MGTN: MODULAR GRAPH TRANSFORMER NETWORKS

for Multi-Label Image Classification

We propose a multi-label image classification framework based on graph transformer networks to fully exploit inter-label interactions. The paper presents a modular
learning scheme to enhance the classification performance by segregating the computational graph into multiple sub-graphs based on the modularity. The proposed
approach, named as Modular Graph Transformer Networks (MGTN), is capable of employing multiple backbones for better information propagation over different sub-
graphs guided by graph transformers and convolutions. We validate our framework on MSCOCO and Fashion550K datasets to demonstrate massive improvements for
multi-label image classification. Source code and data are at https://github.com/ReML-AI/MGTN.

Ablation Study:

Introduction to the model: Performance Evaluation:

Modularity on MS-COCO:

- We run Network Analyses on MS-COCO dataset
and MGTN'’s predicted labels on test data. Both analyses
reveal the partitions of inter-connected object labels.

- To address that EV-enhancement could help
MGTN even learn faster and hence, save
more computing power

- Experiments are exhaustively conducted,
and we report the relevant empirical results on
two public datasets: MS-COCO and Fashion550K.
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