
Behavior Recognition for Segmentation of
Demonstrated Tasks
Erik A. Billing Thomas Hellström

Department of Department of

Computing Science Computing Science

Umeå University Umeå University

Umeå, Sweden Umeå, Sweden

phone: +4690-7869915 phone: +4690-7867759

e-mail: billing@cs.umu.se e-mail: thomash@cs.umu.se

Abstract—One common approach to the robot learning tech-
nique Learning From Demonstration, is to use a set of pre-
programmed skills as building blocks for more complex tasks.
One important part of this approach is recognition of these
skills in a demonstration comprising a stream of sensor and
actuator data. In this paper, three novel techniques for behavior
recognition are presented and compared. The first technique is
function-oriented and compares actions for similar inputs. The
second technique is based on auto-associative neural networks
and compares reconstruction errors in sensory-motor space. The
third technique is based on S-Learning and compares sequences
of patterns in sensory-motor space. All three techniques compute
an activity level which can be seen as an alternative to a
pure classification approach. Performed tests show how the
former approach allows a more informative interpretation of
a demonstration, by not determining "correct" behaviors but
rather a number of alternative interpretations.

Index Terms—Learning from demonstration, Segmentation,
Generalization, Sequence Learning, Auto-associative neural net-
works, S-Learning.

I. INTRODUCTION

A lot of research in Learning from Demonstration (LFD)

deals with the problem of generating behaviors from data

recorded during manual demonstrations. Behaviors are in this

case direct mappings from sensor states to action states, where

actions typically are low-level motor commands [12], [8].

This both challenging and interesting research has natural

limitations in many real-world applications. A key problem is

generalization, i.e. the robot´s ability to repeat a demonstrated

behavior under conditions not identical to those present during

the demonstration. One common way to overcome this is to

transform the demonstration into a set of pre-programmed

higher-level actions, called sub-tasks [20], motion primitives

[23], motor primitives [1] or motor skills [18].

Most works in LFD deal with tasks such as robot arm

motion, pole balancing, and robot gait, e.g., [2], [13], [4],

and the higher-level actions are often short sequences of low-

level motor commands. One of the few examples of LFD

with complex high-level behaviors is the work presented by

Nicolescu and Mataric´ [16], [15], [10]. The work presented

in this paper uses similar types of higher-level skills. For this

reason, we will adopt the terminology developed by Nicolescu

[16], where skills can be understood as a relatively simple

mapping from sensors to actuators, with an aptitude or ability

to achieve or maintain a goal. Several skills can be combined

to perform a task. A task, which has higher complexity than

skills, may involve serveral goals and is represented as a

sequence of skills.

The ability to represent a demonstration as a sequence

of skills does not only serve as support for generalization,

but is also a powerfull way to make the demonstrated data

understandable to a human user. A labeled sequence of skills,

for example, following the wall to my right, passing through

a door, going straight over the floor avoiding any obstacle, is

significantly easier to interprete than the raw sensor and motor

data. A demonstration represented in this way should give the

user a better understanding of what the robot did observe, and

the opportunity to evaluate the robot’s interpretation of the

demonstrated behavior.

As such, the generalization part of LFD is in this context

understood as describing a task-level demonstration in terms

of the previously learned, or pre-programmed skills. This

involves determining positions and characteristics of segmen-

tation points where the skills change, and identifying the skills

themselves. Identifying suitable parameters for parametrized

skills may also be part of this process, e.g., [15]. Consequently,

the result of performing LFD will be a task representation, i.e.,

a sequence of identified skills, together with a characterization

of the segmentation points. This paper addresses the specific

problem of determining positions for segmentation points and

the identification of previously learned skills for each segment.

However, the problem of determining the characteristics of

each segmentation point is not addressed, and will be subject

to future work.

Section 2 of our paper describes LFD and introduces a

basic notation. Section 3 presents three novel techniques for

behavior recognition. In Section 4, the test cases are described

and the test results are reported in Section 5. Related work is

reviewed in Section 6, and finally conclusions and ideas for

future research are given.

II. LEARNING FROM DEMONSTRATION

The basic principle of the learning technique Learning From

Demonstration (LFD) is that a robot should learn to repeat

228

IEEE SMC International Conference on Distributed Human-Machine Systems 2008



a behavior after being teleoperated through one or several

demonstrations performed by a human. Some key concepts

will be introduced in this section.

The robot represents its view of itself and of the environ-

ment at time t with a sensor vector xt comprising observed

sensor variables. Some variables represent exteroceptive phys-

ical sensors, such as infra-red distance sensors, ambient light

sensors, cameras, bump sensors, accelerometers, gyros, and

GPS. Other variables represent interoceptive sensors, such as

joint angles, wheel encoders, actual motor speed, and battery

state. Dynamics and time dependencies can be handled by

adding lagged variables, derivatives, or sub sequences to the

sensor vector. The robot affects the world and itself through its

effectors represented by the action vector yt. Typical actions

are motor speed and steering angle controlling propulsion, or

joint angles controlling the motion of a robot arm.

A behavior β can be represented by a function from a subset

of sensor vector space to a subset of action vector space. Thus,

the expression yt = β(xt) means that β suggests action yt

for a sensor vector xt. β is sometimes called “policy” or,

in the control systems community, “control law”. By adding

lagged state variables to the sensor vector, the behaviors can

be viewed as purely reactive while still being able to handle

dynamical models.

Often, no distinction between sensor data and actions is

made, and an event et is defined as

et = (xt, yt) . (1)

A demonstration θ is represented by a time series compris-

ing N such events:

θ = (e1, e2, ..., eN ) . (2)

For each t, xt is the observed sensor vector and yt is the

action vector issued by the demonstrator. Hereby, β most often

denotes a relatively simple behavior with a single goal. In

these cases, β represents a skill, as defined in the introduction.

Common skills are avoid obstacles, follow wall or drive

towards goal.

III. METHODS FOR BEHAVIOR RECOGNITION

In the presented work, three methods for behavior recog-

nition are suggested and evaluated. Each method defines a

function fβ for each skill β, mapping a sequence of events

θ = {e1, e2, ..., eN} and a time index t in [1, . . . , N ] to a a

real number representing the activity level αt ∈ [0, 1]:

αt = fβ (θ, t) . (3)

αt could, informally, be interpreted as the probability of β
controlling the robot at time t given the observations θ, i.e.:

αt ∼ P (β|θ) . (4)

If fβ for all β are computed for each time t, the activation

levels can be used both for positioning the segmentation points

and determining the most suitable skills for each segment.

The three suggested methods for behavior recognition are

described below, followed by two examples where the methods

are applied and evaluated.

A. β-Comparison

This method is based on the notion that two skills are equal

if they produce similar actions given the same sensor input.

fβ is defined as the distance between the action yt observed

in θ and the action produced by the specific β :

fβ(θ, t) = 1− d (β (xt) , yt) (5)

where d is a function computing a relevant distance measure

for action vectors in the specific application. d should reflect

the relevant difference between the two actions, and the

implementation of d is as such dependent on both the robot

and the behavior which is being learned. This is a limitation

compared to the other methods described in Section III-B and

III-C, which do not require any application-specific functions.

The precise implementation of d used in the present work is

described in Section IV.

B. AANN-Comparison

Autoassociative Neural Networks AANNs are regular feed-

forward neural networks with the same size of input and output

layers. The input and output parts of the training data are

identical, such that the net learns to map input values onto

the same values in the output layer. With a small hidden

layer, the network performs data compression with a least-

squares criterion [6]. When exposed to a new data vector, the

difference between input and output (reconstruction error) is a

measure of how similar the new data vector is to the training

data. In this particular case, the network input at time t consists
of the vector et comprising both sensor data and action data

(Equation 1). The network output is denoted τt. One network

for each skill is created and trained with an event sequence

θβ observed while performing behavior β. In this way, the

characteristics of the sensory-motor patterns from β will be

modeled by the network. When exposed to a new input vector,

the reconstruction error can be used to define the f function

and hence the activity level scaled to [0, 1]:

fβ(θ, t) = 1/ (1− ‖τt − et‖) . (6)

C. S-Comparison

This algorithm is based on S-Learning, a prediction-

based control algorithm inspired by the human neuromotor

system,[21], [22]. S-Learning is able to extract temporal

patterns in presented data, a very attractive property when

comparing sequential data, such as sensor readings and motor

commands. The temporal dimension allows S-Comparison to

make decisions based on several recent samples, in contrast to

β-Comparison (III-A) and AANN-Comparison (III-B) which

both treat each sample separately.

S-Comparison differs in many respects from the S-Learning

algorithm. Some changes are a direct consequence of the

algorithm being used to compute a similarity measure rather

than future actions. Other modifications improve the handling

229

IEEE SMC International Conference on Distributed Human-Machine Systems 2008



of continuous data, since S-Learning was originally designed

for discrete data.

Similarly to AANN-Comparison, one model of each skill is

first created from a separate demonstration θβ . Each model,

or pattern library λ = {ρ1, ρ2, . . .}, is a set of patterns ρ =
(e1, e2, ..., em), where each ρ is a sub sequence of θβ . ρ (k)
denotes the k-th element ek in ρ. The concatenation operator

ρ||e combines ρ and e into a new pattern including all elements

in ρ and with e as last element.

Algorithm 1 Training of S-Comparison

1) λ = {∅}
2) ρmax ← null; δmax ← H
3) For each ρ ∈ λ then

δ ←
∑|p|

k=1 1− |ρ(k)−θ(k)|
σ

If δ > δmax then δmax ← δ; ρmax ← ρ

4) If ρmax 6= null then

enew ← θ (|ρmax|+ 1)
ρnew ← ρmax||enew

Else ρnew ← θ(1)

5) Add ρnew to λ then

6) Remove the first |ρnew| elements from θ
7) If θ 6= {∅} then go to 2

Else: Training finished

The initially empty pattern library is populated by traversing

θβ , a detailed description of this training procedure is found

in Algorithm 1. Two constants control the result: The creation

threshold H controls how frequently the algorithm creates

completely new patterns, and the error tolerance σ is a real

number between 0 and 1, balancing pattern length against

correctness. A small σ produces many short patterns, resulting

in an algorithm less prone to fall into false interpretations, but

also with limited ability to recognize temporal patterns.

After training, S-Comparison can be used to define the fβ

function, and hence the activity level for each position in θ.
In the same way as during the training phase, a similarity

measure δ is computed for each ρ ∈ λ given a set of past

events, i.e., all elements in θ up to time t. fβ are defined as

fβ(θ, t) =

{

2
π

arctan (δmax/d) : if δmax > 0
0 : otherwise

(7)

where d denotes the dimensionality of θ. Since the similarity

measure δ is arbitrary and depends on the amount of training

data, the creation level, and the error tolerance, it has no

obvious maximum value. For this reason, the arctan function

is used as a squashing function to keep the activity levels

between 0 and 1.

IV. EXPERIMENTAL SETUP

The three methods for behavior recognition presented in

Section III were evaluated using a Khepera robot from K-

Team [9]. As discussed earlier, the correct way to generalize

any demonstration depends on, among other things, which

skills are available. In the present work, five skills were used,

which all produce common movement behaviors: FLW - Drive

along a wall on left side, FRW - Drive along a wall on

right side, AVOID - Go straight ahead but avoid obstacles,

CORRIDOR - Drive in a narrow corridor without hitting

the walls, and SLALOM - A slalom drive around circular

cones. Each skill was first demonstrated manually using a

standard keyboard interface as remote control. The physical

test environment can be seen in Figure 1. Values from the

eight infrared proximity sensors constituted the sensor vector

xt, while the speed of the two wheels constituted the action

vector yt. None of the presented recognition methods assumes

that the skills are created from a single demonstration, and

consequently θβ should be understood as a general notation

for all demonstrations of a specific β. However, in the present

work, each skill is created from a single demonstration with

a length of about 4000 samples. All values were rescaled to a

number between 0 and 1 and logged at about 10 Hz.

Figure 1. Experimental setup. During both training and test sessions, the
Khepera robot was placed in a large rectangular box with movable walls and
cones, creating a steady and well controlled environment. Sensor readings and
motor commands were recorded while the Khepera was remotely controlled,
demonstrating one or several behaviors. The present image was taken during
demonstration of the Slalom test case, cf. Figure 3.

To ensure that each log file contained all information

necessary to achieve the specific goal, one neural network

for each skill was created. Each network was trained on its

corresponding log file, using the proximity values and wheel

speeds as input and output data, respectively. The networks

had one hidden layer with five nodes. After training, each

network was used as controller β (See Section III) of the robot,

which was then able to repeat the corresponding demonstrated

behavior.

The three behavior recognition methods were evaluated

using two test cases. The first test case, referred to as the

L-demonstration, involved controlling the robot from start to

goal, along the dashed line in Figure 2. Given the skills listed

above, it should be generalized into FLW t=0 to 140, FRW

t=140 to 215, CORRIDOR t=215 to 320 and finally FLW

t=320 to 390.

The second test case, named Slalom-demonstration, involves

230

IEEE SMC International Conference on Distributed Human-Machine Systems 2008



t=140

t=0

t=320

t=350

t=60 t=90

t=240

t=210

Figure 2. L-demonstration

t=160

t=0

t=240

t=320

t=380

Figure 3. Slalom-demonstration

driving zigzag through a five-cone track, as illustrated in

Figure 3. This demonstration differs in several ways from the

demonstration used to create the SLALOM skill, both in num-

ber of cones and their relative positioning. The demonstration

could be understood as an instance of the SLALOM skill, or

as a sequence of FLW, FRW, FLW, and so on.

The dark gray circles in Figures 2 and 3 mark the robot’s

initial position, and the dashed circles mark key positions with

the corresponding time stamps. Walls and obstacles in the

environment are illustrated as light gray areas. Note that the

dashed trajectory simply is a coarse illustration of the robots

motion, the real trajectory is significantly more jagged due to

the binary behavior of the keyboard control.

For the β − Comparison, the neural network controllers

created from respective θβ , as described above, were used.

All five skills used in the present work are speed invariant

in the sense that the goal does not depend on the speed of

the robot. Inspired by the work of Olenderski and co-workers

[17], the difference function d (Equation 5) is defined as the

absolute difference in turning rates:

d (β (xt) , yt) = |wt − vt| (8)

where wt represents the turning rate produced by β(xt) and vt

represents the turning rate observed in θ at time t. The turning

rate is given by the difference in speed between the left and

right wheels of the Khepera robot.

The AANN-Comparison and S-Comparison are performed

by first training the algorithms with each θβ . Each AANN

has one hidden layer with five nodes, and is trained for 100

epochs, (very similar results are achieved for 50, 150 and

200 epochs). Neither AANN nor S-Comparison distinguishes

between sensors and actions, and the action vector is not

converted to a turning rate as in β-Comparison.

V. RESULTS

The estimated activity levels produced for the two test cases

are visible in Figure 4 to 9.

A. Results from β-Comparison

When looking at the results for the two test cases it is

obvious that the β-Comparison approach has problems. The

results from the L-demonstration, plotted in Figure4, show

roughly correct estimations of FLW for t=20 to 90, FRW

for t=130 to 210 and CORRIDOR for 150 to 320. However,

during parts of the demonstration, β-Comparison gives the

AVOID and SLALOM skills higher activity levels than any

of the other, although none of these behaviors is part of the

demonstration.

The reason for this poor performance can primarily be

derived from the fact that β-Comparison only compares action

vectors. For example, when driving along a wall on the

left side, β-Comparison has no information about the high

values on the leftmost proximity sensor. The algorithm only

measures the difference in turning rate between the observed

and produced data. When the robot is closer to the wall than

the FLW controller is configured for, the controller returns a

right turn to increase the distance to the wall. However, the

human demonstrator might be more tolerant, accept the current

distance to the wall, and consequently not find it necessary to

turn. As a result, β-Comparison recognizes a relatively large

difference in turning rate, and a low activity level is returned,

even though the episodes from the demonstrator’s point of

view is very similar. This is the reason for the low FLW ratings

for t=90 to 140.

B. Results for AANN-Comparison

The activity level computed by AANN-Comparison varies

a lot between the different skills. In the L-demonstration

(Figure 5), FLW and FRW receive activity levels around 0.8

during their respective parts of the demonstration, wile the

CORRIDOR skill is only given an activity level of about

0.1 during the period where it should receive the highest

levels. However, when looking only at the maximum levels

at each time, the correct skill is identified during almost

the entire demonstration. In the Slalom-demonstration (Figure

8), a sequence of FRW, FLW, FRW, FLW, and finally FRW

is identified. This is, if not the best, at least a reasonable

interpretation of the demonstration.

231

IEEE SMC International Conference on Distributed Human-Machine Systems 2008



0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

a
c
ti
v
it
y
 l
e

v
e

l

FLW

FRW

AVOID

CORRIDOR

SLALOM

Figure 4. Recognition of the L-demonstration using β-Comparison

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

a
c
ti
v
it
y
 l
e

v
e

l

FLW

FRW

AVOID

CORRIDOR

SLALOM

Figure 5. Recognition of the L-demonstration using AANN-Comparison

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

a
c
ti
v
it
y
 l
e

v
e

l

FLW

FRW

AVOID

CORRIDOR

SLALOM

Figure 6. Recognition of the L-demonstration using S-Comparison

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

a
c
ti
v
it
y
 l
e

v
e

l

FLW

FRW

AVOID

CORRIDOR

SLALOM

Figure 7. Recognition of the Slalom-demonstration using β-Comparison

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

a
c
ti
v
it
y
 l
e

v
e

l

FLW

FRW

AVOID

CORRIDOR

SLALOM

Figure 8. Recognition of the Slalom-demonstration using AANN-
Comparison

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

a
c
ti
v
it
y
 l
e

v
e

l

FLW

FRW

AVOID

CORRIDOR

SLALOM

Figure 9. Recognition of the Slalom-demonstration using S-Comparison

232

IEEE SMC International Conference on Distributed Human-Machine Systems 2008



C. Results for S-Comparison

S-Comparison is the most restrained comparison method,

and causes significantly fewer false alarms than the other

methods, in the sense that it does not give activity levels over

0 to behaviors that clearly do not belong to the demonstrated

data. With the exception of relatively high ratings for the

AVOID and CORRIDOR skills early in the L-demonstration

(Figure 6), inappropriate skills are never given an activity level

over 0.1 in either of the two test cases.

However, even appropriate skills receive relatively low

activity values compared to the other recognition methods.

This can be, at least to some extent, explained by the fact that

the activity levels computed by S-Comparison are arbitrary,

see Section III-C for details.

VI. RELATED WORK

Skills and segmentation points in demonstrated sequences

can be identified in several ways. Segmentation points may

be identified by statistical features in data, for example

thresholding the variance for certain sensor modalities [11],

[19], thresholding the mean velocity of joints [7], [14], or

entropy measures [5]. Another way is to observe the out-

come of the robot actions. In [16], segmentation points are

identified by constantly matching current sensory states with

post-conditions for all pre-programmed skills. Once a post-

condition is matched, both segmentation point and skills are

identified. Other techniques try to directly identify the skills

in the demonstrated data. Bentivegna [3] uses a nearest-

neighbor classifier on state data to identify skills in a marble

maze task. Pook and Ballard [20] present an approach where

sliding windows of data are classified using Learning Vector

Quantization in combination with a k-nn classifier.

To compare the approaches [11], [19], [7], [14], [5], [16],

[3], [20] mentioned above with the work presented in this

paper, it is important to first observe that the complexity of

the skills is a crucial factor when choosing techniques for

segmentation and skill identification. Approaches that look for

general statistical features in data to detect segmentation points

are not sufficient for the high-level behaviors that we are using.

Our second test case, presented in Section IV, shows how both

the location of segmentation points, and the identity of the

actual skills depend on much more than the fluctuations in

data. The Slalom demonstration can be understood as both

an instance of the SLALOM primitive, and a sequence of

FLW and FRW primitive, and the segmentation points have

to be placed differently for these two cases. The activation

levels suggested in this paper serve as a tool to deal with this

ambiguity, e.g. by behavior arbitration or parallel behaviors,

based on fuzzy logic, for example.

Nicolescu’s approach using post-conditions [16] focuses

on the segmentation points and ignores the actual behavior.

This works well for behaviors where the goal determines the

wanted behavior completely, but would fail with other types

of behaviors.

In contrast, the sliding window k-nn classifier presented by

Pook and Ballard [20] focuses directly on the identification

of skills, and is in this sense similar to our approach. In fact,

S-Comparison can be understood as a 1-nn classifier with a

dynamic sliding window, even though it has not been used as

a classifier in this case .

VII. CONCLUSIONS AND FUTURE WORK

We have developed and evaluated three different techniques

for behavior recognition in an LFD setting. All techniques

compute an activity level which can be seen as an alternative

to a pure classification approach. The examples show how

the former approach allows a more informative interpretation

of a demonstration, by not determining "correct" behaviors,

but rather a number of alternative interpretations. As shown

in Figure 8 for example , there is no reason to claim that a

sequence of FLW, FRW, FLW, . . . is more, or less "correct"

than the SLALOM skill. The final decision of how to interpret

the observed event sequence should be left to higher cognitive

levels in a final LFD system. This decision depends, among

other things, on the meaning of "generalization", which we

intend to deal with in our future research.

The three presented techniques differ in the way they utilize

the demonstrated data for behavior recognition. β-Comparison

focuses on actions and ignores the input part entirely. As

discussed in Section V, this leads to unavoidable problems.

The technique is not suitable for segmentation purposes, but

the average activity levels for an entire demonstration may be

useful for work with behavior fusion, such as described in

[17].

AANN-Comparison models the sensory-motor space for

each skill and performs recognition based on how well the

demonstrated data fits into these models. The results are

clearly better than for β-Comparison, both in terms of skill

identification and localization of segmentation points. This can

be explained by AANN-Comparison using the sensor vectors

directly in the comparison process, and consequently it has

much more information available than does β-Comparison.

S-Comparison uses most information of the three evaluated

algorithms. Similarly to AANN-Comparison, it treats sensors

and actuators as a single event vector. In addition, it models

temporal patterns in the event stream. However, the model-

ing power of S-Comparison does not show up as increased

performance in the results, compared to AANN-Comparison.

S-Comparison is less noisy than the other two methods and has

both fewer false positives (high activity level where it should

be low) but also more false negatives (low activity level where

it should be high) compared with AANN-Comparison. This is

clearly visible in the first part of the Slalom test case, Figure

9.

Furthermore, S-Comparison fails to identify exact positions

of the segmentation points. This can be seen as a direct con-

sequence of the temporal dimension of S-Comparison. Since

S-Comparison has not been trained on data describing the

transitions between different skills, such periods yield a low

similarity measure. As seen in Figures 6 and 9, this problem

shows up as gaps in the activity level curves. Similar problems

have been reported by Pook and Ballard [20], evaluating their

window-based approach.

Even though some effort has been put on comparing these

techniques, this work should be seen as an attempt to eval-

233

IEEE SMC International Conference on Distributed Human-Machine Systems 2008



uate a concept of behavior recognition, rather than test the

exact performance of presented algorithms. Furthermore, the

problem of identifying characteristics of segmentation points

required to autonomously repeat a demonstrated behavior is

not addressed here. However, by identifying the location of

the segmentation points, we have drastically narrowed down

the problem.

Both skills and task level representations [16] are created in

this approach from manual demonstrations. A thrilling possi-

bility is to use the task level representations, i.e., sequences of

skills, as primitives in even more complex tasks. This would

allow the robot to reuse its experience, both from manual

demonstrations and successful automatic drives. These issues

will be subject to future work.

The present work should also be seen as a step towards

a developed interaction between the robot and its user. The

presented methods transform a complex, multi-dimensional

stream of data into a relatively simple sequence of named

skills, easily read and understood by a human user. From

an interaction perspective, this feature appears as one of the

strongest motivations behind the use of previously learned

skills in LFD, and possibly also in other areas of robotics.

REFERENCES

[1] R. Amit and M. Mataric. Parametric primitives for motor representation
and control, 2002.

[2] C. G. Atkeson and S. Schaal. Learning tasks from a single demonstra-
tion. In In Proceedings of the 1997 IEEE International Conference on

Robotics and Automation, 1997.
[3] Darrin C. Bentivegna. Learning from observation using primitives. PhD

thesis, 2004. Director-Christopher G. Atkeson.
[4] E.U. Braun, H. Mayer, I. Nagy, A. Knoll, S.M. Wildhirt, R. Lange,

and R. Bauernschmitt. An instrumentation system with force feedback,
automatic recognition and skills for cardiac telemanipulation. In Pro-

ceedings 33rd Annual International Conference of Computers in IEEE

Comp Cardiol, volume 33, pages 553–556, 2006.
[5] Paul Cohen, Niall Adams, and Heeringa Brent. Voting experts: An

unsupervised algorithm for segmenting. To appear in Journal of

Intelligent Data Analysis.
[6] K. I. Diamantaras and S. Y. Kung. Principal component neural networks:

theory and applications. John Wiley & Sons, Inc., New York, NY, USA,
1996.

[7] A. Fod, M. Mataric, and O. Jenkins. Automated derivation of primitives
for movement classification, 2000.

[8] Thomas Hellström. Teaching a robot to behave like a cockroach.
In Proceedings of the Third International Symposium on Imitation in

Animals and Artifacts in Hatfield UK, pages 54–61, 2005.
[9] K-Team. Khepera ii mobile robot. www.k-team.com, 2007.

[10] N. Koenig and M. J. Matarić. Demonstration-based behavior and task
learning. Working Notes, AAAI Spring Symposium, 2006.

[11] Nathan Koenig and Maja J Matarić. Behavior-based segmentation of
demonstrated tasks. In In International Conference on Development

and Learning (ICDL),, Bloomington, IN., May 2006.
[12] Paul Martin and Ulrich Nehmzow. Programming by teaching: Neural

network control in the manchester mobile robot. In Proceedings

Intelligent Autonomous Vehicles, 1995.
[13] J. Nakanishi, J. Morimoto, G. Endo, S. Cheng, G. Schaal, and

M. Kawato. Learning from demonstration and adaptation of biped
locomotion. Robotics and Autonomous Systems, 47:2–3:79Ű81, 2004.

[14] S. Nakaoka, A. Nakazawa, K. Yokoi, and K. Ikeuchi. Recognition and
generation of leg primitive motions for dance imitation by a humanoid
robot, 2003.

[15] Monica Nicolescu and Maja Matarić. Linking perception and action in
a control architecture for human-robot domains. In Thirty-Sixth Hawaii

International Conference on System Sciences, HICSS-36, Hawaii, USA,
January 2003.

[16] Monica Nocolescu. A Framework for Learning from Demonstration,

Generalization and Practice in Human-Robot Domains. PhD thesis,
University of Southern California, 2003.

[17] Adam Olenderski, Monica Nicolescu, and Sushil Louis. Robot learning
by demonstration using forward models of schema-based behaviors. In
Proceedings of the Second International Conference on Informatics in

Control, Automation, and Robotics., volume 3, pages 263–26, 2005.
[18] J. Peters and S. Schaal. Policy learning for motor skills. In Proceedings

of 14th international conference on neural information processing

(iconip), 2007.
[19] Richard Alan Peters II and Christina L. Campbell. Robonaut task

learning through teleoperation. In Proceedings of the 2003 IEEE,

International Conference on Robotics and Automation, pages 23 — 27,
Taipei, Taiwan, September 2003.

[20] Polly K. Pook and Dana H. Ballard. Recognizing teleoperated manipu-
lations. In ICRA (2), pages 578–585, 1993.

[21] B. Rohrer and S. Hulet. Becca – a brain emulating cognition and
control architecture. Technical report, Cybernetic Systems Integration
Department, Sandria National Laboratories, Alberquerque, NM, USA,
2006.

[22] B. Rohrer and S. Hulet. A learning and control approach based on the
human neuromotor system. In Biomedical Robotics and Biomechatron-

ics, 2006. BioRob., pages 57–61, February 2006.
[23] H. Urbanek, A. Albu-Schäffer, and P. Smagt van der. Learning from

demonstration repetitive movements for autonomous service robotics.
In IROS 2004 IEEE RSJ International Conference on Intelligent Robots

and Systems, Sendai, Japan, Sept. 28-Oct.2, 2004, 2004. LIDO-
Berichtsjahr=2004.

234

IEEE SMC International Conference on Distributed Human-Machine Systems 2008


