"Interest in linear programming (LP) in its own right began in the late 1940's with the invention of the simplex method, and has continued unabated until the present day. Linear programming is viewed and taught in an astonishing variety of ways, to the extent that even an expert may be puzzled by someone else's version of the subject!"

Gill, Murray, Wright, "Numerical Linear Algebra and Optimization, vol. 1", Addison-Wesley, 1991, Kap. 7.

Det tillåtna området för problem (1) är

LP-problem

Ett LP-problem (Linjärt Programmerings-problem) är ett optimeringsproblem där objektfunktionen och bivillkoren är linjära funktioner.

Ett exempel på ett LP-problem är

		$\max _{x_{1}, x_{2}}$	x_{2}
		s.t.	
x_{1}			
	x_{2}	\geq	0
x_{1}	$+x_{2}$	\geq	0
x_{1}		\leq	1
	x_{2}	\leq	1

LP - 2

En descentorienterad ansats till linjär programmering

Den generella optimeringsalgoritmen:

- Bestäm startgissning x_{0}.
- Upprepa för $k=0,1, \ldots$
- Om x_{k} optimal, avsluta.
- Bestäm sökriktning p_{k}.
- Bestäm steglängd α_{k}.
$-x_{k+1}=x_{k}+\alpha_{k} p_{k}$

Vi har två olika sorters bivillkor: likhets- och olikhetsbivillkor. Vi kommer endast att jobba med olikhetsbivillkor.

Linjära olikhetsbivillkor kan skrivas som

$$
a^{T} x \geq \beta
$$

för någon vektor a. En punkt \bar{x} sägs vara tillåten med avseende på villkoret $a^{T} x \geq \beta$ om villkoret är satisfierat, dvs $a^{T} \bar{x} \geq \beta$. Om villkoret är satisfierat med likhet ($\overline{a^{T}} \bar{x}=\beta$) sägs villkoret vara aktivt, annars inaktivt.

Ett bivillkor $a^{T} x \leq \beta$ kan skrivas om till $-a^{T} x \geq$ $-\beta$.

Ett bivillkor $a^{T} x=\beta$ kan skrivas om till två olikhetsbivillkor $a^{T} x \geq \beta$ och $a^{T} x \leq \beta$.

Vi behöver därför endast resonera runt \geq-bivillkor.

En mängd bivillkor $\left\{a_{i}^{T} x \geq \beta_{i}, i=1, \ldots, m\right\}$ representeras vanligen av en $m \times n$-matris A och m-vektor b :

$$
A=\left[\begin{array}{c}
a_{1}^{T} \\
a_{2}^{T} \\
\vdots \\
a_{m}^{T}
\end{array}\right], b=\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{m}
\end{array}\right]
$$

och skrivs

$$
A x \geq b
$$

där \geq appliceras komponentvis.

En punkt \bar{x} sägs vara tillåten med avseende på mängden olikheter $A x \geq b$ om $A \bar{x} \geq b$.

Systemet $A x \geq b$ sägs vara konsistent om det har någon tillåten punkt.

LP-6

Standardform, exempel

Vårt exempelproblem (1)

Standardform

Vi kommer att skriva om alla LP-problem till följande standardform:

$$
\begin{array}{cl}
\min _{x} & c^{T} x \\
\text { s.t. } & A x \geq b
\end{array}
$$

Ett problem

$$
\max _{x} c^{T} x
$$

skrivs om till

$$
\min _{x}-c^{T} x
$$

blir på standardform

$$
\begin{array}{cl}
\min _{x} & c^{T} x \\
\text { s.t. } & A x \geq b
\end{array}
$$

med

$$
c=\left[\begin{array}{r}
0 \\
-1
\end{array}\right], A=\left[\begin{array}{rr}
1 & 0 \\
0 & 1 \\
1 & 1 \\
-1 & 0 \\
0 & -1
\end{array}\right], b=\left[\begin{array}{r}
0 \\
0 \\
0 \\
-1 \\
-1
\end{array}\right]
$$

För ett villkor $a_{i}^{T} x \geq \beta_{i}$ definieras residualen i punkten \bar{x} som $r_{i}(\bar{x})=a_{i}^{T} \bar{x}-\beta_{i}$. Residualen är positiv då villkoret är inaktivt, noll då villkoret är aktivt och negativt då villkoret ej är uppfyllt.

Residualvektorn r blir för mängden av villkor $A x \geq b$

$$
r(\bar{x})=A \bar{x}-b
$$

Givet olikheten $A x \geq b$ definierar vi indexmängden $\mathcal{A}(\bar{x})$ som mängden av index $\left\{i: r_{i}(\bar{x})=0\right\}$, dvs de villkor som uppfylls med likhet i punkten \bar{x}. Matrisen bestảende av raderna i $\mathcal{A}(\bar{x})$ betecknas $A_{\mathcal{A}}(\bar{x})$.

Nedförsriktningar

Förändringen i funktionsvärdet beror alltså på $c^{T} p . c^{T} p=0$ innebär att

$$
F(\alpha)=f(\bar{x})+\alpha \underbrace{c^{T} p}_{=0}=f(\bar{x})
$$

förblir konstant. $c^{T} p<0$ innebär att

$$
F(\alpha)=f(\bar{x})+\alpha \underbrace{c^{T} p}_{<0}<f(\bar{x})
$$

för $\alpha>0$, dvs funktionen minskar. Riktningen p kallas då för nedförsriktning.

Förändring av objektfunktionens värde

Objektfunktionen till minimeringsproblemet skrivs

$$
f(x)=c^{T} x,
$$

där c är en konstant vektor. Gradienten till $f(x)$ blir då

$$
\nabla f(x)=c .
$$

Definiera $F(\alpha)$ som funktionsvärdet utgående från en punkt \bar{x} längs en sökriktning p och med steglängden α :

$$
\begin{aligned}
F(\alpha) & =f(\bar{x}+\alpha p)=c^{T}(\bar{x}+\alpha p) \\
& =c^{T} \bar{x}+\alpha c^{T} p=f(\bar{x})+\alpha c^{T} p .
\end{aligned}
$$

Vektorriktningar

För figuren nedan gäller att $p_{1}^{T} c>0, p_{2}^{T} c=0$ och $p_{3}^{T} c<0$.

Gradienter till bivillkoren

Varje bivillkor delar upp \Re^{n} i två halvor av tillåtna punkter $\left\{x: a^{T} x \geq \beta\right\}$ och otillåtna punkter $\left\{x: a^{T} x<\beta\right\}$.

Gradienten till ett bivillkor $a^{T} x \geq \beta$ är a. Gradienten är alltid riktad inåt den tillåtna mängden.

Gradienterna till bivillkoren i vårt exempel visas på nästa sida.

LP - 13

Förflyttning längs en riktning
Studera en (icke nödvändigtvis tillåten) punkt \bar{x}, en riktning p och ett villkor $a_{i}^{T} x \geq \beta_{i}$. För ett steg α längs p gäller att

$$
a_{i}^{T}(\bar{x}+\alpha p)=a_{i}^{T} \bar{x}+\alpha a_{i}^{T} p
$$

Motsvarande residual blir

$$
r_{i}(\bar{x}+\alpha p)=a_{i}^{T} \bar{x}+\alpha a_{i}^{T} p-\beta_{i}=r_{i}(\bar{x})+\alpha a_{i}^{T} p
$$

Om $a_{i}^{T} p=0$ förändras inte värdet på residualen, men för $a_{i}^{T} p \neq 0$ går det att räkna ut hur långt steg σ_{i} vi ska ta för att satisfiera och aktivera bivillkoret:

$$
\begin{aligned}
r_{i}\left(\bar{x}+\sigma_{i} p\right) & =0 \\
r_{i}(\bar{x})+\sigma_{i} a_{i}^{T} p & =0 \\
& \Downarrow \\
\sigma_{i} & =\frac{r_{i}(\bar{x})}{-a_{i}^{T} p}
\end{aligned}
$$

som är definierat då $a_{i}^{T} p \neq 0$. Då $a_{i}^{T} p=0$ definieras σ_{i} som ∞ om $r_{i}(\bar{x}) \geq 0$ och $-\infty$ annars.

Tillåtna riktningar

Vektorn $p \neq 0$ är en tillåten riktning i den tillåtna punkten \bar{x} med avseende på villkoret $a_{i}^{T} x \geq \beta_{i}$ om det existerar en positiv skalär τ_{i} sådan att

$$
r_{i}(\bar{x}+\alpha p) \geq 0,0 \leq \alpha \leq \tau_{i}
$$

För ett inaktivt bivillkor $\left(r_{i}(\bar{x})>0\right)$ ser vi att alla riktningar p är tillåtna, medan för ett aktivt bivillkor $\left(r_{i}(\bar{x})=0\right)$ gäller att

$$
\begin{aligned}
r_{i}(\bar{x}+\alpha p) & \geq 0 \\
& \Downarrow \\
a_{i}^{T}(\bar{x}+\alpha p)-\beta_{i} & =r_{i}(\bar{x})+\alpha a_{i}^{T} p \\
& =\alpha a_{i}^{T} p \geq 0, \alpha>0 \\
& \text { 亿 } \\
a_{i}^{T} p & \geq 0
\end{aligned}
$$

Vi ser att om $a_{i}^{T} p=0$ så förblir villkoret aktivt, medan $a_{i}^{T} p>0$ leder till att villkoret blir inaktivt och $a_{i}^{T} p<0$ leder till att villkoret inte längre uppfylls.

För en mängd av bivillkor gäller att p är en tillåten riktning från den tillåtna punkten \bar{x} om $p \neq 0$ och det existerar en positiv skalär τ sådan att

$$
\begin{aligned}
r(\bar{x}+\alpha p) & \geq 0,0 \leq \alpha \leq \tau \\
& \mathbb{\mathbb { y }} \\
A(\bar{x}+\alpha p) & \geq b, 0 \leq \alpha \leq \tau
\end{aligned}
$$

Då de enda begränsningarna på p kommer från de aktiva bivillkoren, gäller att p är tillåten omm

\[

\]

där $A_{\mathcal{A}}$ betecknar den aktiva mängdmatrisen i \bar{x}.

Val av sökriktning

Om vi löser

$$
A_{\mathcal{A}}^{T} \lambda=c
$$

och något λ_{i} är negativt, så kan en sökriktning p bestämmas som lösningen till

$$
A_{\mathcal{A}} p=e_{i},
$$

där e_{i} är en vektor med i :te elementet 1 och resten 0 . Det innebär att $r_{i}(\bar{x}+\alpha p)>0$, dvs villkor i blir inaktiverat.

Väljes p på detta sätt blir p en nedförsriktning, ty $c^{T} p=\left(A_{\mathcal{A}}^{T} \lambda\right)^{T} p=\lambda^{T} A_{\mathcal{A}} p=\lambda^{T} e_{i}=\lambda_{i}<0$.

Tillåtna nedförsriktningar
Studera en konsistent villkorsmängd $A x \geq b$ och en tillåten punkt x^{*}. Om det existerar en tillåten nedförsriktning i x^{*} så kan x^{*} inte vara en minpunkt.

En riktning $p \neq 0$ är tillăten om $A_{\mathcal{A}} p \geq 0$ och nedförsriktning om $c^{T} p<0$.

Omm ingen sådan riktning existerar är x^{*} en minpunkt. Detta inträffar om $\lambda \geq 0$, där λ är lösningen till

$$
A_{\mathcal{A}}^{T} \lambda=c
$$

LP - 17

Hörn

Ett hörn är en extrempunkt i den tillåtna mängden som inte kan ligga på någon linje mellan två andra tillåtna punkter. Ett hörn är begränsat i alla n dimensioner, dvs den aktiva mängdmatrisen $A_{\mathcal{A}}$ har minst n linjärt oberoende rader. $O \mathrm{~m} A_{\mathcal{A}}$ har fler än n rader kallas hörnet för degenererat, annars kallas det för icke-degenererat.

Det går att visa att minimum för ett LP-problem antas i ett hörn.

Lảt $x^{[n]}$ beteckna den aktuella punkten efter n iterationer. Givet ett icke-degenererat hörn $x^{[n]}$ sā blir algoritmen för simplex-metoden:

- Bestäm en tillåten nedförsriktning $p \mathrm{i} x^{[n]}$:
- Identifiera den aktiva mängden $A_{\mathcal{A}} \mathrm{i} \bar{x}$.
$-\operatorname{Lös} A_{\mathcal{A}}^{T} \lambda=c$.
- Välj i sảdan att $\lambda_{i}<0$.
- Bestäm sökriktningen p som lösningen till $A_{\mathcal{A}} p=e_{i}$.
- Bestäm steglängden $\alpha=\min _{j} \sigma_{j}$, där

$$
\sigma_{j}=\left\{\begin{array}{ll}
\frac{-r_{j}(\bar{x})}{a_{j}^{T} p} & \text { om } j \in \mathcal{D} \\
+\infty & \text { annars }
\end{array} .\right.
$$

- $x^{[n+1]}=x^{[n]}+\alpha p$.

