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Abstract—The paper describes and formalizes the concepts and
assumptions involved in Learning from Demonstration (LFD), a
common learning technique used in robotics. Inspired by the
work on planning and actuation by LaValle [31], common LFD-
related concepts like goal, generalization, and repetition are here
defined, analyzed, and put into context. Robot behaviors are
described in terms of trajectories through information spaces
and learning is formulated as the mappings between some of
these spaces. Finally, behavior primitives are introduced as one
example of useful bias in the learning process, dividing the
learning process into the three stages of behavior segmentation,
behavior recognition, and behavior coordination.

Index Terms—Action selection, Behavior, Bias, Generalization,
Goal, Learning from Demonstration, Robot Learning, Segmen-
tation

I. INTRODUCTION

Learning From Demonstration (LFD) is a well established
technique for teaching robots how to perform useful tasks.
The basic idea is that the robot learns to repeat a behavior
after being teleoperated through one or several demonstrations
performed by a human teacher. The research area is attractive,
both in its intuitive approach to human robot interaction
and as a framework for a theoretical analysis of knowledge
representation and transfer of knowledge between intelligent
agents.

Research on LFD is influenced by a variety of fields, such
as control theory, artificial intelligence, psychology, ethology,
and neuro physiology. While primarily being a big asset, the
multidisciplinary nature of LFD also contributes to the lack of
a unified formalism for the different components constituting
the research field. Furthermore, it should not come as a
surprise that the terminology used differs for works conducted
by researchers from varying areas. In this paper, we are trying
to identify, define, and formalize the common basic ideas and
principles involved in LFD. The presented work is both a sur-
vey of how these concepts are used in research, and an attempt
to describe them in the light of related concepts in machine
learning, planning, and psychology. To our knowledge this has
not been previously done in a unified way and the result can

be used both as a somewhat theoretical introduction to the
field and as framework for further development and research.

The approach is inspired by the work on planning and
actuation by LaValle [31] and therefore does not always follow
the terminology and notation found in common literature on
LFD. Where this is the case, we clearly point it out and also
refer to the commonly used terms.

First, a few basic concepts that form the basis for the formal
description of the learning process are introduced.

II. BASIC CONCEPTS
A. State space

One fundamental component in classical Al is the concept
of a state space X, described by a world ontology [54, pp.
222]. The state space can be defined as a set of all possible
situations that could arise in the world [31]. More specifically,
the state space only includes the relevant aspects of the
world, given a certain task or limited set of tasks. However,
if the task is unknown it is very difficult to identify which
aspects of the world are relevant. One could of course try
to include all aspects that might be of interest, but even if
possible, that would result in a huge and complex space,
implying tremendous sensing requirements when applied to
a field such as LFD. Furthermore, defining a state space
introduces many unnecessary assumptions about the world,
and requirements for information which make the problem
much more complex than necessary. This observation is nicely
illustrated by Simons’ ant [57] and is also related to the
classical frame problem [40], [29].

For these reasons, it is desirable to create new spaces, less
task-specific and sensor-demanding, in which behaviors can
be represented. Such a redefined representation is referred
to as an information space [31]. Interestingly, the concept
of information spaces is also common within LFD, but ap-
pears under different names. In order to facilitate learning,
approaches to LFD often utilize so called primitives or skills.
These primitives can be seen as building blocks from which
more complex behaviors can be composed, which results in
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moving the learning process away from the state space into a
new representational space composed of the available skills,
e.g. [22], [48], [43], [6], [30], [46]. Many of these approaches
relate strongly to Behavior Based Control (BBC) [36], [37],
[3]. BBC has its roots in the reactive paradigm, but emphasizes
parallel, loosely connected behaviors for control of the robot
as an emergent property, rather than a single stimuli-response
loop.

We further investigate the possibilities of applying the
concept of information spaces within LFD, but first a few
other basic concepts have to be introduced.

B. Sensing and acting

Imagine an agent interacting with the environment. It per-
ceives the world through its sensors and acts upon the world
with its actuators. The sensors are defined as a function
h: X — Y transforming a certain state * € X into a sensor
state y € Y [31]. Y denotes the observation space, i.e., the
set of all possible readings returned by the agent’s sensors.
Note that each y € Y is a vector (y(1), y(2), ...) comprising
simultaneous values from all sensors. Typical examples are a
thermometer that maps physical temperatures x to numbers
y(1) € R or a GPS receiver that maps physical positions to
latitude and longitude, i.e. y(1) € R% Y corresponds to the
stimulus domain in behavior-based robotics [3].

On the actuator side, actions can be said to transform a
certain state into another state. Hence, actuators implement the
function f: X x U — X where U denotes the action space,
i.e., the set of all possible actions the agent can execute. A
typical example is the requested velocity for each motor of
the robot. Note that this does not specify the actual motor
velocity, and only the outgoing information is represented in
U. The actual velocity is normally represented in state space
X.

Now a description of how the agent behaves, i.e. generates
actions, can be introduced. In general, such a description is
referred to as a controller, but is also known as a plan [31],
behavior mapping [3], [18], [46], [47], or motor primitive [2].
Several important differences between these terms do exist, for
example in terms of abstraction level and temporal extension,
but for now they can all be said to implement the function 7:

m: X — U. (D

Hence, m maps states x € X to actions u € U. As
mentioned before, X is not explicitly represented in the
agent. Still, the physical sensors and actuators can be said
to implement the functions h and f, respectively. In contrast,
m can not be implemented without an explicit definition of
and access to X. To solve this issue, 7 is later redefined and
controls the agent based on the information space instead of
the state space.

C. Information space

The observation and action spaces are widely adopted by
the robotics community. One control paradigm referred to as
sensory-motor coordination (SMC), focuses on creating repre-
sentations within the so-called sensory-motor space I = U XY

[49], [50]. In each stage k the robot experiences a sensory-
motor event e, = (uk—1,yx) € I. The action in k — 1 is used
since uy changes the current stage to k + 1 [31].

From an SMC perspective, sensing and acting are not two
separate processes. In contrast to classical reactive systems,
SMC does not view the information flow purely as going from
sensors to actuators. Actions give rise to a certain stimulus,
just as much as a stimulus influences some action. If the
agent can predict these relations, it can intentionally control
its interactions with the world. Hence, control is seen as a
problem of coordination. Similar views are common within
psychology, anthropology, and cognitive science, [23], [58],
[28].

The sensory-motor space I has several advantages compared
to the state space. Most importantly, it is easily defined. If an
agent is designed with a fixed number of sensors and actuators,
the size of I remains constant independently of environment
and task. Of course this limits the possibility to add new
sensors or actuators to the agent without corrupting the robot’s
knowledge, but for many application this is a reasonable
limitation. The sensory motor space also has a number of
disadvantages. In contrast to state space which by definition,
at each moment, contains all information necessary to make
a control decision, I does not necessarily have this property.
A decision, i.e., a selection of the next action, may have to
be based not on the most recent sensor and motor readings,
but on complex patterns of previously observed sensory-motor
events. Let );k denote the history observation space, i.e., the
set of all possible observation histories ¢ until current stage
k:

k) € Yi 2)

where each vector y; € Y is provided by the sensors at stage
1. Similarly, let Uy, be the history action space, i.e., the set of
all possible action histories until current stage k:

gk = (ylvy27"'

ﬂk:(ul,u2,...,uk)€ﬁk (3)

where each u; € U is a particular action vector issued at stage
i.

The histories . and %y in combination with the precondi-
tions 7y form a history information state ny, also referred to
as an event history. n;, includes all accumulated information
up to stage k [31]:

M = (M0, Urk—1,0%) € I 4

The history information state is a central concept in the
formalism since it represents all the information the agent has
received, and as a consequence 7 is always known in stage
k. Iy is known as the history information space and should be
understood as the set of all possible event histories up until
stage k [31]:

Iy = Io % Up-1 % Yy (5)

where I represents the set of all possible preconditions.
The definition of I, becomes impractical in cases where the

number of stages is not fixed. Instead, we normally refer to the

information history space In;s, with unspecified length [31]:
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Tist = bULL UL U. .. (6)

It is worth observing that Iy, is huge, it includes all
possible combinations of everything the agent could possibly
observe and do. Most n € Ip;s¢+ will of course never be
observed, due to limitations imposed by the environment
and the physical shape of the robot. For example, imagine
a simple robot, equipped with a proximity sensor on each
of its four sides, placed in an empty large square box. In
this environment, the robot never observes a y;, with high
activation of all proximity sensors simultaneously. This is a
simple result of physical properties of the environment and
the robot itself. The same way of reasoning could easily be
applied to a human agent. There is a huge amount of patterns
the human senses theoretically could perceive, but that will
never be observed.

Most of the formal definitions in this paper take place in
history information space Ip;s;. You might ask why represen-
tations take place in such a huge and complex space when only
a fraction of its representational power is actually used. Ip;s¢
should not be understood as the representational space, but
a representational space, a very basic one. Any information
the agent can acquire is representable as an event history
n € Ip;s¢. Furthermore, I;s is, in contrast to state space
X, both well defined and completely task invariant and is as
such very suitable for learning purposes. However, in many
other respects Ij;s: is not the best representational space. As
mentioned before, [;;s; is huge and bears a lot of redundant
information, making it difficult to extract features relevant to
the specific task. For this reason, a new derived information
space 1., may be created. Ij., should be seen as a sim-
plification of I;s;, where relevant features are represented,
while irrelevant information is not contained, [31]. The use
of derived information spaces as bias in learning is further
discussed in Sections III-B and III-D.

D. Controller

The controller defined in Equation 1 can now be reformu-
lated in a form that allows it to be used without full access to
state space X :

up =1 (NK) @)

where uy € U is the action vector issued at stage k and 7 €
I}, is the agent’s event history a stage k. 7 is defined here as
a function from information history space to action space:

7 Iy — Ul ®)

In simple cases, a controller can be modeled as a function
of only the most recent sensory-motor event. Systems based
purely on such single-event controllers are called reactive
systems [12]. Formally, these systems implement 7 as

wp =7 (Yr) ©))

which can be seen as a special case of Equation 7. This defini-
tion of 7 is similar to Arkin’s behavior mapping 3 : S — R,

where S and R are stimulus and response, respectively [3].
However, in the general case we use the wider definition of 7
given in Equation 7.

E. Behavior

The word behavior is commonly understood as an agent’s
actions in relation to the environment [59], but in the robotics
community it has many different meanings. We would like
to describe a behavior as a purposeful way of acting. This
does not imply that behaviors include explicit representations
of goals, but from an observer’s point of view, the behavior
can still be said to implement some kind of purpose, or goal.
The concept of goals is further discussed in Section III-C.

Using the introduced terminology, a behavior B may be
defined as a subset of [;;4;:

B= {n“’m”%---} C Thist (10)

where each 77(¥)is an event history (of unspecified length). The
mechanisms, programs or plans which may produce B were
introduced as the controller 7w in Equation 7.

Often, no explicit distinction is made between the ob-
servable interactions with the world, and the mechanisms
producing these interactions. However, in our terminology,
Equation 10 describes nothing about how the behavior is
produced, and therefore the notion of a behavior is different
than the terminology commonly used within behavior-based
robot architectures [3], [46], [18], [37]. As is clarified further
on, this distinction serves several purposes.

III. LEARNING FROM DEMONSTRATION

Learning From Demonstration (LFD), is a well established
technique for robot learning. An overview of early work
is found in [5] while recent work can be found in [46].
Another excellent survey of the area can be found in [8]. The
basic idea in LFD is that the robot learns to do things by
observing other agents, be it human beings or other robots.
Several flavors of this idea exist and the used terminology
differs somewhat in published research. By LFD we denote
in this paper learning where the other agent (often denoted
teacher) directly controls the robot, e.g. by teleoperation or
kinesthetic teaching (e.g. by manually guiding a robot arm)
[14]. The recorded data from such a control session is denoted
demonstration and the purpose of LFD is to create a controller
m capable of “repeating” the demonstrated behavior. Formally,
a demonstration b can be seen as an event history 7, € Ip;st
(refer to Equation 4) where w;_1 is the sequence of actions
issued by the teacher up to stage k — 1 and gy, is the sequence
of observations up to stage k.

LFD assumes a direct correspondence between events in
the demonstrations and the sensors and actuators forming
the interface to controller 7. L.e., the observations y; in the
demonstration are assumed to correspond to the observations
that are generated in real-time by the sensors, and fed into the
controller. Furthermore, the observed action variables u; are
assumed to directly correspond to the actuator signals gener-
ated by the controller 7. The assumptions simplify learning
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significantly, but are not valid if a teacher demonstrates a
behavior by itself, and not by teleoperating the robot. In these
cases, the correspondence problem has to be resolved as part of
the learning process; which action or actions correspond to an
observed sequence of events? Imitation Learning deals with
this kind of learning scenarios. A formal description of the
correspondence problem in robot and animal learning is given
by Nehaniv and Dautenhan in [45]. Hereinafter we focus on
LFD and thus ignore the special problems involved in solving
the correspondence problem.

LFD is related to the more general terms Programming By
Demonstration (PBD) or Programming By Example (PBE) but
should not be confused with the aim of creating or modifying
the behavior of computer programs by using demonstrations in
general [17], [32]. This paper presents a formalism for robot
learning through demonstration, which, while it can be seen
as the creation of a specific kind of computer programs, does
not apply to the wider interpretations of PBD or PBE.

The goal of LFD is to generate a controller 7 that enables a
robot to repeat a demonstrated behavior B. If successful, the
robot is said to have learned behavior B. Formally, the process
of learning B from a set of N demonstrations b is understood
as selecting a controller 7 from the controller space 11 using
a learning function \:

T=X(b) €Il (11)

where

b= {77(1), ...,n(N)} C B.

The LFD process is illustrated in Figure 1. Normally all
demonstrations 7(*) are assumed to belong to the wanted
behavior B, i.e. b\B = @. II contains all possible controllers
for a specific chosen observation space and action space. This
is of course a huge space that is never computed explicitly.

The selected controller m must have certain qualities for the
learning to be regarded successful. These qualities are related
to the event histories 1 that may be generated by a robot
using 7 as a controller. The realization space R C I;s: for
a controller 7 is defined as the set of all such event histories,
generated by the realization function R = A (7) € Ip;st.

A can be seen as an abstraction of the physical robot placed
in a particular environment and controlled by a specific 7,
able to produce the set of all possible trajectories through
Ip;s¢. Of course, the robot can not control the produced event
histories n € R entirely on its own, but relies on an external
component, the environment. This creates a nice analogy to A,
which also relies on an external component, called bias. Thus
the learning function A can be seen as the inverse function of
the robot represented by A. A maps a set of event histories to
a controller and A maps a controller to a set of event histories.
This discussion is further developed in Section III-B.

The process of learning 7 has many similarities to system
identification, where a model of the system is constructed from
observed input and output data [33]. The system, consisting of
the agent and its environment, is modeled such that the system
output yi41 can be predicted given a sequence of previous
inputs and outputs 75 until stage k. However, the aim of system

12)

A

Figure 1. The LFD process. The light colored area represents the wanted
behavior B which is demonstrated with N training demonstrations b =
{17<1>, oy )} C B represented by the dark colored area. The learning
function A\ creates a controller = € II. In interaction with the environment,
7 realizes (repeat) the learned behavior. The realization set R C Ip;s¢ 1
marked by the dashed line.

identification is in one sense much more ambitious than LFD,
since the system’s response to any input yy, is to be predicted.
In LFD, we are satisfied with a 7 producing an action that,
if possible, leads to an event sequence 7,41 € B given that
N, € B. In other words, LFD does not necessarily model the
outcome of all possible actions uy, in each state, only the ones
that can occur for the robot in a particular environment.

It is important to realize that B is normally not explicitly
defined. Instead, it should be understood as the set of event
histories the human demonstrator associates with a certain
desired behavior. E.g. if the demonstrator wants to teach the
robot to move to the door, B would contain all acceptable
event histories where the agent ends up by this door.

The quality of the generated  is typically described as the
ability to “repeat a behavior”’, which is the topic of the next
section.

A. What does it mean to repeat a behavior?

As been mentioned a few times already, the goal of LFD
is to generate a controller 7 that enables a robot to repeat
a demonstrated behavior B given a set of demonstrations b.
This may sound like a well defined mission, but is actually
both vague and ambiguous. Consider the following example
of a, seemingly trivial, demonstration.

Figure 2. A simple demonstration where the tip of a robot arm starts at
the red cross in the lower right corner and moves over the table until it is
positioned over the green cube. The demonstration can be interpreted in a
number of fundamentally different ways.

A robot arm is moving over a table, and stops when
positioned above a green cube (See Figure 2).
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What does it mean to repeat the sequence of events de-
scribed above? One could imagine a vast number of interpre-
tations. Here are a few examples.

1) Assuming that the path is the important aspect of the

demonstration, a successful controller may be written as
u = mparH(y) where the function 7p o7y computes an
action u for each pose y, such that the arm follows the
demonstrated path. This kind of learning scenario refers
to traditional programming of industrial robot arms, as
well as path-tracking autonomous vehicles [27].

2) Instead, if the demonstration is seen as an example of
how to reach the final position, the path itself becomes
irrelevant and the controller described above would not
be suitable. In this case, a successful controller could
be written as u = 7wrarcer(y) where the function
TrARGET Uses inverse Kinematics to compute actions
such that the #ip of the robot arm reaches the target.

The interpretations in Example 1 correspond to what is often
called action-level imitation [13] where the robot carries out
the “same” actions as the demonstrator. The interpretations
in example 2 are often called “functional imitation” [20] in
which the robot is supposed to achieve the same effect on
the environment [44]. One could of course imagine a vast
number of other interpretations. Should the observed sequence
of positions be understood as fixed coordinates, or relative
to the robot arm’s starting position? Is the green cube really
the relevant target, or is the target defined by an absolute
position? Is the target a cube of any color, or maybe the target
is any green object? Using many demonstrations of the same
behavior clearly reduces some of the ambiguity, but in general
it is impossible to tell which interpretation is “correct” without
further information.

The discussion about what it means to repeat a behavior gets
further complicated when the robot acts in a dynamic, non-
deterministic and partially accessible [54, chapter 2] environ-
ment. Demonstrated event sequences may be both incomplete
and contain mistakes that should not be learned or repeated
[19].

If the robot manages to successfully repeat a demon-
strated behavior under different conditions than during the
demonstration we say that the robot is able to generalize
the demonstrated behavior. More specifically, we refer to the
robot’s ability to produce an event history 1, € B, under
conditions (7;—1) not identical to the ones appearing during
the demonstrations in b. This can be formally described as
how well the realization space R corresponds to the wanted
behavior B, e.g. as a minimization of RN B¢ and B N R¢, or
equivalently R\ B and B\R (refer to Figure 1).

Generalization can also be viewed as an extension of b
by interpolation or extrapolation of the demonstrated event
histories 1(*). For this to work one has to specify the aspects
of the demonstrated data that are important. This may be done
by introducing a metric of imitation performance [45], [1],
[8]. Repeating a demonstration means minimizing the distance
between the demonstrations and the repetitions using this met-
ric. To find the metric, the variability in many demonstrations
is exploited such that the essential components of the task
can be extracted. One promising approach to construct such a

metric is to use the demonstrations to impose constraints in a
dynamical system [24], [15].

Either way we describe it, generalization is a tough chal-
lenge, and the problem is well acknowledged also outside
the robotics community. In Machine Learning, the term
generalization performance of a learning algorithm relates
to “its prediction capability on independent test data” [25,
pp-193] which is identical to the common usage of the term
in robotics. The general problem with machine learning in
high-dimensional spaces is often expressed as the curse of
dimensionality [21, pp.170], and is highly relevant also for
robots with high-dimensional observation and action spaces.
Learning in such situations becomes inherently difficult since
the demonstrated data fills history information space very
sparsely and interpolation and extrapolation become highly
risky operations. The situation is related to the No Free Lunch
Theorem [60], which states that for a large class of machine
learning algorithms, there is no universal best algorithm to
solve all problems. Instead, an algorithm has to be specialized
to the problem under consideration to guarantee its superiority
over any random algorithm. This specialization consists of
additional task-dependent information that has to be supplied
to the learning algorithm as bias. In the case of LFD, possible
sources of bias are the robot’s prior knowledge, feedback
from the environment when the robot tries to repeat the
demonstrated behavior and human feedback before, during,
and after learning. The bias concept is further investigated in
the next section.

B. Bias

The bias of a machine learning algorithm is defined as
“any basis for choosing one generalization over another, other
than strict consistency with the observed training instances”
[41]. Le., if we want to do anything but record and replay a
demonstration, bias has to be applied. The “basis” may be seen
as form of pre-evidential judgment, or "prejudice" regarding
the structure of the data or the data generating process. In
the case of numerical regression, assuming a linear relation
between input and output corresponds to a high bias, while a
cubic model corresponds to a lower bias. In the case of LFD,
bias can be applied to three different parts of the problem
definition:

1) Sensor variables. This can involve selection of relevant
sensors, or extraction of specific features that are judged
relevant for the specific task. It may also involve creation
of intelligent sensors to facilitate feature extraction.

2) Action variables. Most often this involves restricting the
output of the policy function 7 to one or a few actuators.
E.g. when learning a grip operation, the actions for
moving the robot may be regarded irrelevant while the
gripper motion is highly relevant. This reduces the size
of action space

3) Controller function 7. Bias can restrict the functional
form of 7, e.g. to an artificial neural network of a certain
size and architecture. Bias can also be expressed as
general requirements of 7, such as smoothness criterion
or lower/upper bounds. The use of predefined skills as
described below is another example.
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Bias can be introduced into the learning process in a number
of ways. First of all, it may be hard-coded into the learn-
ing algorithm, e.g. by choosing a specific neural network
[35] or rule based framework [26] to represent 7. Another
common and very powerful technique to introduce bias is
to use predefined skills or behavior primitives. Besides being
biologically motivated [42], [56], the technique is commonly
used in robotics research, e.g. [39], [38], [22], [46]. Learning
is in this case reduced to selection of the right primitives
and parameter estimation to adjust the primitives to the
demonstrated data. The introduction of primitives is a way to
reduce the dimensionality of the learning problem (i.e. to deal
with the curse of dimensionality mentioned above). The set of
allowed primitives is obviously much smaller than IT which
clearly simplifies learning. An analogy is numerical regression
with a large feedforward neural network compared to a low-
level polynomial. The polynomial introduces bias that makes
learning much easier, at the price of limiting the solution to
the specific functional form of the bias.

Regarding bias for sensors and actuators, it is common to
hard-code a set of relevant sensors and action variables for
the task at hand, or to pre-process the data before feeding it
to the learning algorithm. For a multi-modal robot with lots of
sensors, this is essential bias to make learning possible at all.
This kind of bias may also be introduced by interaction with
the human teacher who tells the robot to use certain sensor
modalities (e.g. “Use the camera!”), or to look out for certain
sensor features (e.g. “Look out for a red ball!”). Bias may also
be subject to meta learning, e.g. such that suitable sensors are
selected based on demonstrated data. This relates to attention
and saliency which are important concepts in theories for
human and animal learning. The term shared attention refers to
a teacher’s and a learner’s simultaneous attention to the same
objects. Scassellati used the Cog platform [55] to investigate
shared attention between humans and robots. Saliency refers
to the components of the environment that are important for
a given task, and it clearly introduces a bias by reducing the
size of observation space Y. Breazeal and Scassellati, [10]
describe the relation between attention and saliency and how
the concepts can be used to facilitate learning in robotics.
In psychology, the term scaffolding is often used to denote
interaction between caretakers and infants in order to reduce
distractions, marking a task’s important attributes and reducing
the number of degrees of freedom in the learning task in
general [61], [11]. All these operations aim at simplifying the
learning task by introducing bias to the problem definition.

From a formal perspective, bias regarding sensor and action
variables may be introduced by moving away from I} into
a new, derived information space Igj., [31]. As mentioned in
Section II-C, 4, is a reformulated or pre-processed version
of the information in I;s;. The mapping from I;s; to I, iS
denoted k, and may have an arbitrary shape. Therefore, 14,
does not serve as a general purpose representational space as
In;st does, but rather as a task-specific representation where
relevant features become salient, while irrelevant information
is not retained. The observant reader notices that the purpose
of I, looks very similar to the purpose of the state space
X. In fact, a state space is one possible definition of /4., but

Figure 3. The LFD process with bias introduced. A derived information space
I 4¢r is introduced as a space where the behavior may be represented in a task-
specific way. Training data b is mapped into I 4., with an information mapping
k. The pre-processed information in /4.,- and various ways to introduce bias
in X result in a reduced set of possible controllers IIp, illustrated by the light
colored area in II. Compare with Figure 1.

there are numerous other possible derived information spaces
that do not aim at representing states in the world.

The LFD process with bias included is illustrated in Fig-
ure 3. Various ways to introduce bias regarding the control
function 7 result in a reduced set II, C II. The learning
function A maps from the derived information space Ije,
instead of straight from Ij,;5;. This extended formulation of
LFD is further discussed in Section III-D.

Most of the discussion here is focused on knowledge
intentionally introduced into the system to facilitate learning.
We like to refer to this kind of information as ontological
bias. However, there are also a vast number of restrictions
to the problem introduced for other reasons. As mentioned
before, selecting a certain type of algorithm to represent 7
will introduce bias. A certain configuration of the robot’s
sensors and actuators restricts the ways in which it can solve
a certain task. Often the choice of physical platform and
software architecture is made for practical reasons rather than
for an understanding of ontological implications. This kind of
restrictions we like to phrase as pragmatical bias.

As mentioned above, using pre-defined skills or behavior
primitives is a common way to define IT,. The demonstrated
data is in such cases used to identify a suitable primitive and
then possibly tailoring it by adjusting parameters or set values.
One way to define such primitives is to associate them with
achievement of specific goals. This concept deserves special
attention and is analyzed further in the next section.

C. Goal

The success or failure to repeat the demonstrated behavior is
most often judged by the human demonstrator, and to describe
the human intentions we use the word goal. The goal of a
behavior is a human concept, but a lot can be gained if this
information is transferred to the robot. This bias is essential
for the learning process in general and for the generalization
from demonstrated data in particular. The goal of a simple
behavior, can be of two major types [46]:
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1) Maintenance goals. A certain condition has to be main-
tained for a time interval, such as the path-tracking
scenario described in Example 1 in Section III-A.

2) Achievement goals. A certain condition has to be
reached, such as the motion to a green cube in Example
2 in Section III-A.

One reason for introducing the concept of behavior is that B
gives a description of the intentions for a certain sequence of
events 1 € B. This can be understood as after performing B,
some conditions in the world are satisfied. This is analogous
with the common goal formulation from classical Al, where
a goal GG is a set of n states in state space [54]:

G = {17 1,22, ..

L} CX (13)

All information the agent acquires about G is accumulated
over time in y and . Therefore, any goal G which can be
measured with the agent’s sensors can also be formulated as
a set of event histories in I},;4::

G = {00, } € L (14)

This should be understood as after observing an 1 € G; we
know that G is satisfied. A consequence of this formulation is
that behaviors and goals are described in the same way, and
since any 77 € B by definition satisfies the goal of B, G and
B become identical:

G; =B (15)

Note that this goal formulation is more general than the orig-
inal definition of G (Equation 13). This is both an advantage
and a disadvantage. At the same time as it is convenient to
formulate both goals and behaviors in the same way, some
of the points with defining goals are lost. In state space, G
works as a least common denominator, a neat formulation
that describes the minimum requirements. Even though G is
implicitly represented in B, B does not serve as the same
stripped goal formulation and it is therefore very difficult to
compare two event sequences n(*) and 1® to see if they
satisfy the same G. Still, if we know that both (") and n(?) are
members of the same B, they satisfy the same G;. What this
(G corresponds to in the world is of course still not known,
and not necessarily explicitly described.

The reason we are still talking about goals is primarily that
it is a natural concept for humans, and for that reason it is
an important concept in LFD. In many learning situations
such as in the examples in Section III-A, all information is
simply not present in the demonstrated data. The missing
information has to be transferred to the robot, one way or
another, and the specification of a goal often contains the
necessary information. The teacher’s understanding of goals
should be seen as a bias and may be represented in many
different ways, as described in the previous section.

D. Learning

Based on the concepts of behaviors, bias, and goals intro-
duced above, we now refine the definition of the learning task

defined in Equation 11. In Section III-A it was concluded that
A requires some bias to be able to find a suitable controller,
as illustrated in Figure 3. In the most basic form of LFD, A
is simply learned by fitting the demonstrated data to a more
or less general functional form, such as a neural net [35] or
a rule base framework [26] which in such case represents the
reduced controller set IIp in Figure 3. The use of primitives,
which was introduced in Section II-A, is fully compatible with
this description of learning bias such that learning consists of
matching a demonstration with a pre-defined primitive. This
process is normally denoted behavior recognition and can be
approached in a number of ways as described below.

The description of LFD given above is valid for demon-
strations of behaviors that can be repeated by choosing one
single primitive. More complex behaviors demand sequences
or combinations of primitives. For a given robot and class of
learning scenarios, the set of primitives IIp is normally chosen
such that a demonstration may be divided into segments
where each segment can be repeated by choosing the right
primitive. The general LFD process illustrated in Figure 3 is
here extended to include handling of such sequences.

Let us first look from a post learning perspective, at how
sequence control can be described for a robot using a set
IIp of predefined primitives m,. To include the assignment
of parameters for parameterized primitives into the learning,
IIp is in the following regarded as containing all possible
parametrization of primitives. Control can now be divided into
two steps:

1) Action selection where a function 74¢; selects a primitive

Tp € IIp:

Tp = Tsel (Nder) (16)
where 7., performs the mapping

Tsel - Ider - 1_IP (17)

Nder € Iger 1S a pre-processed or derived version of
the original event history 1 € Ij;st, constructed by an
information mapping function x [31]:

K Ihist - Ider (18)

2) Low-level control using the chosen controller m, to
generate an action uy.

Stepping back to the learning phase, the problem is now
reduced to finding the action selection function 74.; using
demonstrated data b pre-processed with the information map-
ping x into the derived information space I4., (see Figure
4l

While the approaches to sequence learning with primitives
vary widely, the process of finding 7s.; is often divided into
three tasks:

By comparing Equations 16 and 17 with Equations 7 and 8, the primitives
Tp may be seen as a generalized actions, generated by a controller mge;.
Another interesting analogy can be made between action selection and
the correspondence problem, i,e, the problem of finding the action(s) that
corresponds to an observed event sequence. Viewing the primitives as actions
leads to an equivalent problem formulation for action selection; find the
primitive that corresponds to a an observed event sequence.
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A

Figure 4. An extended version of the LFD process illustrated in Figure 3.
Bias is here introduced into the learning process by restricting II to a set of
primitives IIp, illustrated by the light colored area in II. Primitives 7, are
selected by selection function 7ge; : I 4., — IIp. Hence, the dimensionality
of the learning problem is drastically reduced since A is now selecting suitable
Tsel € Il5e; based on the pre-processed trajectory information in Ig4, rather
than working on the full Ij ;4 and IT spaces. Compare with Figures 1 and 3.

1) Behavior segmentation where a demonstration 7 is
divided into smaller segments, referred to as task seg-
ments.

2) Behavior recognition where each segment is associated
with a primitive 7, € IIp.

3) Identification of rules or switching conditions for how
the primitives are to be combined into a sequence for
repetition of the complex behavior. This task is referred
to as behavior coordination.

Referring to Figure 4, these tasks are realized by the function
A. In practice, task 1 and 2 are often intertwined. For task 1,
several approaches exist, for example variance thresholding
[30], [48], sub-sequence frequency [53], [52], thresholding
mean velocity of joints [43], [22], and entropy-based seg-
mentation [16]. Task 2, is commonly seen as a classification
problem. For example, Bentivegna [6] uses a nearest-neighbor
classifier on state data to identify skills in a marble maze and
air hockey task. In both tasks, each primitive is assigned a
query point in state space, which is compared with the current
system state. Pook and Ballard [51] present an approach
where sliding windows of data are classified using Learning
Vector Quantization in combination with a k-NN classifier. The
complexity of the distance measure is highly dependent on the
complexity of B. For simple behaviors, a Euclidean distance
function has been shown to work well [7]. However, for more
complex behaviors, other measures are necessary. One of the
few approaches that address the complexity of higher level
primitives can be found in work by Nicolescu [46], where two
behaviors are regarded similar if their respective preconditions
and goals match, regardless of their internal differences. We
take another approach in [9] where three methods for behavior
recognition are evaluated. An observed event sequence 7) is
compared with a known behavior B, using an Auto-associative
Neural Network (AANN), a prediction-based method inspired
by S-Learning [52], [53] and an action comparison method.
In a generalized sense these methods should be seen as an

attempt to create a metric in Ip;s, similar to the notion of a
metric of imitation performance, e.g. [1], [8].

Approaches to solve task 3 vary widely depending on how
the primitives are represented. Nicolescu [46] addresses the
problem by assigning pre- and post-conditions to primitives.
Several demonstrations represented as sequences of primitives
are generalized into a behavior network. The process of com-
puting preconditions for primitives is in this case equivalent
to inferring a regular expression from a Finite State Machine.
Bentivegna [6] has a drastically different approach. Instead
of addressing behavior recognition during learning, suitable
primitives are selected on-the-fly by computing sub-goals
using Locally Weighted Learning [4], based on the current
state. A distributed approach to behavior coordination has
been presented by Maes and Brooks [34]. Global feedback
is utilized, allowing the primitives themselves to learn suit-
able activation conditions by correlating certain stimuli with
a positive or negative feedback. The feedback functions in
combination with the primitives themselves can be seen as a
type of bias.

IV. SUMMARY

We have presented a formalism for robot behaviors and
Learning from Demonstration (LFD). Building on terminol-
ogy from LaValle [31], an agent’s sensory-motor history is
conveniently described by an event history, and a controller
maps event histories to actions in action space. As illustrated
in Figure 1, a demonstration of a certain behavior can be seen
as an event history € b, and the behavior itself as the large set
B of allowed event histories, i.e., all possible ways to realize
the wanted behavior. The quality of the learned controller can
be judged by the similarity between B and the realization
space R.

The vague and ill-posed meaning of repeating a demon-
strated behavior is exemplified and discussed from a machine
learning perspective. The concept of generalization is defined
in the framework of event histories and leads to a discussion
of bias in learning. In LFD, bias is essential and can be
introduced before, during, and after learning as feedback from
the environment or the teacher. The huge information history
space may be reduced to a derived space containing only
information relevant to specific tasks. Behavior primitives are
another common way to introduce bias, and are often asso-
ciated with specific goals, which are explicitly or implicitly
defined for each primitive. LFD can be described in this
way at a higher level, as controller selection. The learning
process then consists of finding and tuning a suitable primitive.
More complex behaviors, such as sequences, are commonly
learned by segmentation and repeated identification of suitable
primitives and switching conditions.

The presented work is an attempt to structure and formalize
general principles and assumptions in LFD. Our aim is not
to present the single best way to speak about behavior,
generalization, goals, and all other concepts related to LFD.
Rather, we would like to encourage the effort of defining these
concepts at all. Furthermore, it is our hope that the presented
work will provide useful insights to the mechanisms involved
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in LFD and thus contribute to further development of this
powerful and promising area of robot learning.
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