

dpUGC: Learn Differentially Private Representation for User Generated Contents

Xuan-Son Vu^[1], Son N. Tran^[2], Lili Jiang^[1]

^[1]Database Data Mining Group, Umeå University, Sweden

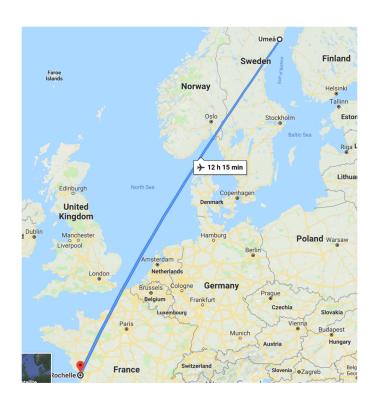
^[2]ICT Discipline, University of Tasmania, Australia.

Outline

- Introduction
 - Motivation: UGC data, privacy
- Methodology:
 - Learn differential private embedding on UGC
 - User-level dpUGC
- Experiments, results and discussion
- Conclusions and Future Work

Who are we?

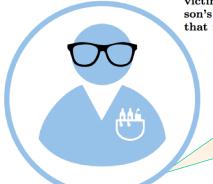
- Umeå University, Sweden
 - Central north of Sweden
 - http://cs.umu.se



- Privacy-leakage in data analysis
 - Narayanan et al. (2008): De-anonymize users of Netflix contest by matching to IMDB users
 - Fredrikson et al. (2015): reveal individual faces from the training data

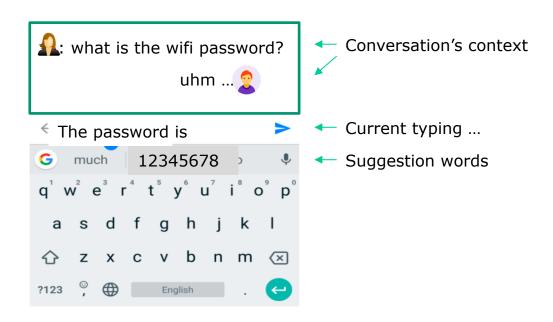
Figure 1: An image recovered using a new model inversion attack (left) and a training set image of the victim (right). The attacker is given only the person's name and access to a facial recognition system that returns a class confidence score.

I can attack this model to find who were involved in the study.



Researcher: publish a model to predict cancer based on genome data.

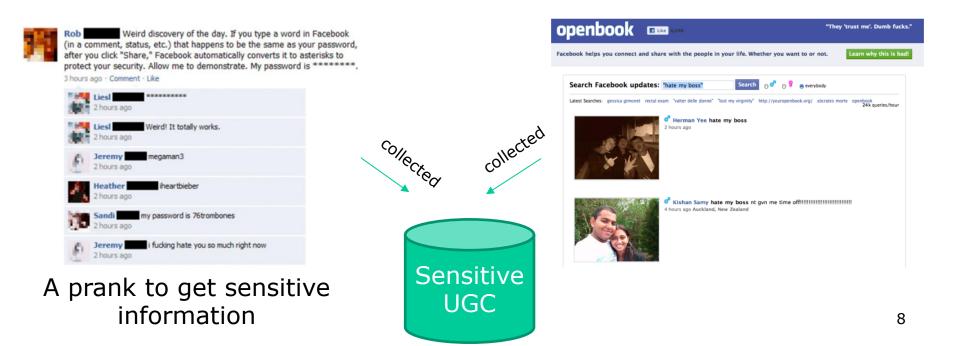
- Privacy Issues in Text (1/2):
 - Auto Suggestion learns from what you typed?



- Medical Text Data:
 - Patient Medical Journals: medical history/logs

- Privacy Issues in Text (2/2):
 - User Generated Contents (UGC)
 - Any form of content: video, blogs, posts, digital images, audio files, and other forms of media
 - Created by consumers or end-users
- This work:
 - Applied and tested on UGC
 - But works seamlessly on any user-level text data:
 - Personal medical records
- NMEA. LA
- Personal Longitudinal Dialog (FB messages, Emails, ...)
 - E.g., Welch et al., @ CICLing 2019.

- Privacy in UGC:
 - Contains so much sensitive information
 - No one dares to share their UGC data



Motivation (1/4)

- Sharing pre-trained embeddings:
 - On public text data: e.g., Google News, common crawl
 - Word2Vec, Glove, FastText, Elmo, BERT etc.
 - On private text data?
 - Can we do the same for private pre-trained embeddings?
 - Representation of private-words would otherwise not possible without privacy-guarantee:
 - e.g., disease names, dna2vec, etc.

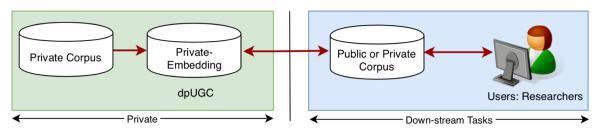


Fig. 2: Overview of our safe-to-share embedding model that can be used to facilitate research on sensitive data with privacy-guarantee.

Motivation (2/4)

- Privacy issues in pre-trained embeddings:
 - "You shall know a word by the company it keeps" (J. R. Firth 1957:11)
 - One of the most successful ideas of modern statistical NLP

Query	Top#1	Top#2	Top#3	Top#4
???	Prof.	NLP	Mexico	CICLing
???	Prof.	NLP	France	CICLing
???	Prof.	NLP	UK	Speakers

Motivation (2/4)

- Privacy issues in pre-trained embeddings:
 - "You shall know a word by the company it keeps" (J. R. Firth 1957:11)
 - One of the most successful ideas of modern statistical NLP

	Query	Top#1	Top#2	Тор#3	Top#4
Alexander	???	Prof.	NLP	Mexico	CICLing
Antoine	???	Prof.	NLP	France	CICLing
Lucia	???	Prof.	NLP	UK	Speakers

Motivation (3/4)

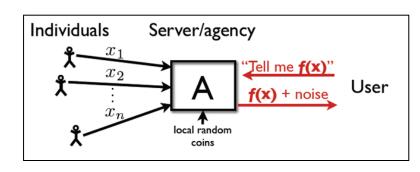
- UGC is good for science:
 - 660 publications work on myPersonality, the popular UGC dataset for personality prediction
 - Machine learning model can predict personality better than human.
 - Tons of research work on Twitter/Facebook data on many important topics:
 - Sentiment classification, recommendation, privacy detection, social behavior etc.
 - In fact:
 - 6.7M results from google scholar mentioned Twitter
 - **6.17M results** from google scholar mentioned Facebook

Motivation (4/4)

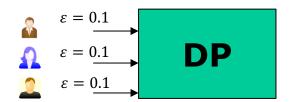
- Research Questions?
 - How to learn representation from UGC data while protect user's privacy?
 - How to share embedding models trained on UGC data for other researchers?
 - Will normal differential privacy is enough for embedding models?

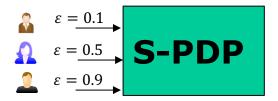
2. Methodology

Background (1)



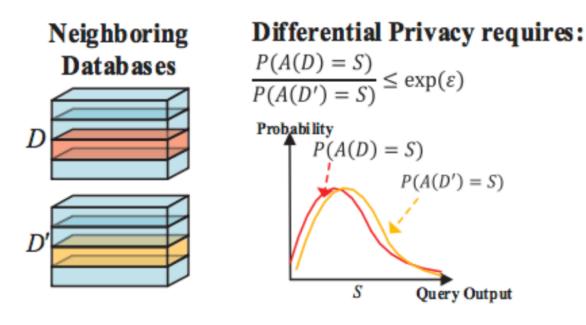
- Privacy-guarantee data analysis
 - Injecting scientific-noise into results [Dwork06]
 - State-of-the-art method by definition
 - Called: differential privacy (DP)
 - Amount of noise controlled by ε ($\downarrow \varepsilon$, \uparrow noise)
- Deciding amount of noise
 - Global noise (DP) vs personalized noise (S-PDP)





Background (2)

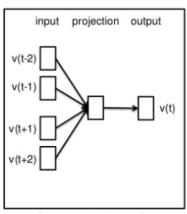
ε-Differential Privacy (DP):



- The adversary's ability to infer the individual's information is bounded!
 - More or less as a random guess [Stephen Tu '13].

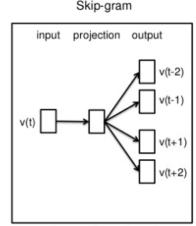
Background (3): Word2Vec

- Continuous Bag-of-Words (CBOW) and Skip-gram
 - Similar in performance
- Thousand times faster than Bengio's model.



CBoW

- · given context words
- predict a probability of a target word



- given a target word
- predict a probability of context words

$$\frac{1}{T} \Sigma_{t=1}^T \Sigma_{j \in nb(t)} \log p(w_j | w_t)$$

Differentially Private (DP-) Embedding

Adding noise to protect privacy

```
Require: Examples \{x_1, \ldots, x_N\}, loss function \mathcal{L}(\theta), embed dimension k
Ensure: return optimized \theta to calculate W^{(k)} - a learned DP-Embedding.
     // Algorithm 1-a: DP-Embedding
 1: Initialize \theta_0 randomly
 2: for all round t = 0, 1, 2, ..., T do
 3:
       Take a random sample L_t with sampling probability L_t/N
       Compute gradient
 4:
       For each i \in L_t, compute g_t(x_i) \leftarrow \nabla_{\theta_0} \mathcal{L}(\theta_t, x_i) // \mathcal{L} is from (2)
 5:
      Add noise
 6:
    \tilde{g}_t \leftarrow \frac{1}{L} (\Sigma_i \tilde{g}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}))
     Descent
 8:
     \theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{q}_t
 9:
       \mathcal{M}.accum_priv_spending(z)
10:
11: end for
12:
```

Personalized DP-Embedding

```
Require: Examples \{x_1,\ldots,x_N\}, loss function \mathcal{L}(\theta), embed dimension k
Ensure: return optimized \theta to calculate W^{(k)} - a learned DP-Embedding.
     // Algorithm 1-b: Personalized DP-Embedding
 1: Initialize \theta_0 randomly
 2: for all round t = 0, 1, 2, ..., T do
        K \leftarrow (\text{get list of samples from valid users } \mathcal{U})
        Take a random sample L_t \in K with sampling probability L_t/K.
 4:
        \mathcal{U}_{L_t} \leftarrow \text{the set of users where the sample } L_t \text{ come from.}
 5:
        Compute gradient
 6:
        For each i \in L_t, compute g_t(x_i) \leftarrow \nabla_{\theta_0} \mathcal{L}(\theta_t, x_i) // \mathcal{L} is from (2)
 7:
         Add noise
       \tilde{g}_t \leftarrow \frac{1}{L} (\Sigma_i \tilde{g}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}))
         Descent
10:
        \theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{q}_t
11:
12:
         (\epsilon_t, \delta_t) = \mathcal{M}.\text{get\_priv\_spending}(z)
         Update privacy spending for each user
13:
14:
         for all user u \in \mathcal{U}_{L_t} do
            (\epsilon, \delta)_u \leftarrow (\epsilon, \delta)_u + \frac{(\epsilon_t, \delta_t)}{L}
15:
            If user u gets out of privacy-budget: \mathcal{U} \leftarrow \mathcal{U} \setminus \{u\}
16:
17:
         end for
18: end for
```

3. Evaluations

Experimental Settings

- On two criteria:
 - Word similarity: a standard measurement for evaluating word embedding models [15].
 - Data utilities: preserve privacy when sharing the model for other scholars.

Datasets:

Table 1: A simple statistics of the myPersonality dataset and Text8 corpus.

Dataset	#users	#documents	#words
myPer (private)	153,727	22,043,394	416,862,367
myPer (public)	250	9,917	144,616
Tex8 corpus	_	_	17,005,207

$$MAP = \frac{\Sigma_{q=1}^{Q} AvgP(q)}{Q}$$

Experiment Design

- Changes in semantic space:
 - Evaluation metric, we used MAP (mean-average-precision):
 - MAP-Word: evaluates the top similar words at word level
 - MAP-Char: evaluates the top similar words at character level
- Regression task (downstream task):
 - E(public): None DP-Embedding
 - E(private): DP-Embedding

$$R_{E(Private)+E(Public)} \ge R_{E(public)}$$

Results #1a: semantic space

Query	Gold model	DP-Embedding (top 4)	MAP(W,C)	Topic
three	four:two:five:sever	zero:one:feeder:nine	(0, 3.814)	Numbers
eight	seven:nine:six:fou	cornerback:four:stockholders:zero	(0.5, 0.1347)	Numbers
they	we:there:you:he	morgan:century:contentious:ferroelectric	(0, 0.4237)	Pronouns

(a) Top 4 on DP-Embedding model

Query	Gold model	Non-DP Embedding (top 4)	MAP (W, C)	Topic
three	four:two:five:seven	one:in:UNK:zero	(0, 0.1288)	Numbers
eight	seven:nine:six:four	integrator:transfection:four:one	(0.33, 0.3561)	Numbers
they	we:there:you:he	that:monorail:it:lesbian	(0, 0.2341)	Pronouns

(b) Top 4 on Non-DP Embedding model

Table 2: Top similar words of DP-Embedding (a), and Non-DP Embedding (b) models given three queries "three", "eight", and "they" at 100K learning step. The second column shows the best results from the Gold model. MAP(W,C) denotes (MAP-Word,MAP-Char).

Results #1b: semantic space

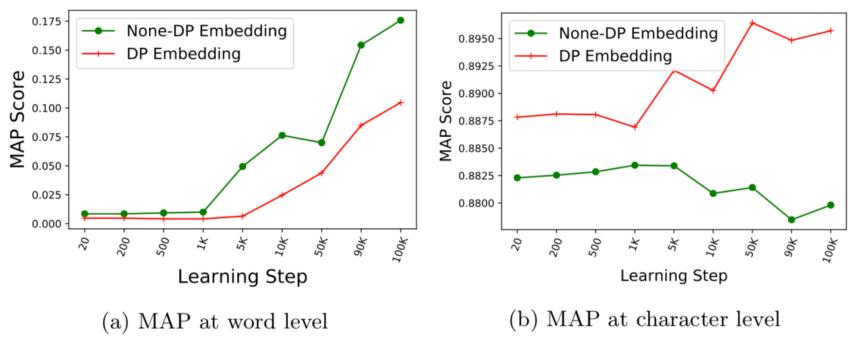


Fig. 3: Semantic space changes when learning embedding model with and without differential privacy compared to the *Gold model*. Learning step is number of minibatch steps

Results #2: Downstream tasks

Results:

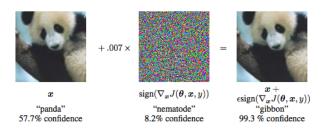
- DP-Embedding gets better or slightly different results than the None-DP Embedding
- Best at learning step 20 and 500:
 - Better performance with privacy-guarantee (win-win)

LS	SVR			LR			Drive or Budget (0.125 8)
го	Baseline-SVR	DP-SVR	NoneDP-SVR	Baseline-LR	DP-LR	NoneDP-LR	Privacy-Budget $(0.125, \delta)$
20	2.6563	1.7881	3.5942	1.2903	1.2616	1.2642	0.0184 †
200	2.6563	2.4983	2.0198	1.2903	1.2589	1.2717	0.0189
500	2.6563	2.7795	3.6231	1.2903	1.2514	1.2909	0.0197 †
1K	2.6563	3.2146	2.0206	1.2903	1.2611	1.262	0.0211
5K	2.6563	6.1596	2.7472	1.2903	1.2577	1.2642	0.0372
10K	2.6563	1.6396	3.9155	1.2903	1.2768	1.2574	0.0755
50K	2.6563	2.9438	2.5769	1.2903	1.2574	1.2556	0.5929
90K	2.6563	2.4033	2.5175	1.2903	1.2585	1.258	0.7681
100K	2.6563	2.6043	2.0215	1.2903	1.2548	1.262	0.7926

4. Conclusions and Future Work

Conclusions and Future Work

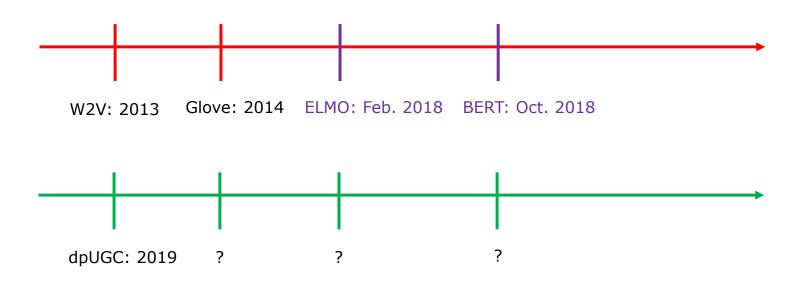
- Key findings:
 - Proposed algorithms for learning differentially private text representation for UGC sharing.
 - Works seamlessly on any personal text data
 - Evaluated the algorithms on a realistic UGC dataset
 - Adding noise to images:



- Adding noise to word embeddings?
 - Similar to manipulate with different characters

Conclusions and Future Work

• Future Work:



Questions?

E.g., motivation, application, DP ...

