



CLS Manual

Page 11

Figure 5

Analyzing the training data
                         Class:     Benign         Malign
                                  Mean    Std    Mean    Std
               Clump Thickness:   2.72   1.67    7.05   2.54
       Uniformity of Cell Size:   1.28   0.88    5.98   2.66
      Uniformity of Cell Shape:   1.32   0.93    6.20   2.47
             Marginal Adhesion:   1.25   0.71    4.99   3.15
   Single Epithelial Cell Size:   2.16   1.13    5.84   2.58
                   Bare Nuclei:   1.51   1.47    7.15   3.25
               Bland Chromatin:   2.61   1.25    5.26   2.00
               Normal Nucleoli:   1.30   1.13    5.74   3.36
                       Mitoses:   1.11   0.69    2.97   2.77

Figure 6



CLS Manual

Page 12

Testing Procedure
The computation of performance can be done in a number of ways. The following
options are implemented in the CLS system:

 q Separate testing and data sets
The division of data in the input data files is used in this mode. The classifier
algorithm is trained with the testing data and the performance is computed for
the test data.

 q Full cross validation
The test and training sets are merged into one data set with N points. N
classifiers are constructed and are iteratively trained on N-1 points, where one
point is removed from the data set in each iteration. The performance for the
constructed (trained) classifier is then computed using this single removed
point.

 q N-fold cross validation
The test and training sets are merged into one data set with M points. This set
is further divided into N smaller partitions, each with (approximately) M/N
points. N classifiers are constructed, each using N-1 partitions with one
partition removed. This removed partition is used for the performance
computation. The total presented performance for the classifier is the mean
value for the N runs.

 q N runs with equally sized scrambled training and test sets
The test and training sets are merged into one data set with M points which
are randomly scrambled to avoid spurious behavior of the classifiers if the
original data sets are sorted by the classification of the points. This set is split
in half, thus producing a training and a test set, each with M/2 points. N
classifiers are constructed, each with randomly selected data sets. The total
presented performance for the classifier is the mean value for the N runs. The
example in Figure 7 shows a 10-fold cross validation of a classification task for
Downs syndrome. The K-nearest neighbor with K=25 is used as classifier.



CLS Manual

Page 13

Figure 7



CLS Manual

Page 14

Optimization
Many classifiers contain meta parameters that affect the performance in general or just
a specific application. Examples are the number of hidden nodes in an artificial neural
network and the value of K in the K-nearest-neighbor algorithm. The values most suited
for a given data set might vary and should therefore be investigated in a thorough
analysis. CLS supports this work by allowing the call to the classifier to contain a
variable which is automatically set to different values as you may request. The name of
the variable should be input in the Variable field, and a range such as 1:2:30 in the
Over field. Now click Optimize. The variable x is assigned values from the Over range
and a training and test is performed for each value of x. The results are presented as a
graph showing the hitrate as function of the value of x. Figure 8 shows an analysis of
the value of the parameter k in the knn classifier. The results are shown in the right
graph in Figure 9. From this one can deduce that the optimal value for k is around 25.

The optimization may be combined with the variants of Testing Procedure described
above. The left graph in Figure 9 shows the same analysis as before but with t different
Testing procedure. The plotted hitrate for each value of k is computed as the mean of
10 runs with equally sized scrambled training and test sets. This gives statistically more
reliable results. We also observe that the curve in this graph is less jagged than the
one to the right.

Exhaustive search and Global optimization allow multivariable optimization, but are not
yet implemented.



CLS Manual

Page 15

Figure 8

  

Figure 9



CLS Manual

Page 16

The Command Line Version CLS0
As described in the previously, CLS can be called from the command line in Matlab as
well. This is particularly useful when setting up a systematic test scheme for a certain
classification algorithm or for a certain data set. The procedure for using the command-
line version of CLS is as follows:

 q Select a data set from one of the supplied examples (listed in Section
Supplied Data Sets) on the \data directory, or set up your own data in either
ASCII format or as a .mat file. The data format is described in Appendix 1.

 q Choose one of the predefined classification algorithms (listed in Section
Supplied Classification Algorithms.)

 q Call the function cls0. Example:

p=cls0('knn(9)','breastcancer.m');
» p.hitrate
ans =
   94.1935
» p.perf1.ncount
ans =
    69     3
     6     77

The shown example is also run in the Windows version in Figure 2.



CLS Manual

Page 17

The help text for CLS is shown below:

 function perf = cls0(testfkn, problem, par)
 Stand alone call function for cls.
 Tests a classification algorithm on a data set and returns the
 classification performance.
 testfkn : string with function call to classifier
 problem : string with name of mat file or m file with cls data.
 par     : Optional struct with additional parameters:
           par.confmatrices
              set to 1 to enable computation of confusion mat.,
              perf.perf1.ncount(i,j) is in such case the # of
              cases where the classification is "i" and the
              actual value is "j".
           par.errorhandling 1=enabled (default)
           par.printoption : 0=silent (default)
           par.testmode :
               1:separate train and test set  (default)
               2:full cross validation
               3:n-fold cross validation  where n should be set
                 in par.nfold
               4:n runs with random data sets where n should be
                 set in par.nruns
 Example of usage:
 cls0('knn(9)','ex1')



CLS Manual

Page 18

Data Transformations
A few tools for data transformation are available from the Tools menu. The data can be
transformed with the following functions:

 q 0-1 normalization

 q Each feature is scaled so it covers the 0-1 range. The transformation is
performed for Training data and Test data separately.

 q Gaussian normalization

 q Each feature is transformed by subtracting the mean and dividing by the
estimated standard deviation. The transformation is performed for Training
data and Test data separately.

 q Principal components

 q All features are linearly transformed through a PCA. The transformation is
performed for Training data and Test data separately.

 q Add noise

 q The classifications for 10% (randomly selected) of the training and test data
are set to random classes (only for binary classifications).



CLS Manual

Page 19

Appendix 1

Data Format
CLD can read data of the following 3 types:

 q ASCII files with numeric data
The classification should be in one column and the rest of the features in the
other columns. Use the genericascii.m option in the Select Data function from
the CLS screen.

 q Interfaced data where raw data, labels, etc. are defined in a short Matlab
script for each data set.

 q .mat files generated by the "Save data as .mat" command in the Data menu.
This format can be used to speed up data handling once it has been read into
CLS using one of the other data formats.

The first type (ASCII files) is straight forward and requires no further explanation.

The second type (a specific interface script) is described below.



CLS Manual

Page 20

Data scripts

Data may be interfaced to the CLS system through a Matlab script customized for each
data set. This script may extract data from any source (most often by reading raw data
from files,) and should return the data in predefined variables that CLS reads while
performing the data analysis. The process of interfacing a data set is best explained by
an example. The following is a listing of the file down.m which interfaces data for
classification of the Downs Syndrome.

[ptrain, ctrain,ptest, ctest,ok]=
loadfiles('downlrn1.data','downtes1.data');
if ok
   features={'Age' 'AFP' 'Gest.age'};
   classlabels={'down-NO' 'down-YES'};
   classes=[0 1];
   title='Down syndrome (21-trisomy)';
end

The loadfiles function is a utility which reads ASCII data from files. More information
can be found further down in this Appendix.
The variables that should be defined by the script are:

 q ptrain
A matrix with features for the observations in the training data set. Row i in
ptrain contains the features for row i.

 q ptest
The same syntax as ptrain but for the test data set.

 q ctrain
A vector with the classification for each observation in the training data set.
Classifications should be integers.

 q ctest
The same syntax as ctrain but for the test data set.

 q Features (optional)
A cell array of strings with the names of the features

 q classlabels
A cell array of strings with the names of the classes.

 q title
A string with a description of the data set



CLS Manual

Page 21

loadfiles

The function loadfiles is a convenient way to read ASCII files into the matrices and
vectors that the CLS system requires. It was used by the script described above and
the following Help text for the function:

 function [ptrain,ctrain,ptest,ctest,ok]=
 loadfiles(trainfile,testfile,trainlines,testlines,pcols,ccol,fmt)
 % Loads ascii files with numeric data for classification problems.
 % The files should contain lines with equal number of separated
 % field. Valid separators are white space and comma.
 %
 % In parameters:
 % trainfile  : name of file with training data
 % testfile   : name of file with test data
 % trainlines : rows to use for training data. E.g: [ 1 100] for the %
 %              first 100 lines in file
 %              Default [] for all rows in file
 % testlines  : rows to use for training data. E.g: [ 1 100] for the
 %              first 100 lines in file
 %              Default [] for all rows in file
 % pcols      : Vector with column numbers for patterns. Default []  %
 %              for all but the last column.
 %              E.g: 2:9 for columns 2 up to 9.
 % ccol       : Column number for class identity for pattern
 %
 % fmt        : Format string for sscanf. E.g: '%i,%i,%s,%i,%i'
 %              %s-fields will be converted to corresponding ascii
 %              integer.
 %              Only one-character strings are allowed.
 %              Default ''  will uses str2num instead of sscanf anf
 %              works  fine most of the times.



CLS Manual

Page 22

Appendix 2
Algorithm Interface
New classifiers can be easily interfaced to the CLS system by writing a simple interface
routine and placing it on the algorithms directory under the CLS installation directory.
The layout of the interface routine is described by an example:

function c = A0(p1,p2,pN)
% ----------------------------------------------------------------------------
--
% function c = A0(p1,p2,pN)
% Template for algorithm-interface for the cls system.
%
% An algorithm file is called in two modes:
%
% if cls.Train
%    The model should be trained on cls.Ptrain and cls.Ctrain.
%    c should be returned as '' if the training went ok.
%    otherwise it should contain a suitable error message
% else
%    the (trained) model should be applied on cls.Ptest and
%    produce classifications which are returns in c.
%    On error, c should return a string with an error text.
% end
%
% Written 6th of Dec 1999. Last modified 6th of Dec 1999
% Thomas Hellstrom Umea Sweden. Email: thomash@cs.umu.se
% ----------------------------------------------------------------------------
--
% The following comments are the automatic interface for the WCLS system
% They will be shown when the algorithm is selected in WCLS.
% The comment lines should start with %x where x~=' '.
% Row 1: default function call. Row 2: Description. Rows 3- : Free text
% Example:
%- A0([5 3 0],300,0.01)
%- A hell of a Classifier!!!
%- A0(p1,p2,pN)
%- p1   : explanatory text
%- p2   : explanatory text
%- pN   : explanatory text
%
% The blank comment line terminates the comment section.

% cls is the structures with all variables for the wcls system
global  cls
% It is often convenient to save the results of the algorithm training
% in a global variable that can be accessed when the classifier should be
% applied on data (i.e. the th emodes of theis reoutine):
global net

% It ia good practise to define defaults for the in parameters:
if nargin<1, p1 = [5 3 0]; end
if nargin<2, p2=300; end
if nargin<3, p3=0.01; end



CLS Manual

Page 23

% This routine has two modes: training and not training.
% The training mode should train the model and save the result.
% The non training mode should used the trained model and classify
% data points cls.Ptest:
if cls.Train
   % A0train should return '' iff training went fine. Otherwise it should
   % return a string with an error message:
   net = A0train(cls.Ptrain, cls.Ctrain, p1,p2,p3);
   c = '';
else
   % A0class should return a vector with classifications for each element in
cls.Ptrain:
   % If an error is encountered, A0class should return an error message.
   c = A0class(net,cls.Ptest);
end
return


