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Abstract Most of the humans day to day tasks include sequences of
actions that lead to a desired goal. In domains which humans are re-
placed by robots, the ability of learning new skills easy and fast plays an
important role. The aim of this research paper is to incorporate sequen-
tial learning into Learning from Demonstration (LfD) in an architecture
which mainly focuses on high-level representation of behaviors. The pri-
mary goal of the research is to investigate the possibility of utilizing
Semantic Networks in order to enable the robot to learn new skills in
sequences.

1 Introduction

Learning from Demonstration (LfD) is a technique that allows the robots to
extend their capabilities by observing human or robot teacher performing se-
quences of actions. For instance, teaching a robot how to find an object, go
towards it and push it to the desired location can be time consuming and re-
quiring programming skills. In case of LfD, even a non-roboticist tutor is able to
teach such a behavior. This method is inspired by humans and animals natural
learning ability which is more intuitive rather than explicit programming [9].
During the past years, several LfD algorithms have been proposed [1,2,3] which
mainly focused on one representation of the behaviors. Most of the behaviors can
be divided into low and high level representations. The low-level representation
of a behavior is regarded as set of sensory-motor events that form an action.
The high-level representation of a behavior is formed based on connection of the
concepts that are represented by labeled graphs or Semantic Networks.

In our previous work, we headed for solving one of the hard problems in
LfD, namely how to generalize a demonstrated behavior such that it can be
performed also in new, previously unseen situations [6]. The purpose was to in-
troduce a technique that integrates high and low-level learning and control in a
way that supports generalization. The high-level controller deals with concepts
represented and processed in Semantic Networks (SNs). This controller is inter-
faced to a low-level controller that learns and performs behaviors defined at the
sensory-motor level. The connector, interfacing the two levels, is learned con-
texts, describing behaviors using high-level concepts within the SNs. A context
is a definition of necessary conditions for a low-level behavior to be performed.



Therefore, in this research the robot is learning contexts that are connected to
the behaviors which tutor demonstrated. Learning low-level representation of
the behavior is also an important task, but in this paper we do not investigate
the approaches in this regard.

Sequential behaviors are the necessity to intelligence and an inseparable part
of human daily activities. One of the most prevalent forms of human and an-
imal learning is sequence learning [10]. Normally, a demonstration consists of
several behaviors performed in sequence by the teacher. Sequencing refers to the
arrangement of behaviors into a sequence. The robot should recognize demon-
strated behaviors and connect them to a single sequence. The main topic of this
paper is to propose a method based on our previous architecture and Semantic
Networks [6] in order to sequentially teach the robot new behaviors controlled by
environmental conditions. This enables the robot to later recognize the sequences
and execute the sequenced behaviors.

2 Semantic Networks

Semantic Networks are often used to represent abstract knowledge in a human-
like fashion. In robotics, Semantic Networks can be used for concept forming and
situational awareness [4]. The structured way of representing knowledge can in
combination with visualization tools [7] help humans to understand the internal
state of the robot and what is happening in the robot’s cognitive system. This
may for instance help a tutor to put the robot back on track when it is distracted
during learning or performing phases. In our usage of Semantic Networks, high-
level concepts such as object types (Place, Furniture, ...) and properties (Color,
...) are represented as nodes while relations between concepts are represented as
links. The initial Semantic Network is pre-defined. Nodes are activated through
perception of their corresponding object, person or location in the environment.
This will be done by the perception unit [6] which is responsible for collecting
information from various sensors. Figure 1 depicts the initial Semantic Network
which is used during learning and performing phases.

A common reason for using a Semantic Network as a model of the environ-
ment is its ability to generalize [8]. For instance, after a demonstration in L{D,
the robot will be able to extend the learned context to other, related, contexts.
Assume for instance that the robot learns how to clean the table if there are
empty cups on it. By generalizing the cup concept to all the drink wares, it will
also perform the cleaning behavior when perceiving a mug on the table. The gen-
eralization is done by spreading and decaying activation which are fundamental
functions in Semantic Networks [5]. In our approach, each node has an activation
level; therefore, Spreading can be defined as a mechanism by which activation
spreads from one node to another in proportion to the strength of their connec-
tion. The strength is determined by the weight value obtained by the learning
algorithm. Decaying is defined as a mechanism by which the activation levels of
nodes gradually decrease over time.



Figure 1. Sample of Initial Semantic Network.

3 The Proposed Approach

For simplicity, we assume that all the required low-level behaviors are pre-
programmed and callable from the high-level controller. Therefore, no learning
for low-level controller is required and the focus is only on high-level repre-
sentation of the behavior. In the following sections, learning and performing
mechanisms are explained and a technique for weight calculation is elaborated.

3.1 Learning Phase

Learning will be started by tele-operating the robot, observing the environment
and forming a context. The predefined SN shown in Figure 1 is used as a base
and a new context node (Move Object) which robot starts to learn, will be added.
The whole demonstration will be performed by the tutor at once, while segment-
ing the behavior into sequences and determining start and end of each sequence
to the robot. Thus, termination of the first sequence leads to the start of second
one. Therefore, sequence nodes representing each sequence of a behavior, will
be added and connected to the context node. Furthermore, sequence nodes are
connected to each other from subsequent to the preceding ones with the weight
value equal to -1. This assures that by activating the subsequent sequence node,
the preceding is disabled. Figure 2 depicts a sample of learned network.

In addition to context and sequence nodes, set of other nodes which represent
objects, persons or places in the environment are exist in the network. These
nodes are activated by various sensors from the perception unit. All activated
nodes are linked to the corresponding sequence node with a weight value that



can be obtained by several learning modes. In our previous work, we intro-
duced Nowelty Detection technique [6]. In this paper another approach, Multiple
Demonstrations, will be explained in section 3.3. Arrows depicted in Figure 2
show direction of activation spreading through their connected nodes. Thicker
arrows have higher weight values which result in transferring more energy from
one node to another. Each node has an energy parameter that limits the number
of link levels for spreading and controls the degree of generalization.
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Figure 2. A Sample of Learned Network.

As an example, assume that the tutor wants to teach the robot how to move
a red box to the kitchen. Therefore, there should be a Move Object behavior that
has two segments. The first segment is Go to the Red Box and the second one is
Push the Red Box to the Kitchen. As mentioned earlier, Semantic Networks have
the ability to generalize one concept to another. Thus, by generalizing Go to the
Red Boz behavior to Go to the Object (S1) and Push the Red Bozx to the Kitchen
behavior to Push the Object to the Location (S2), there is no need to demonstrate
the same behavior with different objects or locations. In this research, we assume
that the tutor is responsible for determining start and end of each sequence. The
tutor indicates start of the first sequence (S1) with a designed user interface and
executes tele-operation. After reaching the red box, the tutor indicates start of
the second sequence (S2) and continues the demonstration with pushing the
box to the kitchen. As shown in Figure 2, at the end of the demonstration and
terminating the second sequence, both sequence nodes will be connected to the
Move Object context node. Meanwhile, the nodes that were active during each
sequence of the behavior will be connected to their respective sequence nodes.
As mentioned before, a single directional link from Push Object to the Location
node to Go to the Object node will be established and weight value equal to -1



will be assigned. The more strengthened links have higher weight values, meaning
that by activation of respective nodes, the chance of activating sequence nodes
is relatively higher.

At the end of demonstration, the last sequence node forms and the learning
phase terminates.

3.2 Performing Phase

After the learning phase, the robot is ready to recognize similar environmental
conditions in which it started to learn the behavior. In the given example, en-
vironmental conditions are starting positions, box location, color or any other
feature that can be perceived by the sensors. Due to the activation spreading in
Semantic Networks, a node’s activation propagates to all of its connected nodes
and causes the linked sequences and behavior nodes to be activated. Therefore,
even by perceiving objects or locations other than the ones perceived during the
learning phase, system can correctly recognize and execute proper sequence of
the behavior. The execution of the sequence node is done by evaluating its acti-
vation level. After each perception, current activation level of all sequence nodes
is checked according to the selection threshold defined by the user. If the activa-
tion level exceeds the given threshold, system executes that sequence. The next
sequences of the behavior execute accordingly while deactivating their preceding
sequence nodes. Figure 3 depicts the performing phase for a given example.
Suppose we replace the red box with a green ball in the same location and let the
robot to move around and observe the environment. By perceiving the green ball,
the corresponding nodes in the learned network is activated. Activation level of
nodes spread through their connections based on the weights value. Depending
on degree of generalization which corresponds to the energy level, other nodes
in the network may get activated. Therefore, activation of Ball node activates
Movable Object and to some degree, Boz nodes. The same situation happens
by activation of Green node which activates both Color and Red nodes. As il-
lustrated in Figure 3, the nodes with yellow color are activated. The activation
levels are shown by different opacities.

As aresult of nodes activations, Go to Object (S1) sequence node is activated and
if its activation level exceeds the selection threshold, it will be executed by the
robot. As mentioned earlier, we assumed that all the required low-level behaviors
like moving and pushing are pre-programmed and do not require learning. Thus,
robot moves toward the green ball and observes the environment again. At front
of the green ball, the robot recognizes the same conditions for performing the
second sequence (S2) of the Move Object behavior. This activates Push Object
to the Location (S2) sequence node and due to the weight value equal to -1; it
deactivates (S1) automatically. Finally, if the activation level of (52) exceeds the
selection threshold, the robot performs the second sequence.
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Figure 3. Nodes which are activated during the Performing Phase.

3.3 Multiple Demonstrations Algorithm

One of the important tasks of the learning mechanism is to obtain the weights
for each connection between the nodes. In our previous work, Novelty Detection
technique introduced and tested [6]. Our new approach is Multiple Demonstra-
tions that has similarities to the Nowelty Detection but with changes in num-
ber of demonstrations and the way each eliminates the irrelevant nodes from
the network. In Nowelty Detection, system checks for the significant changes in
the environment, but in Multiple Demonstrations system checks for insignificant
changes.

The approach is to read the sensor values and sample the activation levels of all
activated nodes at a given frequency while demonstrating the behavior. At the
end of each demonstration, the learned network is stored and labeled as same
as the context. Statistical tests will be run to determine whether the sampled
data from different sets (demonstrations) are from the same distribution or not.
In case of having two demonstrations, Unpaired T-Test and for more than three
demonstrations, One Way ANOVA test will be run. In this section, formulation
for T-Test is described.

The purpose of running t-test is to compare mean node activation of all nodes.

HA, — KA
tq; — lx 2x (1)
Varig + Vars,
ni no

where
a4, is mean activation of node z in the first demonstration
lb4,, is mean activation of node x in the second demonstration
n1 and ng are number of samples for first and second demonstrations



t, tells whether the samples for the two nodes are drawn from the same dis-
tribution or not. In other words: did the node change significantly between two
demonstrations. If it did not, the connection between the node and the context
node should be removed.

Confidence Interval (CT) of the test is given by the t-distribution with « value
set to 0.05. Degree of Freedom (DF) is calculated as follows:

DF = (nl + 77,2) -2 (2)

According to equation 1, t, will be computed and nodes which fulfill condition
3 remain connected.

—CI<t,<CI (3)

After elimination of the irrelevant nodes, weight values for each remained
node should be calculated:

Nw/’LAz
wy = 5 (4)
where N, is the number of samples for which node x has activation value
above 0 during the learning phase, p 4, is the mean activation of node z in both
demonstrations. P is the weighted sum for all nodes, calculated as follows:

P=> N, (5)

Finally, the learned sequence nodes will be connected to the context node.

As mentioned earlier, Multiple Demonstrations and Novelty Detection techniques
have features in common. Determining which technique is suitable mostly de-
pends on the learning scenario. Also, number of demonstrations (datasets) is
important while choosing the best technique. The main difference is about the
approach they eliminate the irrelevant nodes. In the dynamic and highly chang-
ing environment, even by limiting number of concepts present in the demonstra-
tion, Multiple Demonstrations may not work properly. Even though, increasing
number of demonstrations can solve parts of the problem, but is not the best
solution. Therefore, other learning modes like Nowvelty Detection that looks for
the changes in the environment is more suitable choice.

4 Conclusion and Future Works

Sequence Learning is playing a key role in the task domains like planning, reason-
ing and robotics [10]. It is inspired by the humans and animals natural learning
skills. In this research, incorporation of sequential learning and our previously
developed architecture is discussed. By introducing Semantic Networks as a core
element, its usage in sequentially learning and performing high-level representa-
tion of behaviors are elaborated. Also, the technique for eliminating irrelevant
nodes from the learned network is introduced. We believe that the proposed
approach enables the robot to focus on right aspects of the demonstration and



incrementally teaches the robot new behaviors from demonstration.

Currently, our approach is incapable of handling quantities and negations. In our
future work, we are going to define new link types in the Semantic Networks and
design the high-level control in a way that can learn and perform more complex
behaviors.

In this research we assume that sequences of a behavior are determined by the
tutor during the learning process. Therefore, an algorithm can be introduced to
automate identification of sequences.
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