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Introduction 
This document describes the CLS system which is a Matlab based research tool for 
classification algorithms. It can be used for bench marking, testing, and developing. 

The information is mainly aimed at potential users but also for those who want to get an 
overview of how a work bench for algorithm development can be designed and 
implemented in the Matlab environment. 

Classification 
A classifier is a decision rule or an algorithm that assigns a class label C to an object 
with features X={x1,..xm}. The most common methods use training data (Xi,Ci), i=1,...,n  

to produce a mapping d(X)→C. The aim is to produce a rule that works well on 
previously unseen data. I.e. the decision rule should "generalize" well. Examples of 
classification problems can be found in all sort of branches: 

� Medical diagnosis 
Data from a medical examination (blood pressure, age, pain indications, etc.) 
is used to identify patients likely to have a certain illness. 

� Bankruptcy prediction 
Given a set of variables (turnover, sales prognoses, annual profit, growth, etc.) 
those companies likely to bankrupt within a year are identified. This 
information can be used by a bank when a company applies for more credit. 

� Loan approval 
A loan approval process involves filling out forms, which are then used by a 
loan officer to take a decision. Typical variables of interest are age, 
occupation, salary, car, family status, etc.  

� Potential customer analysis for the creation of mailing lists 
Given a set of variables (age, sex, hobbies, occupation) those who are likely 
to respond to a planned direct sales campaign are identified. 

� Quality control in manufacturing 
Aims at finding the one defective part in a hundred or a thousand. Inputs may 
be: solder joints, welds, cuttings, etc.  

Common techniques for classification tasks are: 

� Decision trees 

� Neural Networks 

� Fuzzy-rule bases 

� Discriminant Analysis 

� K-nearest-neighbor techniques 
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The evaluation of performance is critical when developing classification algorithms, 
especially those based on techniques with weak modeling that makes few assumptions 
about the underlying classification process. Some applications, prediction of stocks to 
name one, present a delicate evaluation situation since expecting a certain 
performance for a working algorithm is still hard to distinguish from doing so by tossing 
a coin. Other needs for proper evaluation of performance arise when new classification 
algorithms are being developed and should be tested against other methods on a large 
number of benchmark problems. This is of course a time consuming process, often 
neglected in both research and real applications. 

The CLS System 
The CLS system is a Matlab-based environment for bench marking, testing, and 
developing classification algorithms. 

The development of CLS was instigated by the following observations: 

� The need for a uniform bench mark for classification algorithms 
It is a well-known fact that no universal classifier exists, which has a superior 
performance on all sort of applications. When developing algorithms, it is 
therefore important to compute the performance for the algorithms in a uniform 
way. 

� The developer should not need to spend time with the relatively trivial tasks 
of data handling and performance computation. 

CLS addresses these issues by providing an environment where data sets and 
classification algorithms can be tested, tuned, and evaluated in an efficient way. 

The development of CLS has been guided by the following design criteria: 

� Interactivity 
A Windows version is preferred when performing interactive testing and 
development of algorithms. It is also useful for educational purposes. 

� Automation  
Experience shows that data analysis is an iterative process where the 
analyses have to be repeated many times when writing scientific reports, and 
in general when conducting research.  A command-line version of CLS is 
therefore essential and can be used to create batch files that automatically 
apply a specific classifier to a large number of data sets. Likewise, a range of 
classifiers can be applied to one specific data set. The results can be easily 
used for presentation material or report generation. 

� Easy expansion and adaptation  
New data and classification algorithms should be easy to interface to the 
system. Data can be read from ASCII files with a simple and clearly defined 
format. All classification algorithms are interfaced to the CLS system through a 
likewise simple and clearly specified interface. New classifiers can be added 
by any user and become totally integrated without any changes to the CLS 
system. More information can be found in Appendices 1 and 2. 
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Installation 
The CLS system should be installed to a new directory on the Matlab search path. A 
suggested directory name is cls. The zipped installation file creates the subdirectories 
data and algorithms when unzipped. All three subdirectories should be added to the 
Matlab search path. 

Quick Start of the Windows Version WCLS 
1. To start the system type WCLS in the Matlab command prompt. 

The dialog box as shown in Figure 1 is displayed. 

2. Click Select Data and select from .mat or ASCII files 

3. Click Select Algorithm and select from the list. The function call can be edited 
and the parameters can be changed. 

4. Click Train&Test. The model is trained on the training data and tested on the 
test data 

 

Figure 1 



CLS Manual 

Page 7 

The Data 

In the example shown in Figure 1. the .mat file “breastcancer” was loaded.  

The Classification Algorithm 

The selected classification algorithm was “K-NEAREST NEIGHBOR”. The text field of 
the button Select Algorithm shows the default function call for the selected algorithm. 
This field can be edited as required. The explanatory text in the larger frame below the 
field contains documentation for the selected algorithm. This frame can be scrolled up 
and down. 

Supplied Data Sets 
The following data sets are available for tests and comparison (they are stored on the 
\data directory): 

� breastcancer.mat 

� down.m 

� genericascii.m 

� diabetes.m 

� letter.mat 

� sonar.m 

Click Select Data to display the documentation about the data sets. 

New data can be easily added to the data base. Plain text files can be read by the 
genericascii interface. For further information about data formats refer to Appendix 1: 
Supplied Classification Algorithms 

Supplied Classification Algorithms 
The following classification algorithms are implemented in CLS (these algorithms are 
stored on the \algorithms directory): 

� KNN 
K-nearest neighbor algorithm. 

� ANN 
Artificial Neural Network. Requires Matlab Neural Network Toolbox 3.0.1 

� LINDISC 
Linear Discriminant Analysis. 

� LINREG 
Linear regression. Not quite a classifier but supplied to serve as a template for 
new classifiers. 
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Click Select Algorithm to display the documentation about the implemented classifiers. 
New algorithms are fairly easy to interface and require no changes in the CLS program 
files. Even the line documentation (shown when the algorithm is loaded) dispalys part 
of the algorithm and not of the CLS system. For further details and specifications refer 
to Appendix 2. 

Performance Results 
Click Train&Test to start the training phase for the selected classification algorithm 
using the training data. When the training is completed, the data in the test set is 
classified and the performance for the classifications is computed. 

 

Figure 2 
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The results of the classification on the test data are presented in the so-called 
confusion matrix 

67.2% hit rate (129 out of 192 cases correctly 
classified) 
Confusion matrix for Classifications: 
 
              No (1)           Yes (2)          Total 

No  (1)       72 ( 83.7%)      14 ( 16.3%)       86 

Yes (2)       49 ( 46.2%)      57 ( 53.8%)      106 

 

This matrix gives the classification results for all combinations of classification/real data 
in the examined test data set. The most interesting entity varies with the application. 
Sometimes it is extremely important to minimize the “false negative” classifications 
while at others the “false positive” ones should be minimized. Often, the total hit rate is 
of interest. This figure is presented in the header line, like the 67.2% in the example 
above. 

Statistics 
The menu item Statistics contains functions for graphical and numerical display of raw 
data and also of the computed classifications.  

The following functions are available: 

� 2D plot 
The class labels are plotted versus two of the input variables (features). In 
case there are more than 2 input variables in the loaded data sets, a popup 
window enables you to select 2 of them for plotting. Two graphs are 
generated; one for the Training data set and one for the Test data set. In 
addition to these graphs a third graph shows the decision boundary for the 
computed classifier. An example is shown in Figure 3 below. The circles 
denote class 1 and the dots denote class 2. 

     

Figure 3 

� 3D plot  
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The class labels are plotted versus two of the input variables (features). In 
case there are more than 3 input variables in the loaded data sets, a popup 
window enables you to select 3 of them for plotting. Two graphs are 
generated; one for the Training data set and one for the Test data set. In 
addition to these graphs a third graph shows the decision boundary for the 
computed classifier. An example is shown in Figure 4 below. The graphs may 
be rotated by dragging them with the mouse. The two classes are indicated by 
different colored dots in the graphs. A black and white printout might therefore 
look less informative than it does in reality… 

     

Figure 4 

� Class Statistics 
The distribution for all input variables is presented in histogram form with 
separate bars for each class, as shown in Figure 5. The mean values for each 
class/input variable are shown in the header of each sub-graph. Mean values 
and standard deviations are presented in tabular form in the CLS window. An 
example is shown in Figure 6 (the CLS window can be scrolled if not all the 
data fits.) 
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Figure 5 

 

Analyzing the training data 
                         Class:     Benign         Malign 
                                  Mean    Std    Mean    Std   
               Clump Thickness:   2.72   1.67    7.05   2.54   
       Uniformity of Cell Size:   1.28   0.88    5.98   2.66   
      Uniformity of Cell Shape:   1.32   0.93    6.20   2.47   
             Marginal Adhesion:   1.25   0.71    4.99   3.15   
   Single Epithelial Cell Size:   2.16   1.13    5.84   2.58   
                   Bare Nuclei:   1.51   1.47    7.15   3.25   
               Bland Chromatin:   2.61   1.25    5.26   2.00   
               Normal Nucleoli:   1.30   1.13    5.74   3.36   
                       Mitoses:   1.11   0.69    2.97   2.77   
 

Figure 6 
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Testing Procedure 
The computation of performance can be done in a number of ways. The following 
options are implemented in the CLS system: 

� Separate testing and data sets 
The division of data in the input data files is used in this mode. The classifier 
algorithm is trained with the testing data and the performance is computed for 
the test data. 

� Full cross validation 
The test and training sets are merged into one data set with N points. N 
classifiers are constructed and are iteratively trained on N-1 points, where one 
point is removed from the data set in each iteration. The performance for the 
constructed (trained) classifier is then computed using this single removed 
point. 

� N-fold cross validation 
The test and training sets are merged into one data set with M points. This set 
is further divided into N smaller partitions, each with (approximately) M/N 
points. N classifiers are constructed, each using N-1 partitions with one 
partition removed. This removed partition is used for the performance 
computation. The total presented performance for the classifier is the mean 
value for the N runs. 

� N runs with equally sized scrambled training and test sets 
The test and training sets are merged into one data set with M points which 
are randomly scrambled to avoid spurious behavior of the classifiers if the 
original data sets are sorted by the classification of the points. This set is split 
in half, thus producing a training and a test set, each with M/2 points. N 
classifiers are constructed, each with randomly selected data sets. The total 
presented performance for the classifier is the mean value for the N runs. The 
example in Figure 7 shows a 10-fold cross validation of a classification task for 
Downs syndrome. The K-nearest neighbor with K=25 is used as classifier. 
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Figure 7 
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Optimization 
Many classifiers contain meta parameters that affect the performance in general or just 
a specific application. Examples are the number of hidden nodes in an artificial neural 
network and the value of K in the K-nearest-neighbor algorithm. The values most suited 
for a given data set might vary and should therefore be investigated in a thorough 
analysis. CLS supports this work by allowing the call to the classifier to contain a 
variable which is automatically set to different values as you may request. The name of 
the variable should be input in the Variable field, and a range such as 1:2:30 in the 
Over field. Now click Optimize. The variable x is assigned values from the Over range 
and a training and test is performed for each value of x. The results are presented as a 
graph showing the hitrate as function of the value of x. Figure 8 shows an analysis of 
the value of the parameter k in the knn classifier. The results are shown in the right  
graph in Figure 9. From this one can deduce that the optimal value for k is around 25.  

The optimization may be combined with the variants of Testing Procedure described 
above. The left graph in Figure 9 shows the same analysis as before but with t different 
Testing procedure. The plotted hitrate for each value of k is computed as the mean of 
10 runs with equally sized scrambled training and test sets. This gives statistically more 
reliable results. We also observe that the curve in this graph is less jagged than the 
one to the right. 

Exhaustive search and Global optimization allow multivariable optimization, but are not 
yet implemented.  
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Figure 8 

      

Figure 9 



CLS Manual 

Page 16 

The Command Line Version CLS0 
As described in the previously, CLS can be called from the command line in Matlab as 
well. This is particularly useful when setting up a systematic test scheme for a certain 
classification algorithm or for a certain data set. The procedure for using the command-
line version of CLS is as follows: 

� Select a data set from one of the supplied examples (listed in Section 
Supplied Data Sets) on the \data directory, or set up your own data in either 
ASCII format or as a .mat file. The data format is described in Appendix 1. 

� Choose one of the predefined classification algorithms (listed in Section 
Supplied Classification Algorithms.) 

� Call the function cls0. Example: 

p=cls0('knn(9)','breastcancer.m'); 
» p.hitrate 
ans =  
   94.1935 
» p.perf1.ncount 
ans =  
    69     3 
     6     77 
 

The shown example is also run in the Windows version in Figure 2. 
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The help text for CLS is shown below: 
 

 function perf = cls0(testfkn, problem, par) 

 Stand alone call function for cls. 

 Tests a classification algorithm on a data set and returns the 

 classification performance. 

 testfkn : string with function call to classifier 

 problem : string with name of mat file or m file with cls data. 

 par     : Optional struct with additional parameters:  

           par.confmatrices 

              set to 1 to enable computation of confusion mat.,  

              perf.perf1.ncount(i,j) is in such case the # of 

              cases where the classification is "i" and the  

              actual value is "j". 

           par.errorhandling 1=enabled (default) 

           par.printoption : 0=silent (default) 

           par.testmode : 

               1:separate train and test set  (default) 

               2:full cross validation  

               3:n-fold cross validation  where n should be set  

                 in par.nfold 

               4:n runs with random data sets where n should be  

                 set in par.nruns 

 Example of usage: 

 cls0('knn(9)','ex1') 
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Data Transformations 
A few tools for data transformation are available from the Tools menu. The data can be 
transformed with the following functions: 

� 0-1 normalization 

� Each feature is scaled so it covers the 0-1 range. The transformation is 
performed for Training data and Test data separately. 

� Gaussian normalization 

� Each feature is transformed by subtracting the mean and dividing by the 
estimated standard deviation. The transformation is performed for Training 
data and Test data separately. 

� Principal components 

� All features are linearly transformed through a PCA. The transformation is 
performed for Training data and Test data separately. 

� Add noise 

� The classifications for 10% (randomly selected) of the training and test data 
are set to random classes (only for binary classifications). 
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Appendix 1 
 

Data Format 
CLD can read data of the following 3 types: 

� ASCII files with numeric data  
The classification should be in one column and the rest of the features in the 
other columns. Use the genericascii.m option in the Select Data function from 
the CLS screen. 

� Interfaced data where raw data, labels, etc. are defined in a short Matlab 
script for each data set. 

� .mat files generated by the "Save data as .mat" command in the Data menu. 
This format can be used to speed up data handling once it has been read into 
CLS using one of the other data formats. 

The first type (ASCII files) is straight forward and requires no further explanation. 

The second type (a specific interface script) is described below. 
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Data scripts 

Data may be interfaced to the CLS system through a Matlab script customized for each 
data set. This script may extract data from any source (most often by reading raw data 
from files,) and should return the data in predefined variables that CLS reads while 
performing the data analysis. The process of interfacing a data set is best explained by 
an example. The following is a listing of the file down.m which interfaces data for 
classification of the Downs Syndrome. 
 

[ptrain, ctrain,ptest, ctest,ok]= 

loadfiles('downlrn1.data','downtes1.data'); 

if ok 

   features={'Age' 'AFP' 'Gest.age'}; 

   classlabels={'down-NO' 'down-YES'}; 

   classes=[0 1]; 

   title='Down syndrome (21-trisomy)'; 

end 

 
The loadfiles function is a utility which reads ASCII data from files. More information 
can be found further down in this Appendix. 
The variables that should be defined by the script are: 

� ptrain 
A matrix with features for the observations in the training data set. Row i in 
ptrain contains the features for row i. 

� ptest 
The same syntax as ptrain but for the test data set. 

� ctrain 
A vector with the classification for each observation in the training data set. 
Classifications should be integers. 

� ctest 
The same syntax as ctrain but for the test data set. 

� Features (optional) 
A cell array of strings with the names of the features 

� classlabels 
A cell array of strings with the names of the classes. 

� title 
A string with a description of the data set 
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loadfiles 
 
The function loadfiles is a convenient way to read ASCII files into the matrices and 
vectors that the CLS system requires. It was used by the script described above and 
the following Help text for the function: 
 
 function [ptrain,ctrain,ptest,ctest,ok]=  

 loadfiles(trainfile,testfile,trainlines,testlines,pcols,ccol,fmt) 

 % Loads ascii files with numeric data for classification problems. 

 % The files should contain lines with equal number of separated  

 % field. Valid separators are white space and comma. 

 % 

 % In parameters: 

 % trainfile  : name of file with training data 

 % testfile   : name of file with test data 

 % trainlines : rows to use for training data. E.g: [ 1 100] for the %  

 %              first 100 lines in file 

 %              Default [] for all rows in file 

 % testlines  : rows to use for training data. E.g: [ 1 100] for the  

 %              first 100 lines in file 

 %              Default [] for all rows in file 

 % pcols      : Vector with column numbers for patterns. Default []  %  

 %              for all but the last column. 

 %              E.g: 2:9 for columns 2 up to 9. 

 % ccol       : Column number for class identity for pattern 

 % 

 % fmt        : Format string for sscanf. E.g: '%i,%i,%s,%i,%i' 

 %              %s-fields will be converted to corresponding ascii  

 %              integer. 

 %              Only one-character strings are allowed. 

 %              Default ''  will uses str2num instead of sscanf anf  

 %              works  fine most of the times. 
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Appendix 2 

Algorithm Interface 

New classifiers can be easily interfaced to the CLS system by writing a simple interface 
routine and placing it on the algorithms directory under the CLS installation directory. 
The layout of the interface routine is described by an example: 
 

function c = A0(p1,p2,pN) 

% ----------------------------------------------------------------------------

--  

% function c = A0(p1,p2,pN) 

% Template for algorithm-interface for the cls system. 

% 

% An algorithm file is called in two modes: 

% 

% if cls.Train 

%    The model should be trained on cls.Ptrain and cls.Ctrain. 

%    c should be returned as '' if the training went ok. 

%    otherwise it should contain a suitable error message 

% else 

%    the (trained) model should be applied on cls.Ptest and 

%    produce classifications which are returns in c. 

%    On error, c should return a string with an error text. 

% end 

% 

% Written 6th of Dec 1999. Last modified 6th of Dec 1999  

% Thomas Hellstrom Umea Sweden. Email: thomash@cs.umu.se 

% ----------------------------------------------------------------------------

--  

% The following comments are the automatic interface for the WCLS system 

% They will be shown when the algorithm is selected in WCLS. 

% The comment lines should start with %x where x~=' '. 

% Row 1: default function call. Row 2: Description. Rows 3- : Free text 

% Example: 

%- A0([5 3 0],300,0.01) 

%- A hell of a Classifier!!! 

%- A0(p1,p2,pN) 

%- p1   : explanatory text 

%- p2   : explanatory text 

%- pN   : explanatory text 

% 

% The blank comment line terminates the comment section. 

 

% cls is the structures with all variables for the wcls system 

global  cls 

% It is often convenient to save the results of the algorithm training 

% in a global variable that can be accessed when the classifier should be 

% applied on data (i.e. the th emodes of theis reoutine): 

global net 

 

% It ia good practise to define defaults for the in parameters: 

if nargin<1, p1 = [5 3 0]; end 

if nargin<2, p2=300; end 

if nargin<3, p3=0.01; end 
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% This routine has two modes: training and not training. 

% The training mode should train the model and save the result. 

% The non training mode should used the trained model and classify 

% data points cls.Ptest: 

if cls.Train 

   % A0train should return '' iff training went fine. Otherwise it should 

   % return a string with an error message: 

   net = A0train(cls.Ptrain, cls.Ctrain, p1,p2,p3); 

   c = ''; 

else 

   % A0class should return a vector with classifications for each element in 

cls.Ptrain: 

   % If an error is encountered, A0class should return an error message. 

   c = A0class(net,cls.Ptest);  

end    

return  


