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ABSTRACT

We present an Android-based platform for incrementally presenting spoken route directions
to guide pedestrians to destinations. Our approach makes heavy use of stored procedures
and triggers in an underlying POSTGIS spatial database. In fact most of the 'intelligence’
of our prototype resides in database stored procedures and tables. As such it represents
an example of a challenging real world case study for the use of persistent stored modules
(PSM) in a complex mobility application. It also provides a platform to study performance
tradeoffs for complex event processing over spatial data streams.



1 Introduction

The automated generation of route directions has been the subject of many recent academic
studies [2, 11, 9, 8, 13, 3, 12, 7] and commercial projects (e.g. products by Garmin, TomTom,
Google, Apple, etc.). While most focus has been dedicated to automobile drivers, there has
also been an effort to provide route directions to pedestrians (e.g. Google and SIRI). The
pedestrian case is particularly challenging because the location of the pedestrian is not just
restricted to the road network and the pedestrian is able to quickly face different directions.
In addition the scale of the pedestrian’s world is much finer, thus requiring more detailed data
representation. Finally the task is complicated by the fact that the pedestrian, for safety,
should endeavor to keep their eyes and hands free — there is no room for a fixed dashboard
screen to assist in presenting route directions. We take this last constraint at full force —
in our prototype there is no map display; the only mode of presentation is text-to-speech
instruction heard incrementally through the pedestrian’s earpiece.

We focus here on the problem of providing incremental spoken route directions to guide
a pedestrian from their current position to a given destination. Such a problem yields
two related metrics of evaluation: (1) what is the system’s effectiveness in actually guiding
pedestrians from a given initial position to a given destination position?; (2) how many
simultaneous users can a system scale to?. These two metrics most certainly trade off against
one another. While our initial focus has mostly been on improving metric 1 measures, metric
2 is increasingly a consideration.

1.1 Organization of this report

This report describes a test-bed prototype that we implemented to explore the pure nav-
igation case. Section 2 of this report introduces the terminology and concepts we use in
our work. The terminology is based largely on that of Richer and Klippel [11], although we
limit ourselves to only a subset of their terms and adapt the terminology slightly. Section
3 presents the overall architecture of the prototype. Because of the centrality of the Spa-
tialDB in our prototype, section 4 describes the table definitions and dynamic state within
the spatial database. These tables correspond to the concepts presented in section 2. Sec-
tion 4 shows how we implement a ’policy’ that maps from complex spatial/temporal state
to commands to generate route directions. Section 5 informally reports on how our system
initially performs for several tests carried out in Umea in October 2012, Sweden. Section 6
concludes.

2 Terminology

The path network upon which a pedestrian may be directed to travel is made up of branching
points and path segments, as illustrated in figure 1. For example the points labeled '5401’
and ’5522’ are branching points and the line from point 5401 to point 5522 represents a
path segment. Path segments are directed and are often not straight line edges, but rather
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Figure 1: Guiding a pedestrian on a route on Umea University’s campus

are defined as a sequence of directed elementary segments that, chained together, represent
curves or the meandering of a path segment. The path segment from branching point 5401
to branching point 5522 consists of 3 elementary segments. A path is a connected sequence of
path segments that would take a pedestrian from some origin branching point to a destination
branching point. In figure 1 we see a marked path with an origin and a destination that is
off the map. A route demarcates a path, consisting of route segments and decision points
which in turn demarcate associated path segments and branching points of the path.

Landmarks are entities in space that have associated point, linear or polygonal geome-
tries. Landmarks also have associated types (restaurant, bar, museum, street, park, uni-
versity_building, etc.) and names (e.g. 'MIT-Huset’, 'Fysikhuset’, etc.). There is a general
linking relation that allows arbitrarily named properties and wvalues to be associated with
landmarks (color, architectural style, etc.).

3 System Overview

In figure 2 we see the main components of our architecture. The key components are the
PHONEAPP, the SpatialDB, the ROUTEPLANNER and finally the CONTROLLER.

The PHONEAPP runs on the user’s Android phone and logs GPS measurements as longi-
tude, latitude, antenna error triples every second to the SpatialDB. The PHONEAPP likewise
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Figure 2: The basic architecture

accepts text messages from the CONTROLLER that are voiced using Google’s text-to-speech
engine running on Android.

The SpatialDB is the single repository for all state in the system. This means that the
SpatialDB represents the path network, the landmarks, the GPS measures, routes and a log
of previously issued utterances. In addition there is a state table that is dynamically derived
via stored procedures. These state tuples capture the complex spatial and communication
state of the pedestrian through time. Finally the SpatialDB contains a set of communication
rules that select the utterance, if any, that should be voiced to the pedestrian. The SpatialDB
is implemented within PostGIS/PostgreSQL, using both PostgreSQL triggers and rules with
stored procedures implemented in PL/PaSQL.

The ROUTEPLANNER is a simple component that plans a route from the branching point
closest to the pedestrian’s current position to a destination branching point within the path
network. The method used is simply A* search using a straight line distance heuristic run
over the path network with cost based on path segment length[10]. To set up the search, the
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ROUTEPLANNER issues an SQL query to the Spatial DB to bring in the relevant part of the
path network. After performing the search, the ROUTEPLANNER inserts the result into the
Route table in the SpatialDB.

The CONTROLLER runs a very simple (less than 20 lines of Java code) control loop that
polls the database for what utterance message to send next to the PHONEAPP and when it
is necessary to invoke the ROUTEPLANNER for a new goal.

There are two infrastructure components that do not appear in figure 2, but should be
mentioned for the sake of completeness: the PHONESERVER and the ICEBROKER. The
PHONESERVER represents the PHONEAPP in the back end and shunts GPS position reports
to the SpatialDB as well as shunting text message issued by the CONTROLLER onward to
the PHONEAPP for voicing. The ICEBROKER allows components to publish and subscribe
to data streams (e.g. GPS data) or to issue remote procedure calls on other components
(e.g. executing SQL queries, etc). It represents a slightly higher level of abstraction and
functionality than a pure socket-based client server protocol would support [4].

4 The SpatialDB

Because of the centrality that the SpatialDB plays in our prototype, we describe in some
detail the tables in the Spatial DB, how they are initially populated or dynamically generated.

4.1 The base tables

Figure 3 shows the base tables of the database from figure 2 grouped into tables representing
the path network, landmarks, routes and the pedestrian name and time series of reported
GPS positions'. These tables mirror exactly the terminology of section 2. Attributes named
point or line and geom are PostGIS geometry types.

The base tables are populated by external processes that add data either at database
build time or at run-time. Specifically the landmark and path network tables of figure 3 are
populated at database build time by converting OPENSTREETMAPS XML data[1])? to tuples
in our schema. The pedestrian tables are populated by a very simple pedestrian registration
process as well as the run-time GPS logging at one update per second from PHONEAPP.
The route tables are populated at run-time by the ROUTEPLANNER once a call for a new
goal is made by the CONTROLLER.

4.2 Pedestrian state table

Pedestrian ‘state’ is represented as a tuple in a single table with many attributes
(PedestrianState). The attributes have varied types (boolean, integer, real, PostGIS ge-
ometry types, time stamps, etc.) and are described below:

!Note that the table and attribute names used here are slightly different in the actual implementation. We
document these differences in the README file accompanying our (future) open-source software distribution.
2Obtained at http://openstreetmaps.org.



Path Network Landmarks

BranchingPoint(id, geom) Entity(id)

ISA(id, type)

PathSegment(id, start_id, end_id) IsNamed(id, name)

ElementarySegment( HasProperty(id, property, value)

id, geom, path_segment_id, number) HasGeometry(id, geom)
Routes Pedestrian

Route(id, uid, session) Pedestrian(uid, name)

GPSMeasure(uid, session,
RouteSegment( time, point, error)
rid, path_segment_id, number)

DecisionPoint(rid,
braching point id,
from_path_segment _id
to_path_segment_id)

Figure 3: The base tables

uid: This is the pedestrian’s id.
session: This is the session of the pedestrian.
phone_time: This is the time-stamp recorded on the phone by PHONEAPP.

insert_time: This is the actual time at which the state tuple is inserted into the database.
The difference between phone time and insert_time represents the position report
latency plus the clock difference between the PHONEAPP and the SpatialDB.

position: This is the smoothed and filtered position that is the best guess as to the
actual position of the pedestrian. Currently this smoothing and filtering process is
very simplistic.

GPS_error: This is the GPS error measure reported by the PHONEAPP.
speed: This is a smoothed value that estimates the pedestrian’s speed in meters per second.

heading: This is a smoothed angle value (in degrees, with North at 0°, East at 90°, etc)
that represents the direction in which the user is facing under the assumption that
pedestrians always face in the direction that they are traveling. Quite often this field
has the NULL value to represent that we do not have a reliable heading value for example
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at the start of a session, when the user is at a stand still, when we are not getting
consistent GPS measures, etc.

on_path: This is a boolean value that is true if the pedestrian’s position is within a distance
threshold (currently set at 10 meters) to an elementary segment of a path segment of
the current route.

at_branching point: This is a boolean value that is true if the pedestrian’s position is
within a distance threshold (currently set at 5 meters) to a branching point on the
path demarcated by the current route.

in path_segment: This is a boolean value that is true if on_path is true and
at_branching point is false. In other words in_path_segment is true if the pedes-
trian is positioned on a path segment between two branching points.

at_goal: This is true if the pedestrian is within a distance threshold (currently set at 10
meters) of the currently pursued goal.

standing still: This is true if the last three seconds show an average speed of less than
some constant, currently .5 meters per second.

receiving TTS: This is true when an utterance is being voiced on the PHONEAPP.

heading correction: This is a computed angle that gives the clockwise rotation necessary
to align the pedestrians heading with the heading of the elementary segment that they
are currently on. In the case that the pedestrian is not on an elementary segment of a
path segment, this angle is the ‘overland’ best correction to their current heading.

current_goal: This is the id of the current goal.
current_tour: This is the id of the current tour.

euclidean distance to_goal: This is the current distance ’as the crow flies’, from the
pedestrians position to the goal.

path_distance_to_goal: This is the current summed distance of all elementary path seg-
ments between the pedestrian and the goal (plus any additional distance required to
get on a path segment in the case that the user is not already there).

heading toward goal: This is the angle heading that the goal is in from the user as the
crow flies.

A PosTGRESQL trigger on inserts into the GPSMeasure table executes a stored procedure
that builds and inserts a state tuple into PedestrianState. Although this requires a fair
bit of calculation, given that states only need to be calculated once per second, currently the
representation is being calculated well under budget in single user trials. Since inserts into
the GPSMeasure table are once per second, so too are inserts into into the PedestrianState
table. Thus we record a pedestrian state for every second of their session, when testing the
system with a single pedestrian.



4.3 Communication rules

As we monitor pedestrian state, we need to decide when and which utterances to voice
to the pedestrian to guide them to their goal. In this initial prototype we model this as
a simple reactive system implemented in a set of event-condition-action (ECA) rules [6]
on the PedestrianState table. We term these communication rules where the events are
inserts into PedestrianState table, conditions are queries on the inserted tuple possibly
joined with additional tables and actions are inserts into an Utterance table (see figure 5).
The Utterance table records exactly which utterances will be, or have been, voiced to the
pedestrian.

1 CREATE RULE TurnThroughDecisionPoint AS
2 ON insert TO PedestrianState
s WHERE NEW.onPath AND NEW.atBranchingPoint

4 AND NOT NEW.receivingTTS

5 DO ALSO (

6 INSERT INTO Utterance(uid, session, time, utterance)
7 VALUES (

8 NEW.uid,

9 NEW.session,

10 NEW.time,

11 currentTurnUtterance (NEW.uid)) ;

12 ) 5

Figure 4: An example communication rule

An example communication rule appears in figure 4. Following the syntax of PostgreSQL,
rules are named (turnThroughDecisionPoint in line 1) with specification of events (e.g. line
2), conditions (e.g. lines 3-4) and actions (e.g. lines 6-11). The purpose of this rule is to
direct the pedestrian on to the next route segment as they arrive at a decision point.

Additional rules are:

continueRouteSegment: The action is to encourage the pedestrian to continue following
the route segment they are in. The conditions for this are that the pedestrian is
making good progress on a route segment. An analogous rule is defined over elementary
segments.

correctHeadingToLeft: The action is to tell the pedestrian to correct their course
to the left. The condition is that the pedestrian is veering off the current ele-
mentary segment to the right. Analogous rules are correctHeadingToRight and
correctHeadingTurnAround.

offPathHeadingCorrection Given to direct the pedestrian toward the most appropriate
path segment. The condition is that the pedestrian is not on any path segment of the
current route.
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distanceReport given to report how much further to the goal.
orientToGoal given to report that the pedestrian is facing the direction of their goal.

encourageMovement given to inform the pedestrian that they need to walk so that a heading
can be calculated.

When multiple communication rules simultaneously have true conditions, only one is
allowed to generate an utterance. This is guaranteed by implementing a separate POsT-
GRESQL RULE on inserts into the Utterance table. Lexicographic order on rule names
determines an a precedence relation among communication rules.

4.4 Generation and realization of utterances

When a communication rule inserts an utterance into the Utterance table, it must be voiced
(i.e. realized) to the pedestrian. This is achieved by the CONTROLLER which polls the the
Utterance table, shunting new utterances to the PHONEAPP. The CONTROLLER currently
does this once per second.

Utterance(uid, session, start_time, end_time, text)

DecisionPointinstruction(id, from_path_segment _id, to_path_segment _id, text)
RouteSegmentlinstruction(id, path_segment_id, text)
ElementarySegmentinstruction(id, elementary_segment_id, text)

Figure 5: The utterance and pre-generated instructions tables

Currently utterances are pre-generated via an off-line natural language generation pack-
age that systematically computes route instructions (possibly including references to land-
marks) over all possible decision points and route segments. Authoring tools enable us to
override default generated utterances with human written content. For example utterances
16-20 in figure 1 were authored into the system.

No matter their source, pre-generated utterances are stored in
the tables DecisionPointInstruction, RouteSegmentInstruction and
ElementarySegmentInstruction shown in figure 5. Stored procedures (e.g.

currentTurnUtterance in figure 4) retrieve these utterances and insert them into
the Utterance table for immediate realization.

5 Initial Observations

We have implemented the prototype described in this report and conducted a series of pilot
tests. Most of our tests were dedicated to validating capabilities and confirming bug fixes.
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While we we have not yet run any formal experiments, as of October 2012 we have devel-
oped the system to a state that will soon be sufficiently robust and effective for navigation
experiments with random human subjects.

5.1 Run time performance and stability

The run time performance of the system is adequate. For a typical test under the conditions
depicted in figure 1, the average time to calculate the pedestrian states was well under the
1 second budget. The average lag time of GPS reports are approximately 60 ms.

The stability of the system has improved substantially from our first running prototype
(in June 2012) to the prototype at the end of our latest development phase (in October 2012).
These stability issues were addressed mostly by redesigning and recoding initial components.
In addition we have systematically tracked known problems and feature requests using the
REDMINE bug tracker. Our prototype must be very reliable before we commit substantial
resources to evaluation.

5.2 Effectiveness of navigation

To be blunt, our initial implementation, before any experiences were gathered and parameters
tweaked, would not have been able to reliably guide a user to a goal. For example problems
like the quantity and timing of utterances (too much or too little speech, utterances issued
too late or too early) and oscillations in the calculation of facing direction led to a frustrating
user experience. Thus much effort was directed toward fixing parameters in the underlying
system, coding alternative phrasings, adding further communication rules and state variables,
etc. In addition we determined that scheduling of utterances in synchronization with user
position is a critical capability that is not easily finessed in our purely reactive approach.
This orients our future efforts toward the challenging problem of predicting user position
and scheduling utterances accordingly.

Testing with the VirtualPedestrian

While figure 1 shows the display of our VIRTUALPEDESTRIAN tool in tracker mode, figure
6 shows our VIRTUALPEDESTRIAN tool in a ’'virtual mode’. In this mode the user controls
the heading and speed of the pedestrian on a map. The map portion of the tracker shows
the plot of the GPS positions along with their inferred position. The portion to the right
gives the log of utterances that the system generates. The VIRTUALPEDESTRIAN in ’virtual’
mode engages in exactly the same protocol that the PHONEAPP engages in with the system.
Moreover the tool can simulate GPS error and the route can be hidden from the human
operator and text can be voiced as text-to-speech. In this mode we can run tests and
perhaps even evaluation without having to go out in the streets.
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Figure 6: A human subject using VIRTUALPEDESTRIAN to follow a virtual route.

Actual field tests

No matter how many virtual pedestrian tests we run, what counts is how the system actually
performs with real users in the field who do not know the system, but can only follow the
instructions that the system voices. Our plan here is to start field testing by generating
random tours unknown to a single human tester. Since the field tester will be unaware of
the destination that they are currently being guided to, the system will need to be effective
in guiding the tester through route following instructions. Even if the tester is one of the
authors of this report, this will give us insight into the effectiveness of various communication
strategies. No doubt other unforeseen issues will also come up. Only after performing this
cheaper form of auto-evaluation (or testing) shall we consider a larger evaluation with random
human subjects.

6 Conclusions

This report has provided a snap-shot description (as of October 2012) of our work on building
a pedestrian navigation system based on active database technology. Although we have
only performed cursory testing so far, we believe that the system holds out promise as a
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scalable platform to effectively guide pedestrians to goals in the city. The ability to author
content directly into the system gives a practical approach to override machine generated
descriptions. Moreover this authoring approach may underlie a future method by which
textual descriptions (or perhaps even audio content) may be crowd sourced.

The work here also brought to the surface some interesting query processing issues.
Because of the noisy nature of position reports, we have found statistical time-series queries
of particular use. For example time series queries such as “Is the standard deviation of
heading less than 10 degrees over the last 10 seconds?” are the basis of determining facts like
whether we have a stable heading, which in turn is a condition for rules like orientToGoal
of section 4.3. One can imagine even more complex time-series queries that could determine,
for example, if the pedestrian is likely to be waiting for a traffic light (“Has the user walked
straight up to a road and waited longer than 3 seconds in stand still?”), is disoriented (“Has
the user returned to this spot after walking in a ’circle’ lasting 3-4 minutes?”), is making
progress (“Over the last minute has the user moved at least 30 meters nearer to the goal?”),
etc.

Thus far we have not yet been forced off a traditional relational approach in favor of a
stream-based approach. Since our focus has been on boosting scores on metric 1 (see section
1), we have in fact been limited to running 30 minute tests with single users — in essence
isolating our attention to windows of no more than 2000 tuples in the PedestrianState
table. As we transition to larger scale studies and in particular explore methods to crowd
source audio route instructions, we anticipate transitioning to a stream based approach [5].
With our attention firmly focused on our two evaluation metrics, it will be interesting to see
how this project progresses.
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