
1 Parameter Tuning in Trading Algorithms Using ASTA

Thomas Hellstr�om1

Department of Computing Science

Ume�a University

SE-901 87 Ume�a, Sweden

Kenneth Holmstr�om2

Center for Mathematical Modeling (CMM)

Department of Mathematics and Physics

M�alardalen University

P.O. Box 883

SE-721 23 V�aster�as, Sweden

This paper describes ASTA, an Arti�cial Stock Trading Agent, in the Matlab

programming environment. The primary purpose of the project is to supply a stable

and realistic test bench for the development of multi-stock trading algorithms.

The behavior of the agent is controlled by a high-level language, which is easily

extendable with user-de�ned functions. The buy and sell rules can be composed

interactively and various types of data screening can be easily performed, all within

the Matlab m-�le language syntax.

Apart from being a Windows-based test bench for trading algorithms, the sys-

tem can be also run in batch mode, where a supplied objective function maps a

trading strategy to a pro�t measure. This can be used to tune parameters or to

automate the development of trading strategies, for example with genetic methods.

Examples of tuning parameters in standard technical indicators are presented using

new techniques for global optimization available in the optimization environment

TOMLAB. A modi�ed Sharpe Ratio is used as a performance measure.

To improve the performance of a given algorithm, the data from the simulated

trades can be output and post-processed by classi�cation methods such as arti�cial

neural networks or fuzzy rule bases.

The ASTA system has been applied successfully to historical stock data, and

results covering 11 years of the Swedish stock market are presented.
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1.1 Introduction

The idea of expressing stock prediction algorithms in the form of trading rules has

gained considerable attention in academic research in the last years. The interna-

tional conference NNCM-96 devoted a whole section in the proceedings to \Decision

Technologies". [Bengio 1997] writes about the importance of training arti�cial neu-

ral networks with a �nancial criterion rather than a prediction criterion. [Moody

and Wu 1997] use reinforcement learning to train a trading system with objective

functions such as pro�t, economic utility and Sharpe ratio. [Atiya 1997] describes

a trading system based on time-variable stop-losses and pro�t objectives.

This paper describes the system ASTA, which is an implementation of an Arti�-

cial Stock Trading Agent. With ASTA, trading-rule-based prediction algorithms are

easily evaluated using historical data. ASTA performs a simulation of multi-stock

trading, where trading rules are executed for a large number of available stocks

every day in the simulation period. The situation is fundamentally di�erent from

the single-stock prediction case.

Besides being an evaluation tool, ASTA is also a development tool where trading

rules can be combined and tuned. Examples of tuning parameters in the technical

indicator Stochastics are presented.

The program is developed in the Matlab programming language and is used either

as an ordinary objective function called from a user's program, or as an interactive

tool for making benchmarks and development of trading algorithms. The ASTA

system is thoroughly described in [Hellstr�om 1998a] and in the present paper we

only give a short introduction to the system.

1.1.1 The Usage of ASTA

The development of ASTA was instigated by a need for good working tools for the

following research tasks:

1. A test bench for trading algorithms.

Many \technical indicators" for stock prediction are accepted and widely used

without having ever been subject to an objective scienti�c analysis with historical

stock data. It is true that many commercial software packages for technical analysis

o�er both a comprehensive programming language and a simulation mode where

the performance can be computed. However, most available products do not take

this task very seriously and real trading simulations with a multi-stock portfolio

are seldom possible.

2. An interactive development tool for trading rules.
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There are reasons to believe that a successful trading system consists of many

disjunct parts where a buy signal may be, for example, \screened" by looking at

the traded volume. A buy signal issued with a low traded volume may then be

rejected. Other composite rules include looking at the general trend of the stock

before accepting a signal from the system. ASTA provides the possibility to test

such composite rules easily.

3. A non-interactive development tool for trading rules.

Furthermore, it is possible and maybe also fruitful to automate the development

of trading rules. Since ASTA de�nes the trading strategy as symbolic Buy rules

and Sell rules given as arguments to the system, it would be perfectly possible to

construct buy and sell rules in a genetic framework, for example.

Even if the general look of the algorithm is �xed, there are often a lot of tunable

parameters that a�ect the trading performance. Examples are �lter coe�cients,

order of polynomials and levels above or below which an entity should pass to

generate a trading signal. Since we believe that the actual behavior during a realistic

trading situation is essential for proper selection and optimization of an algorithm,

there is a need for an objective function that can be included in an optimization

phase for parameter tuning.

4. A data generating tool for post processing.

The comprehensive and user-friendly macro language in ASTA makes it a very

suitable tool for extracting data for further analysis, such as classi�cation with

neural networks or fuzzy rule bases.

1.2 Basic Approaches to Stock Predictions

Prediction algorithms for stock prices can be categorized in a number of ways. One

categorization focuses on the way the points to predict are selected. Two broad

classes can be identi�ed; \The Time Series Approach" and \The Trading Simulation

Approach"

1.2.1 The Time Series Approach

The traditional way to de�ne a stock prediction problem is to view the stock returns

as a time series y(t). For example, one-day stock returns are de�ned as

y(t) =
Close(t)� Close(t� 1)

Close(t� 1)
: (1.1)
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To predict the return h days in the future, y(t + h) is assumed to be a function g

of the previous (lagged) values

y(t+ h) = g(y(t); y(t� 1); :::; y(t� k)): (1.2)

The task for the learning or modeling process is to �nd the function g that best

approximates a given set of measured data. The unknown function g can be chosen

in many ways, e.g. as linear autoregressive (AR) models or feed-forward neural

networks. The unknown parameters in the model are normally computed by a

learning (identi�cation) algorithm that minimizes the root mean square prediction

error

RMSE =

vuut 1

N

NX
t=1

(g(t)� y(t+ h))2: (1.3)

It is most common to let the minimized RMSE measure (1.3) be the end point in

the prediction task. However, to utilize the predictions, a decision-taking rule has

to be created. A simple rule often used is

D(t) =

8<
:

Buy : if g(t) > �

Sell : if g(t) < ��

Do nothing : otherwise

9=
; ; (1.4)

where � and � are positive valued threshold parameters for buy and sell actions

depending on the predicted change in the stock price.

The time series formulation based on the minimized RMSE measure (1.3) is not

always ideal for useful predictions of �nancial time series. Some reasons are:

1. The �xed prediction horizon h does not re
ect the way in which �nancial pre-

dictions are being used. The ability of a model to predict should not be evaluated

at one single �xed point in the future. A big increase in a stock value 14 days into

the future is as good as the same increase 15 days into the future!

2. The equation (1.3) treats all predictions, small and large, as equal. This is not

always appropriate. Prediction points that would never be used for actual trading

(i.e. price changes too small to be interesting) may cause higher residuals at the

other points of more interest, to minimize the global RMSE.

3. A small predicted change in price, followed by a large real change in the same

direction, is penalized by the RMSE measure. A trader is normally happy in this

case, at least if, say, the small positive prediction was large enough to give a buy

signal.
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4. Several papers report a poor correlation between the RMSE measure and the

pro�t made by applying a prediction algorithm, e.g. [Leitch and Tanner 1991] and

[Bengio 1997]. A strategy that separates the modeling from the decision-taking rule,

such as the one in 1.4, is less optimal than modeling the decision taking directly

[Moody 1992]. Arguments 2 and 3 both give some explanations to these results.

1.2.2 The Trading Simulation Approach

Instead of separating the prediction task and the decision task as was done in

the \Time Series Approach", algorithms can be constructed to recognize situations

where one should buy and sell stocks respectively (The approach in the ASTA

system). A trading rule can be described as a time series T (t) de�ned as

T (t) =

8<
:

Buy : if g(X(t)) > 0

Sell : if g(X(t)) < 0

Do nothing : otherwise

9=
; : (1.5)

The unspeci�ed function g determines the type of trading rule. The argument X(t)

has the form

X(t) = (R1(t); :::; RN (t)); (1.6)

where each Rk(t) is an observable feature at time t. In the case of stock predictions

it may be for example the k-day returns de�ned as

Rk(t) = 100 �
Close(t)� Close(t� k)

Close(t� k)
(1.7)

or standard technical indicators such as the Stochastic Oscillator, the Relative

Strength Index (RSI) or the Moving Average Convergence/Divergence (MACD)

[Achelis 1995]. Rk(t) can of course also simply be lagged values of the returns, i.e.

Rk(t) = y(t� k).

The task for the learning process in The Trading Simulation Approach is to �nd

the function g to maximize the pro�t, when applying the rule on real data. Various

ways to measure the pro�t are discussed in [Hellstr�om 1998a]. Note the di�erence

between this and The Time Series Approach, where the learning task is to �nd a

function g that minimizes the RMSE error (1.3) for the entire time series.

The Trading Simulation Approach avoids many of the problems previously de-

scribed of the Time Series Approach but does indeed have problems of its own,

primarily that of statistical signi�cance. The trading rule T (t) normally issues

Buy or Sell signals only for a minor part of the points in the time series.
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1.3 Design of the Arti�cial Trader

In this section we discuss the design and implementation of the ASTA system. The

task of the Arti�cial Trader is to act on an arti�cial market with a large number

of available stocks that vary in prices over time. The Trader has to execute the

trading rule T (t) at every time step and decide whether to buy or sell stocks.

1.3.1 Performance Evaluation

The result of the arti�cial trader is presented as annual pro�ts together with the

increase in index. The mean di�erence between these two �gures constitutes the

net performance for the trader. The performance is displayed in both tabular and

graphical formats as shown in the table part of Figure 1.2 and in Figure 1.3. Various

considerations when measuring the pro�t are discussed in more detail in the thesis

by [Hellstr�om 1998b]. We now turn to the general architecture of the developed

system.

1.3.2 Basic Architecture

The architecture of ASTA is based on an object-oriented approach with two major

objects; the Market and the Trader. The basic layout is presented in Figure 1.1.

The Market Object The Market Object consists essentially of the total number

of stocks participating in the trading simulation. A stock is de�ned by four time

series; Close, High, Low and Volume. The basic operation on the Market Object is

the simulation of changing prices as the date moves from start date to end date.

The Trader Object The Trader Object is more complex than the Market Ob-

ject, as far as both attributes and allowed operations are concerned. The Buy rule

and Sell rule are the main attributes that a�ect the behavior of the Trader. They

are expressed in a high-level language and may include calls to a large number

of prede�ned Matlab functions that access the stock data in the Market Object.

User-de�ned functions can also be called directly.

Other Parts of the System The Market and Trader Objects have to be con-

trolled by a support system that takes care of the following \meta" operations:

� Simulation.

The Step in time operation has to be applied to the Market Object in a loop for

the selected time period. For each time step T , the Trader Object should also be

activated. The following pseudo code describes the full ASTA system:
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Figure 1.1
Basic Components of the ASTA System.

Trader.Initialize

Market.Initialize

loop until Market.T�EndDate

s = Trader.Sell Recommendations

Trader.Sell(s) % Sell all stocks of type s

s = Trader.Buy Recommendations

n = T.available cash / length(s)

Trader.Buy(s, n) % Buy n stocks of type s

Market.Step in time

end loop

Trader.Evalute

� User interface.

The end user assigns values to parameters such as the Buy rule and Sell rule of

the Trader and the chosen time period for simulation. After the simulation the

computed performance of suggested trades is presented.
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The \silent mode" makes it possible to use the system as an objective function in a

parameter optimization. The Arti�cial Trader is then called as a standard Matlab

function from the optimization program code, returning a function value for each

set of input parameters.

1.3.3 Prede�ned ASTA Functions

ASTA has a large number of prede�ned functions that make it possible to express

compound trading rules interactively (as Buy and Sell rules). They also provide the

developer of new algorithms with basic database access functions as well as some

useful high-level functions. A complete description of the prede�ned functions in

ASTA can be found in [Hellstr�om 1998a].

1.4 An Example

In this section one example from the Windows version of ASTA is presented. 32

major stocks with active trading from the Swedish stock market for the years 1987-

1997 have been selected for analysis. The main ASTA screen is shown in Figure

1.2. The most interesting items are the lines \Buy rule" and \Sell Rule". This is

where the trading algorithm is de�ned. The rules follow the Matlab syntax and can

include the prede�ned functions or the users' own functions with new algorithms.

The example shows a test of the Stochastics indicator, here de�ned as

Stochastics(t;K;KS; D) = mav(100 � (Close(t)� L)=(H � L); D); (1.8)

where L = mav(min(Low(t�K : t));KS) andH = mav(max(High(t�K : t));KS).

The parameterK is the length of the window, and KS and D the length of the mov-

ing average function mav. A Buy signal is issued when Stochastics(t;K;KS; D) >

Buylevel and a Sell signal when Stochastics(t;K;KS; D) < Sellevel. The param-

eters K;KS; D, Sellevel and Buylevel control the performance of a trading strat-

egy based on the indicator. De�ne Stoch(K;KS; D;Buylevel;Sellevel) as the ASTA

trading function, which will be subject to analysis in the next section.

In Figure 1.2, the \standard" values 30; 3; 3; 20; 80 common in technical trading

are used for the parameters. The results shown in Figure 1.2 and Figure 1.3 are

quite stunning, with an average annual pro�t of 53.4% compared to the 16.3%

achieved by the index. It is noteworthy that the only negative result is for the year

1997, where the strategy only made 1.7% whereas the index increased by 23.8%.
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Figure 1.2
ASTA command window with buy and sell rules using the Stoch trading function based on the
Stochastics indicator.

1.5 Viewing the Trader as an Objective Function

The obvious wish to maximize the pro�t p can be tackled in two ways:

1. Parameterizing the Buy rule and Sell rule, i.e. introducing parameters within

the rules. Example:

Buy rule = 'Close(T ) > Maxx('High'; Nhigh; T � 1)'

Sell rule = 'Loss > L j (Profit > P & Close(T ) < Close(T � 1))'

The function Maxx determines the maximum time series value in the interval

[T � Nhigh; T � 1]. It is now possible to optimize the pro�t P with respect to

the parameters Nhigh; L and P .

2. Viewing the Buy rule and Sell rule as symbolic expressions. The optimization

then turns into a search problem, most naturally implemented in a genetic frame-

work or using Inductive Logic Programming.



10 1. Parameter Tuning in Trading Algorithms Using ASTA

Figure 1.3
Performance of the trading function Stoch(30; 3; 3; 20; 80) based on the Stochastics indicator.

An optimization of one of the parameters in the Stochastics trade function serves

as an example for approach 1. We set up an optimization with buy and sell rules

according to:

Buy rule = 'Stoch(30; 3; 3; Sellevel; 80)'

Sell rule = 'Stoch(30; 3; 3; Sellevel; 80)'.

The excess pro�t P can now be optimized with respect to Sellevel: The graphs

in Figure 1.4 are automatically generated by the \Sweep" function in the ASTA

system. The name of the parameter is given in the \Parameter" text box and the

range in the "Values" text box.

It must be emphasized that optimization of the performance is a multi-dimensional

parameter estimation problem. The graphs presented show the pro�t P as a func-

tion of one of the involved parameters whereas the rest of the parameters are �xed.

The main purpose is to illustrate the possibilities and problems involved, even in a

one-dimensional optimization.
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Figure 1.4
Trading results as a function of the Sellevel parameter. Stocks: SXG. Years: 87-97. Buy rule:
Stoch(30; 3; 3; Sellevel;80). Sell rule: Stoch(30; 3; 3; Sellevel;80).
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From the summary graph (top left) of the entire training period we can deduce

that the highest pro�t is achieved for a Sellevel somewhere around 35. However,

viewing the data at a higher resolution reveals a more complicated situation. In the

bottom left diagram the same relation is plotted with one curve for each year in

the training data set. It is clear that the mean pro�t is totally dominated by the

results from one of the years (1993).

From these curves we can learn at least two important points:

1. The spread between individual years is very high.

2. The location of the maximum is not obvious.

This behavior of data is typical for most variables. The pro�t cannot be easily

described as a function of measurable variables without introducing a dominant

noise term in the function. Let us view the annual excess pro�t as a stochastic

variable P (�), where � stands for one particular setting of the parameters that

a�ect the pro�t. In the shown example, � is the Sellevel parameter. P (�) has been

sampled once per year during the eleven years in the data set

fP1(�); P2(�); P3(�); P4(�); P5(�); P6(�); P7(�); P8(�); P9(�); P10(�); P11(�)g: (1.9)

Viewed this way, the task of tuning the parameter � to �nd the \maximum" pro�t P

is not well de�ned. P is a stochastic function and consequently has no \maximum".

It has a probability distribution with an expected value E and a variance V . It's

important to realize that tuning � to maximize E[P (�)] is just one of the available

options. Maximizing E[P (�)] provides the highest mean performance. Another

possibility is to maximize the lower limit of a con�dence interval. Since the risk

factor is always a major concern in investments, and since the spread between

individual years obviously can be very high, this sounds like a promising idea. A

lower limit Plow for a con�dence interval could be de�ned as

Plow = E[P (�)]�
p
V [P (�)]; (1.10)

where V [P (�)] is the variance of the stochastic variable P (�). Yet another possibility

is to use the Sharpe Ratio SR, which expresses the excess return in units of its

standard deviation as

SR =
E[P (�)]p
V [P (�)]

: (1.11)

The Sharpe Ratio is normally used to evaluate the performance of a trading strategy

( [Sharpe 1966, Sharpe 1994]). However, [Choey and Weigend 1997] suggest to use

the Sharpe Ratio as an objective function in portfolio optimization and derive a
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learning algorithm for arti�cial neural networks. The Sharpe Ratio should be as

high as possible for an optimal trading algorithm.

Due to the high noise level in the data we have added a modi�ed Sharpe Ratio

where the outliers are removed. The largest and smallest Pi(�) in the set 1.9 are

removed before taking the expected value and standard deviation for each �. The

unmodi�ed Sharpe Ratio is shown in the top-right diagram and the one with

outliers removed in the mid-right diagram. As we can see, the one with the outliers

removed clearly reveals a maximum at around 20-25 followed by a clear decline.

The unmodi�ed Sharpe Ratio shows no such pattern.

1.5.1 Global Optimization

It is evident from the previous discussion that whatever performance measure we

are using, the resulting objective function is very noisy. Therefore, new techniques

for global optimization are needed to �nd the correct extreme point and optimal

parameter values for a multi-variable problem.

We have made some preliminary tests using the DIRECT algorithm ([Jones et al

1993]) as implemented in the optimization environment TOMLAB ([Holmstr�om

1999]). In Figure 1.5 we see the points sampled when trying to �nd the optimal

buy and sell rules in the Stochastics Indicator. They cluster around (40; 78), which

seems to be the global optimum. In Figure 1.6 one-dimensional views of the Net

pro�t (with reversed sign) versus the Buylevel and the Sellevel are shown. The

optimum is more well-determined and distinct in the Buylevel. The global optimum

is in fact very close to the standard values used in technical analysis. Further testing

and analysis are needed to establish robustness properties of the parameters found.

1.6 Results and Further Development

The presented system provides a powerful tool for the development and evaluation

of trading algorithms. Parameter settings can be tested and data screening can

be easily performed interactively. As was mentioned in section 1.1.1, one of the

reasons for the development of the ASTA system was to use it as an objective

function when tuning model parameters and to �nd the general structure of trading

rules, for example within a generic framework. The preliminary results show both

possibilities and di�culties. The track can be examined considerably.

The dangers with \data snooping" got highlighted by breaking down the perfor-

mance measures into shorter intervals. However, the inherent uncertainty result-
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Figure 1.5
Sampled points in the parameter space by the TOMLAB global optimization solver when opti-
mizing the buy and sell levels for the trading function Stoch(30; 3; 3; Sellevel;Buylevel).

ing from the noisy processes involved calls for more computer-intensive simulation

schemes to achieve statistically signi�cant performance measures.
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Figure 1.6
One-dimensional views of the global optimization of the parameters in the trading function
Stoch(30; 3; 3; Sellevel;Buylevel). The left graph shows the Net pro�t versus the Buylevel for
an equidistant grid of values of the Sellevel. The right graph shows the Net pro�t versus the
Sellevel for an equidistant grid of values of the Buylevel. Note that the sign of the Net pro�t is
reversed, making it a minimization problem.


