Modular Graph Transformer Networks for Multi-Label Image Classification

Hoang D.Nguyen, Xuan-Son Vu, Duc-Trong Le

@AAAI 2021

Outline

- Multi-Label Image Classification
- Motivating Example
- Modular Graph Transformer Network (MGTN)
- O Experiments

Multi-Label Image Classification

Person, Chair, Umbrella, Car

Motivating Example (1)

person, chair, umbrella, car

person, chair, dining table, person, umbrella cup

dining table, cup, bowl

Semantic Graph between Labels

Motivating Example (2)

person, chair, umbrella, car

person, chair, dining table, person, umbrella cup

dining table, cup, bowl

Modular Graph Transformer Network (MGTN)

Convolutional Neural Networks

35

Idea: Exploit multiple modules of CNNs to infer the image-label representation $\mathcal{F} \in \mathbb{R}^L$ for each image input $\mathcal{I} \in \mathbb{Z}^{3 \times W \times H}$

Graph Transformer Networks

I CZ^{IN}

Graph Transformers

Idea: Dynamically select important topological connections of the label graph.

Adjacency Tensor $A_{kij} = \begin{cases} 1 & \text{if } P_{ij} \in [t_{k-1}, t_k), i \neq j \\ 0 & \text{otherwise} \end{cases}$ where $A_1 \equiv I$ $P_{ij} = \varrho * A_{ij}/d_i$ $d_i = \sum_k A_{i,k}$ $t_k \in [0, 1], k \in \{1, ..., K\}$

Two 1x1 convolutions $Q_1, Q_2 \in \mathbb{R}^{C \times C}$ $Q_1 = \phi(\mathbb{A}, \operatorname{softmax}(W_{\phi}^1))$ $Q_2 = \phi(\mathbb{A}, \operatorname{softmax}(W_{\phi}^2))$ $\hat{A} = \eta(Q_1Q_2 + I)$ where $\eta(A) = d^{\frac{-1}{2}}Ad^{\frac{-1}{2}}$ (Yun et al. 2019) $W_{\phi}^{1}, W_{\phi}^{2} \in \mathbb{R}^{1 \times 1 \times K}$ $\hat{A} \in \mathbb{R}^{C \times C}$

Eigenvector-based Embedding Transformation

Idea: Exploit semantic information from label embeddings

Pre-Trained Embeddings:

1) **Char2Vec** (Kim et al. 2015): character-level, D = 300

2) **BERT_Base** (Devlin et al. 2018): word-level, averaging the last layer, D = 768

3) **RoBERTa** (Liu et al. 2019): word-level, averaging the last layer, D = 768

Eigenvector-based transformation for pre-trained embedding E_{\parallel}

$$\mathcal{E} = E \cdot \mathcal{C}^T$$

where C_i the eigenvector centrality of the label *i*-th

$$C_i = \frac{1}{\lambda} \sum_k a_{k,i} C_k$$

 $\lambda \
eq 0$ is the largest eigenvalue

Graph Convolutional Network

Idea: Jointly exploit label-level word embedding and topological information via graph convolutional networks (GCN, Kipf et al. 2017)

$$G = \operatorname{GCN}(\mathcal{E}, \hat{A}) \qquad G \in \mathbb{R}^{C \times L}$$

Modularity-based Sub-Graphs Detection

The Clauset-Newman-Moore agglomeration algorithm (Clauset et al. 2004)

Modularity-based Enhancement

Idea: Exploit different highly inter-connected sets of objects among sub-graphs

The modularity of a graph :

$$\mathfrak{Q} = \frac{1}{2\mathfrak{m}} \sum_{i,j} \left[A_{i,j} - \frac{d_i d_j}{2\mathfrak{m}} \right] \delta(c_i, c_j)$$

where

$$\mathfrak{m} = \frac{1}{2} \sum_{i,j} A_{i,j}$$
$$\mathfrak{d}_i = \sum_k A_{i,k}$$

 $\delta(u, v)$ is 1 if u = v otherwise 0

Suppose that **m** sub-graphs are discovered. Multiple CNNs with configurable backbones are employed using a control tensor M with a threshold τ :

$$M_{iv} = \begin{cases} \tau & \text{if } S_i = p \text{ and } v \in f_p \\ \frac{1-\tau}{m-1} & \text{otherwise} \end{cases}$$

where S is the sub-graph assignment, $f_p \in \mathbb{R}^{l_p}$ is the image-level representation

Experimental Setups

- **Dataset**: MS-COCO (81 labels), Fashion550K (66 labels)
- Evaluation metrics: mAP, per-class (CP, CR, CF1), overall (OP, OR, OF1)
- Preprocessing: Resize images 512x512 to 448x448 with random horizontal flips
- Implementation: Dual ResNeXt-50-32x4d backbones, 2-layer GCN,

 τ = 0.999, adjacency thresholds (MS-COCO = [0.1, 0.3, 1.0]~, Fashion550K = [0.2, 0.4, 1.0]d learning rate decays by a factor of 10 for every 20 epochs.

Experimental Results - MS-COCO

Method	MAP	СР	CR	CF1	OP	OR	OF1
CNN-RNN (WANG ET AL. 2016)	61.2	-	-	-	-	-	-
SRN (ZHU ET AL. 2017)	77.1	81.6	65.4	71.2	82.7	69.9	75.8
BASELINE(RESNET101) (HE ET AL. 2016)	77.3	80.2	66.7	72.8	83.9	70.8	76.8
MULTI-EVIDENCE (GE, YANG, AND YU 2018)	-	80.4	70.2	74.9	85.2	72.5	78.4
ML-GCN (CHEN ET AL. 2019B)	82.4	84.4	71.4	77.4	85.8	74.5	79.8
ML-GCN (ResNeXT50 with ImageNet)	86.2	85.8	77.3	81.3	86.2	79.7	82.8
A-GCN (LI ET AL. 2019)	83.1	84.7	72.3	78.0	85.6	75.5	80.3
KSSNET (WANG ET AL. 2020B)	83.7	84.6	73.2	77.2	87.8	76.2	81.5
SGTN (OUR) (VU ET AL. 2020)	86.6	77.2	82.2	79.6	76.0	82.6	79.2
MGTN(BASE)	86.9	89.4	74.5	81.3	90.9	76.3	83.0
MGTN(FINAL)	87.0	86.1	77.9	81.8	87.7	79.4	83.4

Model Analysis - Embeddings

Figure 4: Learning patterns of MGTN with different label embeddings in 20 epochs. The MGTN model with the setting using RoBERTa_{avg_{12}} label embedding shows a slow learning speed in comparison to others.

Figure 5: The EV-enhancement for label embedding helps the MGTN's model learn faster, even MGTN with the setting using the RoBERTa_{avg,12} now learns faster. Note: y-axis here is ranged in [50, 100] for visibility.

3D t-SNE Visualization on MS-COCO

Conclusion

- Introduce Modular Graph Transformer Network (MGTN) to solve multi-label image classification
 - Employ multiple CNN backbones on unfolded sub-graphs
 - Exploit topological and semantic information via the graph transformer and EV-based embedding transformation.
 MGTN shows significant improvements against SOTA methods on
 - MS-COCO and Fashsion550K

Thanks!

Any questions?

