
 

 
 

  
Abstract— This paper gives a brief overview of challenges in 

designing cognitive architectures for Learning from 
Demonstration. By investigating features and functionality of 
some related architectures, we propose a modular architecture 
particularly suited for sequential learning high-level 
representations of behaviors. We head towards designing and 
implementing goal based imitation learning that not only allows 
the robot to learn necessary conditions for executing particular 
behaviors, but also to understand the intents of the tutor and 
reproduce the same behaviors accordingly. 
 

Index Terms— Learning from Demonstration, Cognitive 
Architecture, Goal Based Imitation 
 

I. INTRODUCTION 
EARNING from Demonstration (LfD) is one of the most 
popular learning techniques to teach robots new skills by 

observing a human or robot tutor [2]. LfD involves several 
challenges, such as generalization of learned behaviors, 
representation of behaviors, sequence learning, and 
reproduction of complex behaviors [23], [24], [25]. Some 
researches proposed architectures based on biology and 
psychology of human or animal cognitive systems [3]. 
Examples of biologically inspired models are given by Billard 
et al. [7], Kopp et al. [8] and Demiris et al. [19]. The neural 
model approaches, fundamentally driven by mirror neuron 
systems [10], are also considered by many researchers [18], 
[19]. There are also some recent efforts in modeling goal-
based imitation that infer intents of the tutor rather than 
repeating observed actions and following exact trajectories 
[4], [5], [16]. 

Most of the works referred above, focus on learning and 
reproduction of low-level representations (sensory-motor 
events) of behaviors. In this work we assume that these 
representations are already available as behavior primitives 
(below often referred to as primitives) such that no learning is 
required at the sensory-motor level. Primitives have been 
applied in robot control for several years, and there are 
proposed models describing challenges of connecting 
perception to primitives [13]. Primitives accomplish goal-
directed behaviors and can be formalized as control policies 
 

 

[1]. Primitives may also represent complete temporal 
behaviors [20], [21]. 

The main goal of the work presented in this paper is to 
introduce a novel architecture for learning contexts, which are 
high-level representations of behaviors. Each context is 
associated with a predefined action and contains information 
on necessary perceptual conditions for this action to be 
executed. Actions are part of the architecture and act as 
interfaces between contexts and primitives in order to retrieve 
objects of attention from the contexts, convert them into low-
level information and pass them as parameters to primitives.  

We improve the previously developed architecture [6] by 
implementing cognitive mechanisms to learn intentions of the 
tutor and reproduce the behavior through activating learned 
contexts and recognizing the associated stimuli.  

The remainder of the paper is structured as follows: In the 
next section, the proposed architecture and its components are 
elaborated. Section III introduces a novel algorithm for 
learning new contexts, and mechanisms for reproduction of 
learned behaviors. Section IV describes results from several 
experiments. Section V explains goal inference mechanisms 
which are key factors for behavior reproduction.  

II. ARCHITECTURE OVERVIEW 
Fig. 1 depicts the developed architecture. In the following 

sections all units and modules are described. 

A. Perception Unit 
This unit is responsible for perceiving the environment by 

processing sensor data. Sensors can deliver either low-level 
data, like laser scanners, or high-level data, like gesture 
recognizers, emotion detectors and RFID tag readers. The 
difference between low and high-level data is the amount of 
processing required to connect the output of the sensors with 
concepts. For instance, reading the RFID tag of a cup and 
fetching its properties from a database, requires less 
processing than perceiving the cup and its properties solely by 
a laser scanner.  

The Perception Unit delivers processed information to the 
various modules of the Cognition Unit. 
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Fig. 1. Units and modules of the architecture 

B. Cognition unit 
The Cognition Unit consists of three main modules. The 

High and Low-Level controllers are responsible for learning, 
recognizing and executing contexts. The Goal Management 
module is designed for creating and inferring goals, explicitly 
and implicitly, as well as keeping track of current goal and 
intentions.  
 
High-Level controller 

This module is responsible for learning contexts. A main 
component of this module is the long-term memory 
represented by an, initially predefined, Semantic Network 
(SN). It contains nodes representing concepts and objects 
according to a pre-defined ontology. Each context is a node in 
the SN. By the learning process, it gets associated with a 
behavior primitive, and with concepts and objects in the SN. 
In our previous work we proposed a novel approach that 
creates connections (links) between the context and nodes 
connected to perception [6]. Perceptions are outputs of the 
perception unit, and activate the corresponding nodes in the 
SN. Each node has an activation level that defines how 
strongly it is activated.  

After the learning phase, the robot should be able to 
recognize conditions for triggering a specific context, and 
thereby executing the associated behavior.  This is denoted the 
reproduction phase. The perception mechanisms will change 
activation levels of sensed nodes, which in turn are connected 
to one or more contexts. Due to the spreading activation 
mechanisms in the SN, activation will be propagated to 
connected nodes [11] such that the robot will be able to 
generalize the learned contexts stored in the SN [12]. In this 
way, the Context Recognition module selects one or several 

contexts. 
The most highly activated context will be selected by the 

Context Selection module and made available to the Low-
Level Action Controller. 

 
Low-Level controller 

As mentioned earlier, the robot is equipped with a set of 
pre-defined behavior primitives. In the learning phase, the 
High-Level Controller associates a behavior primitive with the 
newly learned context via actions. This association is 
automatically recognized by the robot during tele-operation. In 
the reproduction phase, the Low-Level Controller is 
responsible for selecting motor commands in accordance with 
the pre-defined scheme in the selected primitive, and passing 
them to the Output Unit for execution. 

 
a) Primitives  

As described above, primitives are pre-defined low-level 
representations of behaviors. In the examples in this paper, we 
use “Grip” (gripping an object with the robot arm) and “Go to 
Location” (moving the robot to a particular location). The 
associations between actions and primitives are pre-defined. 

 
b) Actions  

Actions have an intermediary role in connecting contexts 
with primitives. They retrieve objects of attention from 
contexts and convert them to parameters required by the 
primitives. For instance, if the context “Get the Cup” is 
activated by perceiving the “Cup 1” as an object of attention, 
the associated action will pass “Cup 1” as parameter to the 
“Go to Location” primitive. The concept Object of attention 
refers to an object that the robot is going to work on. In the 
examples in this paper, we use three actions, each one mapped 
to a primitive. “Explore and Reach” is mapped to “Go to 
Location”, “Grab” is mapped to “Grip”, and “Move to Safe 
Location” is also mapped to “Go to Location”. The reason to 
keep actions and primitives separated is due to the possible 
association of several actions to one primitive. This allows 
actions to have different sets of conditions and way of 
providing parameters while primitives are only focusing on 
low-level aspects.  

All actions and primitives are pre-defined in the system. 
The necessary pre-defined actions and primitives depend on 
the scenario and more importantly, the robot’s capabilities. 

 
Goal Management 

For most complex behaviors, several primitives have to be 
activated in sequence. A goal represents a sequence of 
contexts. Each goal has a set of conditions and objects of 
attention that defines what to look for and when to activate a 
specific context. Such a goal can be “Help human rescue a 
victim”, “Moving victim to a safe place” and etc. 

One of the advancements of the current design in 
comparison with the previously developed architecture [6] is 
the Motivation system. It may be triggered by cognitive 
mechanisms such as response facilitation and priming, which 
motivate the robot to choose specific goals and eventually 



 

 
 

execute desired actions. This is denoted as implicit goal 
determination.  Response facilitation is the phenomenon when 
observing a specific act, which is already in the repertoire of 
the robot, increases the probability of the robot later 
performing the same act [9]. One example is if the robot 
observes a human approaching a cup and grabbing it. This is 
identified as “Grab the Cup” behavior and increases the 
probability of the robot executing the same behavior.  

Priming can be defined as an implicit memory effect that 
speeds up the response to stimuli because of exposure to a 
certain event or experience [22]. In our case, priming is the 
pre-activation of concepts stored in SN, in order to bias the 
learning process or affect the goal selection mechanism. For 
instance, if a “Red Ball” is shown to the robot, the nodes 
“Red” and “Ball” are primed and pre-activated. Therefore, the 
chances to select and satisfy goals that have connections to 
“Red” or “Ball” increase. 

C. Output unit 
This unit converts low-level commands from the Cognition 
unit to motor commands. In addition, it enables tele-
operation of the robot.  

III. LEARNING AND REPRODUCTION PHASES 
In the learning phase, a demonstration of a desired behavior 

is used to associate high-level contexts with perceived 
information. Each context is also mapped to a behavior 
primitive via an action such that the primitive will be executed 
when similar perception occurs during the reproduction phase.  

A. Learning 
The learning process is one of the main tasks of the 

architecture. In our previous work we have developed a 
learning algorithm based on novelty detection technique [6]. 
In this paper we will describe a new context-learning 
algorithm called Multiple Demonstrations (MD). We assume 
that we already have a number of predefined primitives and a 
predefined SN based on an ontology of the domain in which 
the robot should operate. The SN is interfaced to the 
Perception unit and activates related nodes through spreading 
and decaying activation mechanisms [11]. 

 
Context creation 

The learning process starts by a tutor demonstrating the 
wanted behavior through tele-operation.  A new context node 
is added to the SN. The robot observes the environment by 
sampling sensors at a given frequency. In the reported 
experiments, RFID tags are used for simplified object 
detection and identification. Each read-out gives identities and 
properties of objects perceived in the environment and causes 
the corresponding nodes to be activated. For instance, if the 
RFID belonging to a red ball is detected, the nodes “Red” and 
“Ball” will be activated. In this way, the RFID reader emulates 
sensors for object type and color. Throughout the learning 
process, activation levels propagate to all connected nodes by 
spreading activation. This mechanism allows the robot to 
generalize one concept to another. For controlling the degree 

of generalization, we define an energy level variable for each 
node. The energy level of a node determines how far 
activation level will spread from the initial node [15].  

Sometimes nodes are deactivated during the demonstration 
due to noise and uncertainties in the RFID equipment. 
Therefore, a decaying delay parameter is defined to prevent 
immediate deactivation of a node when the corresponding 
object is not longer perceived in the environment. 

The same behavior must be demonstrated to the robot at 
least twice.  A new SN will be created each time, and the 
context node will be connected to nodes activated by the RFID 
read-outs. Due to noise and varying external conditions, these 
nodes may differ between demonstrations. To finalize the 
learning process, two issues must be solved: First, the most 
relevant connections must be determined. Second, suitable 
weights between the remaining nodes and the context node 
must be computed. In order to identify relevant connections, 
the MD algorithm looks for nodes with similar activation 
levels in all demonstrations. One-Way ANOVA [14] is used to 
compare mean node activation values of all nodes. The null 
hypothesis is that there is no significant difference between 
demonstrations for activation of a node. The following 
computations are performed for each one of the nodes 
connected to the new context node. 

For each demonstration, sum of activations (𝑆𝐴𝑥), activation 
mean value (𝜇𝐴𝑥), squares of deviations (d2) and sum of 
squares of deviations (Sd

2) are calculated for each node: 

𝑑2 = (𝐴𝑥  −  𝜇𝐴𝑥)2 (1) 
 

where 𝐴𝑥 is the activation value of node x. 
  

𝑆𝑑2 = �𝐴𝑥2 −
(∑𝐴𝑥)2

𝑛
 

(2) 
 

where 𝑛 is number of samples in the demonstration.  
Grand Total (GT) is calculated as 

 
 

𝐺𝑇 =  ∑𝑆𝐴𝑥 . (3) 
Then we calculate total sum of squares (T) as 

  

𝑇 =  𝐺𝑇 −  
(𝐺𝑇)2

∑ 𝑛𝑖𝑟
𝑖=1

 (4) 

where r is the total number of demonstrations and ni is 
the number of samples in demonstration i. Between 
groups sum of squares (BG) is calculated as 
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Within groups sum of squares (WG) is calculated as 

  

𝑊𝐺 =  𝐺𝑇 −�
(𝑆𝐴𝑥𝑖)

2

𝑛𝑖

𝑟

𝑖=1

. (6) 

The number of degrees of freedom for between 
groups sum of squares (BDF) is calculated as  

 
 

𝐵𝐷𝐹 = 𝑟 − 1. (7) 



 

 
 

The number of degrees of freedom for within 
groups sum of squares (WDF) is calculated as follows:  

 
 

𝑊𝐷𝐹 = 𝑟 �
∑ 𝑛𝑖𝑟
𝑖=1

𝑟
− 1� . (8) 

The total degree of freedom (TDF) is calculated as 
follows:  

 
 

𝑇𝐷𝐹 = 𝑊𝐷𝐹 + 𝐵𝐷𝐹. (9) 
Finally the F value is calculated as 
  

𝐹 =
𝐵𝐺
𝐵𝐷𝐹
𝑊𝐺
𝑊𝐷𝐹

. (10) 

The F distribution (p=0.05) with the given BDF and WDF 
is then looked up. If the calculated F has higher value, we 
reject the null hypothesis and conclude that there is a 
significant difference between demonstrations for activation of 
the node. The node is then disconnected from the context 
node. The process is repeated for all nodes initially connected 
to the context node. Finally, weight values for the remaining 
nodes are calculated as 

𝑤𝑥 =
∑ 𝑁𝑥𝑖𝜇𝐴𝑥𝑖
𝑟
𝑖=1

𝑃
 (11) 

where 𝑁𝑥𝑖 is the number of samples for which node x has 
activation value above 0 during the ith demonstration, and P is 
the weighted sum for all nodes, calculated as 

𝑃 = ��𝑁𝑗𝑖𝜇𝐴𝑥𝑗𝑖

𝑛

𝑗=1

𝑟

𝑖=1

. (12) 

After the process of context forming, the goals are created 
and related contexts are associated to each one of them. 

 
Goal creation 
The purpose of designing a goal based architecture is to help 
the robot identifying the intentions of the tutor. A goal is a 
sequence of contexts that represents a complex behavior. 
Fulfilling a goal means reproducing the sequence of 
corresponding primitives according to certain conditions set 
by the actions. Some of these conditions can be inferred from 
the predefined SN and are learned during the context learning, 
while the rest are hard-coded in the action associated with the 
learned context. As an example depicted in Fig. 3, “farness” of 
an object in “Explore and Reach” action cannot be inferred 
from the SN since its value changes by each sensor read-outs. 
Therefore, such a dynamic parameter cannot be represented as 
a node in the SN. Thus, part of the condition must be hard-
coded to always check if the robot has sufficient distance to 
the object of attention in order to continue execution of the 
action. The relations between goals, contexts, actions and 
primitives are illustrated in Fig. 2 and elaborated in the next 
section. 

In order to create a new goal, one has to break down a 
complex behavior into a set of contexts such that each one 
represents a behavior primitive. Due to the architectural 
design, each context maps to one action and each action maps 

to one behavior primitive. Therefore, complex behaviors are 
broken down into parts that can be executed by single 
predefined actions. Each such part is learned as a context. This 
is done by matching the tele-operation commands during 
demonstration with hard coded primitives and actions. After 
finishing the learning process of one context, the tutor starts 
demonstrating the next context. Environmental conditions help 
the robot to automatically learn the subsequent context as a 
sequence of the preceding one. 

 
Fig. 2.  Relations between Goal, Context, Action, and Primitive 

 
One of the main assumptions is that actions and behavior 

primitives have a set of pre-defined parameters which applies 
to objects of attention. Both contexts and actions have objects 
of attention, which determine on which object to operate. All 
conditions defined in the actions are checked with the objects 
of attention. 

As long as the conditions are still satisfied, the associated 
behavior primitive will be executed. 

After completion of the high-level learning phase, all 
learned contexts and their corresponding actions are put 
together in a sequence, and a new goal object is created. New 
goals with associated contexts and corresponding actions are 
stored into a database for retrieval during the reproduction 
phase. 

IV. EXPERIMENTS 
 In this section we will present experimental results for 

learning and reproduction of new contexts. Consider, as an 
example, the behavior “Take the Rubble from Human” as part 
of an Urban Search and Rescue (USAR) application. The 
setting is a commercial/residential urban environment 
damaged by a severe earthquake. The goal for the robot is to 
assist a human agent cleaning a pile of rubbles covering a 
victim. The behavior starts with looking for a human agent, 
getting close to him/her, taking the rubble offered by the 
human, turning away and reaching the white sign (safe place). 
Fig. 3 depicts the “Take the Rubble from Human” goal, which 
shows the relations between contexts, their corresponding 
actions and objects of attention. The rest of the section 
explains how the robot can learn each context and reproduce 
the same behavior by perceiving similar environmental 
conditions.  



 

 
 

The behavior is broken down into sub-behaviors such that 
each context can be associated to one of the pre-defined 
actions and primitives. It is the responsibility of the tutor to 
conduct the learning of each context in such a way that it can 
be associated with an action. The robot starts learning the first 
context “Find Human” as explained in Section III. This is 
illustrated in the left-most column in Figure 3.  

 
Fig. 3.  Structure of “Take rubble from human” goal 

 
The “Human Present” condition refers to a node connected 

to a high-level RFID sensor for detection of humans.  Most of 
the time, an object is detected within a fraction of a second. 
Therefore, by executing “Explore and Reach” action 
frequently via tele-operation until detecting a human, the robot 
will establish connections between the “Find Human” context 
node and objects perceived by the RFID tag reader. The tutor 
must tele-operate the robot until the correct conditions for 
each context is learned. The pre-defined SN used for learning 
all contexts is shown in Fig. 4. Some nodes represent concepts 
and are denoted category nodes, the rest represent real objects 
in the world and are simply denoted nodes. 

 
Fig. 4.  Predefined SN used for learning the contexts 

 
For learning the first context, “Find Human”, the robot 

recognizes “John” by the RFID tag on his bracelet during the 
exploration. As a result, the “John” node in the SN is 
activated and will spread the activation to the connecting 
nodes.  

The tutor tele-operates the robot to get close enough to 

“John” and stops the robot. This signals that learning of the 
first context is completed. Fig. 5 shows the activation levels of 
all nodes during the learning of “Find Human” context. The 
behavior has been demonstrated four times with the same 
person and objects.  

 
Fig. 5.  Node activation levels for learning the “Find Human” context 
perceived in four demonstrations 

 
Based on equations (1) to (10), results are calculated and 
shown in Table I. 

TABLE I 
“FIND HUMAN” CONTEXT LEARNING VALUES 

Node BG WG T BDF WDF TDF Cal. F 
John 0.403 23.25 23.65 3 104 107 0.6017 
Mary 0.016 0.93 0.94 3 104 107 0.6018 
Kate 0.016 0.93 0.94 3 104 107 0.6018 
David 0.016 0.93 0.94 3 104 107 0.6018 
Human 0.403 23.25 23.65 3 104 107 0.6017 
Explorable 0.016 0.93 0.94 3 104 107 0.6018 

 
For all nodes, the calculated F-ratio is less than the 

tabulated value for the F-distribution at significance level 
p=0.05 (2.688), which means that node activations from 
different demonstrations are from the same distribution, and 
all nodes should remain connected to the context node. 

The weight values for connecting nodes are calculated with 
equations (11) and (12) and are shown in Table II. 

TABLE II 
“FIND HUMAN” WEIGHT VALUES 

Node Weight 
John 0.403 
Mary 0.016 
Kate 0.016 
David 0.016 
Human 0.403 
Explorable 0.016 

 
The final relations for the “Find Human” context are shown 

in Fig. 6. The solid links are semantic relations that come from 
the pre-defined SN and the dashed links are learned during the 
demonstration. 



 

 
 

 
Fig. 6.  “Find Human” context 

 
Also features, like “Explorable” or “Graspable”, are 

represented as nodes in the SN. This facilitates reasoning and 
allows the system to check if an object of attention can satisfy 
conditions of the actions.  

The learning process of the second context, “Get Rubble”, 
will start after robot reaches “John”. “John” picks up a piece 
of stone (Stone1) and offers it to the robot, while the tutor 
grabs the piece with the robot arm through tele-operation. 
While learning this context, the “Grab” action command and 
its linked primitive are executed by the tutor so the robot can 
recognize the action and associate it with the context.  

Through spreading activation, the concepts “Stone” and 
“John” will be generalized to “Rubble” and “Human” 
respectively. Therefore, the final SN does not only contain the 
objects perceived, but also similar objects. 

For the “Get Rubble” context, the tutor demonstrated the 
behavior four times with the same objects and person. The 
learning values are listed in Table III. 

TABLE III 
“GET RUBBLE” CONTEXT LEARNING VALUES 

Node BG WG T BDF WDF TDF Cal. F 
Concrete 0.004 0.264 0.268 3 82 85 0.429 
Stone 0.323 20.60 20.93 3 82 85 0.429 
Rubble 0.104 6.617 6.720 3 82 85 0.429 
Brick 0.004 0.264 0.268 3 82 85 0.429 
Stone1 0.323 20.60 20.93 3 82 85 0.429 
Human 0.051 6.487 6.538 3 82 85 0.215 
David 0.002 0.221 0.223 3 82 85 0.271 
John 0.054 5.526 5.581 3 82 85 0.271 
Mary 0.002 0.221 0.223 3 82 85 0.271 
Kate 0.002 0.221 0.223 3 82 85 0.271 
Graspable 0.004 0.264 0.268 3 82 85 0.429 
Explorable 0.004 0.645 0.650 3 82 85 0.201 

 
The tabulated value F (p=0.05) is 2.715, which means that 

all node activations are from the same distribution and as for 
the previous context, all nodes should remain connected. The 
weight values for remaining nodes are shown in Table IV. 

TABLE IV 
“GET RUBBLE” WEIGHT VALUES 

Node Weight 
Concrete 0.0149 
Stone 0.1315 
Rubble 0.0745 
Brick 0.0149 
Stone1 0.1315 
Human 0.2241 
David 0.0421 
John 0.2104 
Mary 0.0421 
Kate 0.0421 
Graspable 0.0149 
Explorable 0.057 

 
As illustrated in Fig. 7, the “Get Rubble” context gets 

connected to two categories: Human and Rubble. In the action 
layer shown in Fig. 3, the “Grab” action requires an object 
that is close and graspable. Thus, the only category that meets 
this requirement is the “Rubble”. Therefore, all the conditions 
set in the “Grab” action are applied to objects in the 
“Rubble” category. 

 
Fig. 7.  “Get Rubble” context 

 
The third and the last context to be learned is “Move 

Rubble” which starts when the robot holds the stone. The tutor 
tele-operates the robot to turn away from “John” and searches 
for the “Safe Sign”. After reaching the designated location, 
demonstration of the whole behavior is completed.  

The same computation is done for the “Move Rubble” 
context after four demonstrations. The computed values are 
listed in Table V. 

TABLE V 
“MOVE RUBBLE” CONTEXT LEARNING VALUES 

Node BG WG T BDF WDF TDF Cal. F 
Concrete 0.003 0.878 0.882 3 88 91 0.105 
Stone 0.042 17.75 17.79 3 88 91 0.07 
Rubble 0.005 6.661 6.667 3 88 91 0.026 
Brick 0.003 0.878 0.882 3 88 91 0.105 
Stone1 0.069 14.4 14.47 3 88 91 0.141 
Sign 0.305 23.83 24.13 3 88 91 0.376 
Safe Sign 0.069 14.4 14.47 3 88 91 0.141 
Color 0.069 14.4 14.47 3 88 91 0.141 
White 0.069 14.4 14.47 3 88 91 0.141 
Red 0.141 5.565 5.706 3 88 91 0.743 
Graspable 0.003 0.878 0.882 3 88 91 0.105 
Explorable 0.065 7.166 7.232 3 88 91 0.267 

 
The tabulated value F (p=0.05) is 2.708, which is larger 

than all calculated F. Therefore, all nodes remain connected 
also for this context. The weight values for remaining nodes 
are shown in Table VI. 

TABLE VI 
“MOVE RUBBLE” WEIGHT VALUES 

Node Weight 
Concrete 0.0299 
Stone 0.1652 
Rubble 0.0968 
Brick 0.0299 
Stone1 0.1503 
Sign 0.1091 
Safe Sign 0.1056 
Color 0.0853 
White 0.0853 
Red 0.0426 
Graspable 0.0299 
Explorable 0.0696 

 
What the robot has learned as “Move Rubble” is illustrated 

in Fig. 8. 



 

 
 

 
Fig. 8.  “Move Rubble” context 

 
Finally, all learned contexts are grouped together 

automatically to form a new goal that represents the 
demonstrated behavior (Fig. 3). The sequencing is done 
automatically by the learning routine that sets the start of the 
subsequent context to be the end of the preceding one. 

V. GOAL INFERENCE 
During the reproduction phase, the robot pursues a goal that 

is implicitly or explicitly determined by the user. In both 
cases, the robot attempts to infer what goals to pursue and 
activate related contexts in sequence in order to reproduce the 
learned behavior.  

A. Implicit goal determination 
Implicit goal determination is a bottom-up approach. 

Perceived objects or concepts activate contexts which in turn 
activate connected goals. The highest activated goal is 
selected. The motivation system plays a key role in implicit 
goal inference by putting the robot into different tracks by 
stimulating it with cognitive activities such as priming and 
response facilitation. 

Continuing with the USAR scenario, suppose we prime the 
robot by showing a piece of concrete. As described earlier, 
concrete was not used directly in teaching but due to the 
generalization mechanism, contexts with connections to 
concrete or rubble in general will be activated. Goals 
connected to these contexts will be determined and listed. The 
goal connected to the highest activated context will be selected 
and the actions associated with the first context will be 
executed. Fig. 9 illustrates the goals and the effect of priming 
on selecting which goal to execute. In this example, the goal 
“Take the Rubble from Human” is selected. 

 

 
Fig. 9. Implicit goal determination; Priming causes the green goal and 
contexts to be selected for execution. 

 
The reason is the priming effect which activates both “Get 
Rubble” and “Move Rubble” contexts. The activation levels 
of both contexts totally depend on environmental conditions 
and perception, but both belong to the “Take the Rubble from 
Human” goal. After determining the goal, the robot begins 
strolling around and perceiving the environment to fulfill the 
“Human Present” condition for the first context, “Find 
Human”. Then, it starts executing the action assigned to the 
context and its corresponding primitive until the action 
conditions (“Near Object” or “Explorable”) are no longer 
satisfied. This means that the robot is able to find the human. 
Now, the second part of the sequence is selected and executed. 
The robot strolls around again until objects of attention 
required by the second context are perceived. According to 
Fig. 9, there are two possible choices as a second context: 
“Get Rubble” and “Report Victim”. The latter does not 
belong to the “Take the Rubble from Human” goal. As a 
result, “Get Rubble” and its associated action will be executed 
until the conditions (“Near Object” or “Graspable”) are no 
longer satisfied. At this stage, the robot will start the last part 
of the sequence and finally stop when it reaches the “white 
safe sign”. In Fig. 9, the robot’s choices are illustrated by 
green boxes and transitions between the contexts are shown 
with dashed green arrows. The actions and primitives are 
shown in Fig. 3. 

B. Explicit goal determination 
Beside implicit goal determination, the user may explicitly 

specify a goal for the robot. The robot will then select only the 
contexts that fulfill the specified goal. For instance, if a user 
specifies “Take the Rubble from Human” as goal, the robot 
will only check for relevant objects and select contexts that are 
part of the specified goal. Thus, the robot will work top-down 
to identify the first context of the goal and as a result look for 
objects of attention defined by the “Find Human” context. 
Depending on the current state of the robot and environment, 
it may skip executing the first context if it has already reached 
a human. Thus, it checks for the conditions defined by the 
“Get Rubble” context. The process of context activation and 
action reproduction continues until the whole sequence is 
completed. Fig. 10 illustrates the mechanism for explicit goal 
determination. The green boxes and numbers show how the 
robot manages the sequential execution of contexts to achieve 
the selected goal. 



 

 
 

 
Fig. 10.  Explicit goal determination 
 

One of the main strengths of the presented design is the 
automatic execution of contexts in the right order. This is 
made possible by the learned conditions that guide the robot to 
do the right thing at the right time. 

VI. CONCLUSION 
In this paper we outlined an architecture for Learning from 

Demonstration. Considering strengths and weaknesses of other 
architectures, we proposed a new design for learning high-
level representation of the behaviors and associating them 
with behavior primitives. The modules of the architecture 
were elaborated and mechanisms for information flow 
discussed. The Multiple Demonstrations context learning 
technique was introduced and a mechanism to detect irrelevant 
nodes was elaborated.  

In this research we headed for goal based imitation learning, 
and by introducing goal creation and inference mechanisms, 
the robot was able to recognize the tutor’s intentions. With the 
help of the motivation system, the robot can reproduce learned 
behaviors and pursue specified goals. Finally, the procedure 
for setting explicit or implicit goals for the robot under the 
USAR application scenario was discussed.  
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