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Abstract. An overlooked problem in Learning From Demonstration is theambi-
guity that arises, for instance, when the robot is equipped with more sensors than
necessary for a certain task. Simply trying to repeat all aspects of a demonstration
is seldom what the human teacher wants, and without additional information, it is
hard for the robot to know which features are relevant and which should be ignored.
This means that a single demonstration maps to several different behaviours the
teacher might have intended. This one-to-many (or many-to-many) mapping from a
demonstration (or several demonstrations) into possible intended behaviours is the
ambiguity that is the topic of this paper. Ambiguity is defined as the size of the cur-
rent hypothesis space. We investigate the nature of the ambiguity for different kinds
of hypothesis spaces and how it is reduced by a new concept learning algorithm.
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Introduction

Learning from Demonstration(LfD) is a well established robot learning technique (see
for instance [1] for an excellent overview). Within LfD a human teacher provides demon-
strations which reflect the behaviour necessary for the robot to accomplish a specific
task. The robot observes and identifies the demonstrations and is then supposed to learn
such that it can repeat the behaviour in new, similar but not necessarily identical, situa-
tions. In order to simplify LfD, the robot often has a number of pre-programmed param-
eterised behaviour primitives [2,3,4,5]. An example of a high-level behaviour primitive
is a robot’s ability to grip an object, where the parameters to the behaviour primitivegrip
specify the object to be gripped. A primitive likegrip would contain programme code
that enables the robot to locate an object, navigate towardsit and grip it. A major part
of LfD is the identification of a primitive and its associatedparameter values, given one
or several demonstrations. This process is often denoted asbehaviour recognitionand a
number of different techniques may be used (see for instance[6,4,7,8]). In what follows
we assume that behaviour recognition is satisfactorily accomplished. Our interest lies in
the connection between the demonstrations and the teacher’s intention. The problem is
illustrated by the following simplified scenario in which a teacher demonstrates a wanted
robot behaviour by remote-controlling the robot. The robotis placed in a room with two
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types of objects:balls andcubes. With its camera the robot can determine the relative
location and type of objects and it can distinguish between the three object coloursred,
blue, andgreen. The teacher’s aim is to teach the robot to collect the balls in the room and
shows this by a demonstration. The teacher remote-controlsthe robot towards a green
ball and grips it. How should the robot behave in order to repeat the demonstrated be-
haviour? By gripping a green ball (and ignoring the blue and red balls)? By gripping a
ball of any colour? By gripping a green object of any type? By gripping a ball or a cube
of any colour? Without any type of bias or additional information there is no reason for
the robot to prefer any of these alternatives for the others.Thus, a single demonstration
maps to several different behaviours the teacher might haveintended. This one-to-many
(or many-to-many) mapping from a demonstration (or severaldemonstrations) into pos-
sibly intended behaviours is the ambiguity that is the topicof this paper. It is quite evident
that ambiguity can prevent a robot from performing its task in a satisfactory way. We
investigate the nature of the ambiguity arising from the one-to-many mapping illustrated
above and how it is reduced in the learning process.

The paper is organised as follows. In Section 1 we go through related research and
different notions of ambiguity. In Section 2 we define ambiguity as investigated in this
paper, formulate restricted hypothesis spaces and presenta new concept learning algo-
rithm. In Section 3 we analyse how ambiguity for different kinds of hypothesis spaces is
reduced during the learning process. Section 4 gives a conclusion of the investigations in
this paper and future research tasks.

1. Related research

In the literature the problem of ambiguity in LfD is acknowledged but to the best of
our knowledge there has been no explicit investigation thereof. Most often, sensors and
perception are tailored to specific tasks, and ambiguity is therefore most often not a real
issue. In the example given in the introduction, the colour sensor is irrelevant for the
intended task of collecting balls of any colour, and removing the colour sensor would
indeed make the discussion about ambiguity unnecessary. The robot may successfully
repeat the intended behaviour by consideringall perceived aspects (i.e. thetypepercept)
of the demonstration. However, a robot capable of learning alarge number of different
tasks has to be equipped with a large number of sensors and perception abilities. Simply
copying as many aspects of a demonstration as possible, is normally notwhat the human
teacher wants the robot to do.

It is important to distinguish the used meaning of the word ambiguity from other
uses in robot learning. Ambiguity is sometimes used to denote the problems that appear
due to insufficient sensing or perception. Bad colour perception may for instance result
in a one-to-many mapping from demonstrations to intended behaviours. A similar am-
biguity may appear due to differences in teacher and robot perspectives during demon-
strations (see [12]). For example, a visual occlusion couldblock the teacher’s view of a
shared workspace such that several demonstrations, different from the teacher’s point of
view, look identical from the robot’s point of view. The termambiguity is also used to
describe the phenomenon that one natural language sentencecan have several meanings,
which can be problematic also in verbal human robot interaction. Another source of un-
certainty which is sometimes denoted ambiguity (e.g. in [13]) is caused by inconsisten-



cies between several demonstrations. One common approach to deal with such ambiguity
is to provide several demonstrations and let the robot deduce the common denominators
such that the ambiguity is reduced or eliminated. However, the ambiguity we deal with
in this paper would not be solved by improved perception or perfectly consistent demon-
strations. Not even a human being with superior perception can for certain determine
the intention of a teacher who grips a green ball. The intention is simply not uniquely
described by the demonstration.

2. Concept Learning for LfD

Concept learning is a machine learning technique in which the definition of a concept is
acquired through positive and negative training examples of that concept (see [9]). Al-
though concept learning is not commonly used in practical machine learning, it provides
insight into the characteristics of hypothesis selection and is useful for our analysis of
ambiguity. The learning process is formulated as a problem of searching through a pre-
defined space of potential hypotheses for the hypothesis that best matches the training
examples. We adopt this problem formulation to LfD with the teacher’s demonstrations
taking the role as positive training examples and all the possible intended behaviours tak-
ing the role as all potential hypotheses. In the following wefirst give some preliminaries
and define the necessary notions and later give an illustrative example.

Let A andB be two sets. The inclusion ofA in B is denoted byA ⊆ B, while the
strict inclusion is denoted byA ⊂ B. The empty set is denoted by∅. By A\B we denote
the set difference ofA andB. By 2A we denote the power set ofA, that is, the set of all
subsets ofA. The Cartesian product of a finite family of setsA1, A2, . . . , An, denoted by
A1 ×A2 × . . .×An is defined as{ (a1, a2, . . . , an) | ai ∈ Ai, 1 ≤ i ≤ n }. A singleton
is a setA with a single element; ifA = {a} we simply writea. The cardinality of a set
A is denoted by|A|.

Let V1, . . . , Vk be a family of finite value sets. A value setV may contain colour
values, such asred, blue, green, for example.

Definition 1. For a given family of finite value setsV1, . . . , Vk, an instanceis ak-tuple
(a1, . . . , ak), where eachai is a singleton fromVi, 1 ≤ i ≤ k.

That is, an instance is a tuple of values from the corresponding value sets. In LfD,
the parameter values to a behaviour primitive can be represented as an instance. Conse-
quently, a demonstration is represented by an instance. Thename of the behaviour primi-
tive may be viewed as an extra parameter, but is in this paper for clarity reasons assumed
to be already identified.

Definition 2. For a family of finite value setsV1, . . . , Vk, the instance spaceI is the
Cartesian product of all value sets, that is,I = V1 × V2 × . . . × Vk.

That is, the instance spaceI is the set of all instances over the value setsV1, . . . , Vk.
The size ofI is

|I| =

k∏

i=1

|Vi|.



Definition 3. For a given instance spaceI, a hypothesish is a subset of the instance
space, that is,h ⊆ I.

A hypothesis corresponds to a possible intention of the teacher. Thehypothesis space
is the set of all possible hypotheses.

Definition 4. For a given instance spaceI, theunrestricted hypothesis spaceis given by
Ĥ = 2I \ ∅.

That is, the unrestricted hypothesis space comprises all possible non-empty hypothe-
ses. The size of̂H is

|Ĥ | = 2|I| − 1.

Different kinds of hypothesis spaces can be defined for certain applications. In what
follows we simply writehypothesis spaceH if the considered hypothesis space can be
of any type.

In terms of concept learning, the purpose of LfD is to learn a conceptC which is a
subset of the instance spaceI, that is,C ⊆ I, and which matches the teacher’s intention
as shown by the demonstrations. Given a set of training examples ofC, the problem faced
by the robot is to hypothesiseC. The concept to be learned can also be seen as a Boolean
valued function defined over the instance space:fc : I → {0, 1}, wherefc(ι) = 1 for all
instancesι ∈ I that belong to the concept andfc(ι) = 0 for all other instances. A concept
learning algorithm finds a hypothesis functionfh : I → {0, 1} by searching through the
hypothesis spaceH . For a successfully learned hypothesis, we havefh(ι) = fc(ι) for
all ι in I. That is, a successfully learned hypothesis comprises all instancesι for which
fc(ι) = 1.

Let us consider the example given in the introduction again.The two parameters
to the behaviour primitivegrip, a1 (representing the type of the object) anda2 (rep-
resenting the colour of the object) take values from the value setsV1 = {cube, ball}
and V2 = {red, blue, green}, respectively. The teacher’s demonstration of gripping
a green ball is represented by the instanced = (ball, green). The instance space is
I = {(cube, red), (cube, blue), (cube, green), (ball, red), (ball, blue), (ball, green)}.
The intention of the teacher “grip a ball of any colour” corresponds to the subset
C = {(ball, red), (ball, blue), (ball, green)}, which is the concept to be learned. When
any of the instances inC are parameters to thegrip behaviour primitive, the robot will
“repeat” the demonstrated behaviour.

Figure 1 depicts the instance spaceI of our example, consisting of six instances.
Furthermore, four hypothesesh1, h2, h3 andh4 are illustrated (there are in total 63 hy-
potheses in the unrestricted hypothesis spaceĤ), where each hypothesis corresponds
to a possible intention of the teacher. Hypothesish1 corresponds to the intention “grip
a green ball”,h2 corresponds to “grip a ball of any colour”,h3 corresponds to “grip a
green object”, andh4 corresponds to “grip an object of any type and colour”. Hypothesis
h2 represents the behaviour to be learned in this example. The teacher’s demonstration
d = (ball, green) is an element of all four hypothesesh1, h2, h3 andh4. That is, the sin-
gle demonstrationd is ambiguous in the sense that it maps one-to-many toĤ . The robot
cannot determine one unique hypothesis but is left with several possible hypotheses.

We define ambiguity as the size of a given hypothesis space.
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Figure 1. Relationships between the instance spaceI and the hypothesesh1, h2, h3, h4 given the demonstra-
tion d of gripping a green ball.

Definition 5. For a given hypothesis spaceH , ambiguityA of H is given by the size of
H , that is,A = |H |.

Without any demonstrations the hypotheses in a hypothesis spaceH represent all
possibly intended behaviours of a teacher, that is, the initial hypothesis spaceH is max-
imal ambiguous. In Section 3 we analyse the ambiguity duringthe learning process as
demonstrations are given and the hypothesis space successively shrinks. In the exam-
ple above, the ambiguity of the initial unrestricted hypothesis spacêH computes to a
modest26 = 64. However,|Ĥ | suffers from combinatorial explosion when the num-
ber of parameters to a behaviour primitive increases and/orthe number of the elements
in a value set increases. By simply adding a third parametera3 with 4 possible values
from a value setV4, the size of the initial unrestricted hypothesis space|Ĥ| increases to
224 − 1 = 16777215.

2.1. Restricted Hypothesis Spaces

In this subsection we define restricted hypothesis spaces that are not the powerset of a
given instance set. This restricts the size of the hypothesis space and thus ambiguity.

Definition 6. For given value setsV1, . . . , Vk, the cart setsC1, . . . , Ck are given by
Ci ⊆ 2Vi \ ∅, for 1 ≤ i ≤ k.

Definition 7. For given cart setsC1, . . . , Ck, the restricted hypothesis spaceH is the
Cartesian product of all cart sets, that is,H = C1 × C2 × . . . × Ck.

Any hypothesis spaceH that is the Cartesian product of some cart sets is referred to
asCartesian hypothesis spaceH . The size of a Cartesian hypothesis spaceH is

|H | =

k∏

i=1

|Ci|.



Let us consider again our example in the introduction with value setsV1 =
{cube, ball} andV2 = {red, blue, green} (in the following red, blue, green are ab-
breviated asr, b, g, respectively). Let the cart sets beC1 = {cube, ball, {cube, ball}}
and C2 = {r, b, g, {r, b}, {r, g}, {b, g}, {r, b, g}}. The restricted hypothesis space is
H

′

= {(cube, r), (cube, b), (cube, g), (cube, {r, b}), (cube, {r, g}), (cube, {b, g}), (cube,
{r, b, g}), (ball, r), (ball, b), (ball, g), (ball, {r, b}), (ball, {r, g}), (ball, {b, g}), (ball,
{r, b, g}), ({cube, ball}, r), ({cube, ball}, b), ({cube, ball}, g), ({cube, ball}, {r, b}),
({cube, ball}, {r, g}), ({cube, ball}, {b, g}), ({cube, ball}, {r, b, g})}.

As can be seen, the hypotheses inH
′

may contain sets of values. This should be seen
as a shorthand notation for all possible instances that can be formed by combinations
of values in a hypothesis. For example, hypothesis(cube, {red, blue}) is a shorthand
for {(cube, red), (cube, blue)}. Just as in the case with the unrestricted hypothesis space
Ĥ (see Definition 4), applying this hypothesis to thegrip primitive makes the robot
look for and grip a red or blue cube, whichever it finds first. The hypotheses in the
restricted hypothesis spaceH

′

may represent intentions like “grip a ball of any colour”
(i.e. (ball, {red, blue, green})), “grip a green object” (i.e.({cube, ball}, green)), and
“grip a blue or green ball” (i.e.(ball, {blue, green})). Note that some intentions that can
be expressed in the unrestricted hypothesis spaceĤ cannot be expressed in the restricted
hypothesis spaceH ′, e.g. “grip a blue cube or a red ball”.

The author in [9] deals with less detailed hypotheses, as he uses the short no-
tation ? for a set containing all elements in a corresponding value set. For exam-
ple, the hypothesis(?, green) is a shorthand for{(cube, green), (ball, green)}. Us-
ing the ? notation gives us an even more restricted hypothesis space.Applying the
cart sets in Definition 6 to the approach in [9] leads to the following cart sets
C1 = {cube, ball, ?} and C2 = {red, blue, green, ?} and the associated Carte-
sian hypothesis space isH

′′

= {(cube, red), (cube, blue), (cube, green), (cube, ?),
(ball, red), (ball, blue), (ball, green), (ball, ?), (?, red), (?, blue), (?, green), (?, ?)}.

With H
′′

we may express intentions like “grip a ball of any colour” (i.e. (ball, ?)),
and “grip a green object” (i.e.(?, green)). The intentions “grip a blue or green ball” and
“grip a blue cube or a red ball” cannot be expressed with hypothesis spaceH

′′

. These
limitations are the price we have to pay for reducing the sizeof the hypothesis space and
thereby making the learning problem easier.

2.2. A Concept Learning Algorithm

A general algorithm for concept learning is thecandidate eliminationalgorithm (see
[9]). While being applicable to our LfD scenario, we proposein the following a new
algorithm tailored to our focus on ambiguity. In the algorithm, the demonstrations serve
as positive examples of the concept to be learned (the intended behaviour) and are used
to successively shrink the hypothesis space. ByHj we denote a hypothesis spaceH at
timej, for j ≥ 0. The initial hypothesis spaceH0 is the set of all possible instances (e.g.
Ĥ, H ′ or H ′′ as defined above). At each time stepj a demonstration is given and a new
(smaller) hypothesis spaceHj+1 is constructed.

Definition 8. Let the current hypothesis space beHj and let(d1, ..., dn) be the demon-
stration at time stepj, j ≥ 0. The successor hypothesis spaceHj+1 is given by
Hj+1 = Hj \M, whereM = {(e1, ..., ek) ∈ Hj | there exists di /∈ ei, 1 ≤ i ≤ k}.



I.e., Hj+1 is Hj minus all hypotheses for which at least one parameter does not
contain the corresponding parameter in the demonstration.Definition 8 is easily turned
into a straightforward algorithm.

As we have seen, the hypothesis spaces often are enormous, and explicit compu-
tation of the (successor) hypothesis spaces is seldom a feasible alternative. The candi-
date elimination algorithm circumvents explicit computation by relying on a generality-
ordering of hypotheses. If such an ordering exists, it is sufficient to update two boundary
sets for the hypothesis space. We give an alternative algorithm that uses(successor) cart
setsto implicitly define the successor hypothesis spaces at eachtime step. The primary
advantage compared to the candidate elimination algorithmis that the size of the hypoth-
esis space at each time step is easily computed. This is of special interest since we define
the ambiguity as the size of the current hypothesis space (see Definition 5).

Definition 9. Let C1, . . . , Ck be cart sets (see Definition 6). The cart sets at time 0 are
denoted byC1,0, . . . , Ck,0, whereCi,0 = Ci, 1 ≤ i ≤ k.

For a given demonstration(d1, . . . , dk) at time j, j ≥ 0, the successor cart sets
Ci,j+1, 1 ≤ i ≤ k are given byCi,j+1 = {e ∈ Ci,j | di ∈ e, 1 ≤ i ≤ k, j ≥ 0}.

Theorem 1 states that we can compute the (successor) hypothesis spaces from the
given (successor) cart sets.

Theorem 1. a) For given cart setsCi,0, 1 ≤ i ≤ k, the Cartesian hypothesis spaceH0

is given byH0 = C1,0 × . . . × Ck,0.
b) For given cart setsCi,j+1, 1 ≤ i ≤ k, j ≥ 0, the Cartesian hypothesis space

Hj+1 is given byHj+1 = C1,j+1 × C2,j+1 × . . . × Cn,j+1.

Proof. Part a) of the theorem follows from Definition 7 and 9 (Ci,0 = Ci, 1 ≤ i ≤ k).
For part b) let(d1, . . . , dn) be a demonstration at timej. Definition 7 of a Cartesian
hypothesis space can be rewritten asHj = {(e1, ..., en)|ei ∈ Wi,j , 1 ≤ i ≤ k, j ≥ 0}.

Definition 8 of the successor hypotheses space can be rewritten asHj+1 =

{(e1, ..., en) ∈ Hj | di ∈ ei, 1 ≤ i ≤ k}. This can be combined toHj+1 =

{(e1, ..., en) ∈ {(e1, ..., en)|ei ∈ Wi,j , 1 ≤ i ≤ k, j ≥ 0} | di ∈ ei, 1 ≤ i ≤ k} =

{(e1, ..., en) | ei ∈ Wi,j and di ∈ ei, 1 ≤ i ≤ k, j ≥ 0} = (insert Definition 9)
{(e1, ..., en) | ei ∈ Wi,j+1, 1 ≤ i ≤ k, j ≥ 0} = W1,j+1×W2,j+1× . . .×Wn,j+1.

Theorem 1 can be used to construct a simple algorithm that, given a current hypoth-
esis space and a demonstration, generates an updated hypothesis space. The algorithm
can be applied repeatedly for several demonstrations. Given a Cartesian hypothesis space
Hj and a demonstration at timej, Algorithm 1 computesHj+1.

Algorithm 1
Input:Hj given by the cart setsCi,j , 1 ≤ i ≤ n and a demonstration(d1, . . . , dn)

Output:Hj+1

Method:Ci,j+1 = {e ∈ Ci,j | di ∈ e}, 1 ≤ i ≤ n.

Hj+1 = C1,j+1 × C2,j+1 × . . . × Cn,j+1.



3. Reduction of Ambiguity for Different Hypothesis Spaces

In this section we illustrate how an LfD process, performed by Algorithm 1, gradu-
ally reduces ambiguity as new demonstrations are presentedto the robot. We will com-
pare the reduction of ambiguity for four different hypothesis spaces: the unrestricted
hypothesis spacêH (see Definition 4), the two Cartesian hypothesis spacesH

′

and
H

′′

(see Definition 7 and Subsection 2.1) and another Cartesian hypothesis spaceH
′′′

whose cart sets are identical to the value sets, i.e.C = V . The assumed learning sce-
nario contains four value sets:V1 = {cube, ball}, V2 = {red, green, blue}, V3 =

{s, m, l, xl}, V4 = {a, b, c, d, e, f}. Instance spaceI is the Cartesian product of
these four value sets and has 144 elements, for example(ball, green, s, a). Hypoth-
esis spaceĤ is given by 2I \ ∅. One of the2144 − 1 ∼ 1043 elements ofĤ
is {(ball, green, s, a), (cube, green, s, b), (cube, blue, s, b)}. For H

′

, we haveC1 =

{cube, ball, {cube, ball}},C2 = {red, green, {red, green}, blue, {red, blue}, {green,

blue}, {red, green, blue}}, C3 = {s, m, {s, m}, l, {s, l}, {m, l}, {s, m, l}, xl, {s, xl},
{m, xl}, {s, m, xl}, {l, xl}, {s, l, xl}, {m, l, xl}, {s, m, l, xl}}. C4 comprises all 63
combinations of values fromV4. H

′

is defined as the Cartesian product of these four
cart sets. One of the 19845 elements ofH

′

is {cube, {red, blue}, xl, b}. For H
′′

, we
haveC1 = {cube, ball, {cube, ball}}, C2 = {red, green, blue, {red, green, blue}},
C3 = {s, m, l, xl, {s, m, l, xl}}, C4 = {a, b, c, d, e, f, {a, b, c, d, e, f}}. To simplify
notation, the last element of each cart set (the “wild card”)is denoted by?. H

′′

is the
Cartesian product of the four cart sets. One of the 420 elements ofH

′′

is (ball, ?, xl, a).
For H

′′′

, we haveC1 = {cube, ball}, C2 = {red, green, blue}, C3 = {s, m, l, xl},
C4 = {a, b, c, d, e, f}. One of the 144 elements ofH

′′′

is (ball, red, xl, c).
For each presented demonstration, Algorithm 1 is applied and the size of the hypoth-

esis space is reduced. The nature of this reduction depends on the type of the hypothesis
space. In Figure 2, the result of learning with 12 fixed demonstrations is shown. For̂H,

each demonstration reduces|Ĥj |, j ≥ 0, almost exactly by a factor 2 (a discrepancy
obviously occurs when|Ĥj | is an odd number). Any, not already rejected, element of the
instance spaceI is at any moment element of half of the total number of hypotheses in
the current hypothesis space. A demonstration will therefore always result in a rejection
of half of the hypotheses. With a logarithmic scale, this shows up as a straight line in
the graph in Figure 2 (to increase readability, 100 is subtracted from the values plotted
for Ĥ). The hypothesis spacesH

′

, H
′′

andH
′′′

are altogether denoted in the following
by H∗. The reduction of|H∗

j | is more complex. The initial|H∗
0 | (shown to the far left

in the diagram forDemonstration#=0) is smaller then forĤ0 which is obvious since
H∗

0 are all strict subsets of̂H0. Furthermore, the reduction is better than linear, which
is related to the generalisation ability that comes with restricted hypothesis spaces. For
Ĥ there is no generalisation such that a demonstration does not influence the preference
of instances that are similar to the current demonstration.This corresponds to rote learn-
ing (see [10]). For the restricted hypothesis spacesH∗

j , j ≥ 0, one demonstration may

match different number of hypotheses and the reduction speed will vary. ForH
′′′

, a sin-
gle demonstration is sufficient to uniquely identify one hypothesis, which is identical to
the demonstration. The size of the hypothesis space consequently drops to 1 already after
one demonstration.
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4. Summary and Conclusions

We have given a formal description of ambiguity in LfD. Ambiguity is defined as the size
of the current hypothesis space. Concept learning can be used to reduce the size, prefer-
ably down to size 1 which means that the robot has no doubts which behaviour the human
teacher wants the robot to repeat. Learning algorithms, such as Algorithm 1, construct an
updated hypothesis space by removing hypotheses that are inconsistent with the demon-
strations. However, there are fundamental limitations forthis way of reducing ambiguity
with unrestricted hypothesis spaces. A demonstration can only remove hypotheses that
are inconsistent with the demonstration. This leads to a smaller hypothesis space, but the
remaining hypotheses are more general than the ones removed. In practice this means
that it is impossible to learn to ignore a parameter or certain parameter values. Consider
for example trying to teach a robot to grip a green ball, if it is capable of distinguish-
ing between 100 different colours. There is no way to remove the 99 incorrect colours
from the hypotheses in the hypothesis space by using demonstrations of the wanted be-
haviour only. The standard approach in machine learning is to introducebias into the
learning. One major type of bias isrestricted hypothesis space bias(see [11]), such as
the usage ofH

′

, H
′′

andH
′′′

in the previous section. Restricted hypothesis spaces are
valuable not only because they are smaller in size and lead tofaster search but they also
rule out certain hypotheses already in the definition of the hypothesis space. For exam-
ple, withH

′′

it is only possible to express intentions to grip balls of onespecific colour,
e.g.(ball, green), or to ignore the colour property altogether, e.g.(ball, ?). This rules
out complex hypothesis such as(ball, {red, green, blue, purple}) already in the defini-
tion of the hypothesis space. Restricted hypothesis spacesalso introduce a dependency
between instances such that the learning process will generalise data. A related type of
bias is the mechanism by which hypotheses spaces are inferred from the demonstrations.
The deductive concept learning algorithms may for instancebe replaced by an inductive
decision tree learning algorithm (see for instance [14,15]). This would make it possible
to reject the 99 incorrect colours if all (or most) of the demonstrations have green as



colour value. Irrelevant parameters such as size and temperature may in the same way be
left outside the generated hypothesis. Another major type of bias ispreference bias. One
example is the heuristic principle Occam’s razor (see [11]). It states that one should pick
the simplest hypothesis if several hypotheses match the data. This would mean keeping
(ball, green) while removing hypotheses such as(ball, {red, green, blue, purple}) and
(ball, {green, white, blue, brown}) from the hypothesis space.

Future research will investigate how prior knowledge can beused as preference bias
in the LfD process. Preferences or prior probabilities for parameter types (e.g.typeand
colour) and values (e.g.red, green, andblue) can be stored in and extracted from mem-
ory structures such as semantic networks, and utilised for both reduction of the hypothe-
sis space and as guidance when the robot tries to repeat the demonstrated behaviour. We
will also extend Algorithm 1 such that human feedback to the robot’s attempts to repeat
a learned behaviour can be included in the learning. This makes it possible to learn to
ignore a parameter or certain parameter values. Other sources of information, such as
verbal commands will also be considered.
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