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Abstract

Often we are interested to know what is ‘near’ and what is ‘far’ in spatial
databases. For instance we would like a hotel ‘near’ to the beach, but ‘far’ from
the highway. It is not always obvious how to answer such nearness questions by
reducing them to their crisp counterparts ‘nearer’ or ‘nearest’. Thus we confront
the vague and context-dependent relation of near (and far). Our approach fol-
lows a supervaluation tradition with a limited representation of context. The
method is tractable, learnable and directly suitable for use in natural language
interfaces to databases. The approach is based on logic programs supervalu-
ated over a set of context-dependent threshold parameters. Given a set of rules
with such unconstrained threshold parameters, a fixed parameter tractable al-
gorithm finds a setting of parameters that are consistent with a training corpus
of context-dependent descriptions of ‘near’ and ‘far’ in scenes. The results of
this algorithm may then be compiled into view definitions which are accessed
in real-time by natural language interfaces employing normal, non-exotic query
answering mechanisms.

1. Introduction

A difficulty in natural language interfaces to databases (or knowledgebases)
has been an adequate treatment of vagueness. For example when we ask for “a
near by Indian restaurant”, what exactly do we mean? While related questions
involving the comparative and superlative forms (e.g. “is Ghandi’s nearer than
Taj Mahal?”,“which Indian restaurant is the nearest?”) have crisp answers,
which restaurants qualify as ‘near’ seems open to interpretation and arbitrary.
In short, ‘near’ is vague.

Figure 1 depicts the general situation we model. A speaker asks for objects
of type R (e.g. Restaurants) that qualify as members in the vague predicate V

(e.g. Near). As a result a subset A of R is reported back to the speaker using
the description C (e.g. “Ghandi’s and Taj Mahal are both within 300 meters
of your current position.”). One obvious truism is that the determination of A



Figure 1: The basic framework

is context dependent. For example how much time does the speaker have for
lunch? Is the answer different when it is raining? What if the speaker requests
near by hospitals rather than near by restaurants? Does requesting hospitals
make a difference in the determination of what distance qualifies as near? Does
the number of restaurants in the vicinity of the speaker influence the distance
threshold of what qualifies as Near? These questions hint at the strong role of
context in the interaction depicted in figure 1. Of course context is a rather
broad notion so let us stipulate the following three types:

Speaker context involves the speaker’s goals, capacities and preferences.
In the case of ‘near’, we may ask if the speaker is walking or driving, if
they are in good health, if they are under time pressure, etc.

World context involves every thing that holds in the world external to
the speaker’s mind. In practice this will either be recorded in the modeled
reality of the database or not be explicitly modeled. For example our
database might track the location of the speaker and restaurants, but not
track the weather.

Communication context involves the actual request of the speaker.
Because we restrict the form of communication so rigidly in figure 1, this
context is simply what type of objects the speaker is requesting (i.e. R)
and the vague predicate (i.e. V ).

While representing communication context has been largely handled by re-
stricting our attention to only types of communication depicted in figure 1, we
still have the daunting task of representing speaker and world context. Surely
we must feel some trepidation [23]. Are we really prepared to build rich models
of the user’s wants, needs and capabilities? Likewise are we prepared to attempt
to formally describe how our database relates to the greater world? Perhaps we
could try, but then again perhaps we should just give up and refer to separate
contexts in the simplest possible way. That is by merely stipulating that con-
texts (e.g. c1) exists, whatever they are, and by giving them descriptive names
(e.g. c1 is named “a 5 minute walk”).

In essence we elect this simple approach to context by extending our vague
predicate V (x) to V (x, c). Thus, assuming that I am standing at the capital
building in Washington DC, we might assert ¬Near(WhtHouse, ‘5-min-walk’)
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but Near(WhtHouse, ‘afternoon-day-trip’). We might elect to say neither
Near(WhtHouse, ‘15-min-walk’) nor ¬Near(WhtHouse, ‘15-min-walk’) if it is
not clear either way. Other questions might be to ask whether there exists a
context ci where Near(Tokyo, ci)? Sure, when ci = ‘inter-galactic-space-travel’.
In fact it seems that for any vague predicate, we can say that there is some
context that makes it true and some context that makes it false.

Now that we have largely side-stepped context, this paper will focus on rep-
resenting vagueness of ‘near’ and ‘far’ in spatial databases. There has been a
wealth of prior work in vagueness stretching from antiquity to comprehensive
modern treatments (see [20] for an overview). The present work is informed
by these developments, but adopts, in the terms of [6], a computational rather
than a cognitive perspective. That is we seek to support simple aspects of
vagueness through leveraging modern relational database systems and theorem
provers limited to tractable classes of first-order logic. Our long term goal is
to robustly and efficiently support important and well circumscribed classes of
vagueness without necessary recovering all the nuances of the phenomena. The
work described in this paper is part of this project and addresses the special case
of representing ‘near’ and ‘far’ in spatial databases. The practical motivation
for focussing on ‘near’ and ‘far’ is that questions to GISs are often couched in
such terms (e.g. “which Indian restaurants are near to the university?”, “which
hotels are near to the white house but far from a highway?”) and answers or
descriptions of spatial scenes could be described using such vague spatial predi-
cates (e.g. “It’s the Starbucks near to the Chinatown metro stop.”). Practically
all natural language interfaces to GIS eschew this problem and instead focus
on qualitative relations (e.g. give the objects that overlap one another) or they
work hard to answer ‘near’ questions using their crisp counterparts of ‘nearer’
and ‘nearest’.

1.1. Organization of this article

This article is an extension of an earlier conference article [14] and holds
a similar structure, but presents at greater depth and with a wider discussion
of alternative and future work. The work is also more focussed on the case of
‘near’ and ‘far’, and does not follow up on the more extended cases of ‘next-to’
and ‘between’ that were briefly entertained in the conference paper. Section 2
provides a review of work in vagueness and in particular vague relations in spatial
databases. Section 3 presents our approach basing it on a concrete example for
the North Western Washington DC portion of the OpenStreetMap database.
The example illustrates the essence of our approach. Section 4 discusses our
prototype implementation. Section 5 presents a wide ranging discussion of the
work as well as criticisms and future directions. Section 6 summarizes and
concludes.
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2. Background

2.1. General accounts of vagueness
Vague relations are characterized by borderline cases and inquiry resistance.

Borderline cases means that there are cases that don’t seem to be clearly in
or out of the relation and inquiry resistance means that no amount of further
information can decide the case. Inquiry resistance distinguishes vagueness from
ambiguity for, in general, ambiguity can be resolved with further dialogue. If
a user requests “list the buses that travel down D st.” does this include buses
that don’t actually stop on D street? Once that issue is decided the question
essentially becomes crisp, thus it does not resist inquiry. But in a given context
if a restaurant is neither ‘near’, nor ‘far’ from me, then giving a more accurate
measure of the distance does not often help. Although it can be argued that
making the context of the question more specific might bring the relation closer
to being crisp, we assume here that even under precise contexts vague relations
are still inquiry resistant.

A comprehensive treatment of vagueness is Kees van Deemter’s recent book
Not Exactly: In Praise of Vagueness [20]. The book is an informative and
entertaining look at vagueness in many of it guises and it reviews the main
theoretical approaches to representing the phenomena. The book bases its defi-
nition of vagueness on the sorites paradox of Eubulides of Miletus of the fourth
century B.C.E. The sorites paradox (also known as the paradox of the stone
heap) asks how many stones make a heap. Since one stone does not make a
heap, and since in general adding one stone to a collection should not change
its status, then paradoxically we should be able to continue adding stones to
the collection with it never attaining the status of a ‘heap’. A more modern
version of this paradox that makes explicit the notion of perceived differences,
starts with assuming that we have a person that is 151 centimeters tall that we
refer to as ‘short’. If we stand this person next to a person that is only a hair’s
width taller (perceptually the two subjects appear to be the same height), then
we must state that the other person is also ‘short’. Of course by this line of
reasoning we will conclude that people of arbitrarily large height are ‘short’.
Clearly somewhere the induction step must break down.

More abstractly, in van Deemter’s terminology, there are three fundamen-
tal properties of vague relations (such as tall(x) or near(x, y)) based on grad-
able measures (such as height and distance): admissibility, tolerance and non-
transitivity. In the example of nearness:

Admissibility states that if some object is ‘near’ at a given distance,
then if it were moved to a shorter distance away, then it too would be
‘near’.

Tolerance states that if an object is ‘near’, then if it is moved an imper-
ceptible distance away, it still remains ‘near’.

Non-transitivity states that if object x is ‘near’ to object y and object
y is ‘near’ to object z, then it is not necessarily the case that object x is
‘near’ to object z.
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We will adhere easily to admissibility and non-transitivity, though as we will
see, we will struggle later with tolerance.

Van Deemter’s book does a thorough job of presenting and contrasting the
linguistic and semantic approaches to handling sorites problems, with special
focus on the example of tall. This includes the naive method of specifying
thresholds, supervaluation, Kamp’s notion of incoherent contexts, introspective
accounts, fuzzy logic based approaches, and finally probabilistic logic based
approaches. We refer the interested reader to [20].

2.2. Supervaluation

The tradition which guides the present work, is supervaluation (see [7, 12]
for a philosophical description and [8, 18, 15, 3] for practical approaches that,
broadly speaking, can be classified as employing supervaluationistic techniques).
From [12],

According to [supervaluationist] theory, a sentence is true if and only
if it is true on all ways of making it precise. This yields borderline
case predications that are neither true nor false, but classical logic
is preserved almost entirely.

In this paper this is captured by parameterizing the definition of vague pred-
icates with various thresholds constants which are not explicitly set. A precisifi-
cation of the vague predicate is a setting of the relevant threshold parameters to
numerical values that are consistent with observations. A statement is supertrue
if it is true over all possible precisifications. To illustrate, let us define ‘near’ as
(∀x)(x < n1 ⇔ near(x)) and assume observations near(2) and ¬near(10). For
simplicity, let us assume that our universe of distances is the whole numbers
between 0 and 20. Given the observations we have 8 consistent precisifications
of our rule. But no matter what the actual setting of n1 is, the rules above are
sufficient to deduce that near(1). Thus near(1) is supertrue, near(11) is super-
false and near(5) is neither supertrue or superfalse, being either true or false
with different consistent settings of the parameter n1. This formulation enforces
the property of admissibility and non-transitivity, but does not directly address
tolerance. Issues of tolerance aside, what we have is a fairly reasonable formula-
tion for practical application. While one can solve for consistent settings of n1

in a straight forward way (e.g. n1 = 3 is consistent with the observations), this
is not necessary if one wishes to simply use the system to deduce membership
or non-membership in vague relations.

There is a limitation of the above system that should be mentioned. Al-
though the formulas given do not determine a specific value for n1, each model
does set a specific value for the threshold. Where this becomes tricky is when
we introduce another parameter that determines when a distance is definitely
not ‘near’. Let us say for example that we introduce the rule: (∀x)(x > n2 ⇔
¬near(x)). Under this system, because for each model a given distance must
be either near or ¬near, we unwittingly induce the constraint that n2 = n1−1.
This is unfortunate, because once we determine parameter settings, we would
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like for the resulting logic to model inquiry resistance by remaining agnostic
about the determination of the vague predicates for values in some gap. For
example in the most conservative setting1 of parameters for the above exam-
ple is n1 = 3 and n2 = 9. Instead of embracing partial logic, a work around
is to simply introduce an ‘opposite’ vague predicate far(x) so that we have
the rule, (∀x)(x > n2 ⇔ far(x)) and the rule that determines mutual exclu-
sion: (∀x)(near(x) → ¬far(x)). Thus we can now have consistent settings of
threshold parameters under classical first-order logic where a distance is prov-
ably near, provably far or neither. This gives us our ‘gaps’ that are needed to
model inquiry resistance.

There has been a series of practical works that model vagueness via super-
valuation. The work in [8] was one of the first attempts to fix parameters in rule
based systems by letting domain knowledge interact with rules to give tighter
bounds on intervals. The work is similar to the work carried out here, but no
attempt to identify tractable classes of problems was undertaken. Other impor-
tant work in supervaluation is Bennett’s work on VAL (Vague Adjective Logic)
[2] and Pulman’s work on vague predicates and degree modifiers [15].

2.3. Vague relations in spatial databases

Typically spatial databases represent regions by adding geometric types
(POINT, LINE, POLYGON, etc.) to the basic attribute types (e.g. INT, VARCHAR,
DATE, etc.). Such geometric types (e.g. as proposed in SQL/MM) have a host of
well-defined operators (e.g. overlaps, contains, disjoint, strictly-above, does-not-
extend-to-the-right-of, etc.) and functions (distance, area, etc.) that can be used
as conditions or terms in queries. The canonical types of crisp queries are point
queries (e.g. “what park am I currently in”), range queries (e.g. “what are the
Chinese restaurants between H and F streets and 9th and 11th streets?”), near-
est neighbors (e.g. “Where is the nearest ATM from the corner of 9th street and
F street?”) and spatial joins (e.g. “give Indian restaurants within 100 meters
of a metro stop.”). The use of R-tree indexes [10] and their generalization ([11])
give log-based access to spatially arranged objects, by indexing on the bounding
rectangle of polygon regions and line segments. While spatial databases provide
a standard set of basic spatial operators and functions we seek to support spatial
predicates ‘near’ and ‘far’ which are of a vague, context-dependent nature.

While many researchers have pursued fuzzy logic approaches [5, 1, 21] in
spatial databases, it should be remarked that most of these approaches have
focussed on what could be called indeterminate spatial relations [17] of fuzzy
objects, rather than focus on the vague relations near (and far) that obtain
between crisp objects. An indeterminate relation considers an object that has
unknown shape, such as a river that may widen during rainy season or a forest
whose boundary may taper off into a clearing. While such objects have un-
known exact shape, there does exist some shape and thus, in principle, there

1A conservative setting of parameters selects the widest gaps between opposite relations
consistent with observations.
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are answers to basic spatial predicates (e.g. RCC8 relations [16]) and functions
(e.g. distance) evaluated over them. A common way to represent such inde-
terminate regions is through the so-called egg yolk method [4]. The greatest
possible extent of a region is represented as well as the most compact possible
region and the calculus of the exact spatial predicates and functions gives rise
to three-valued logics and intervals of possible values. Some recent work that
flirted more directly with vague spatial relations is [13]. While they explicitly
side step “vague, ambiguous and context dependent expressions” via a controlled
language approach, they provide an interesting definition of ‘between’ that can
be thought of as being on the cusp of becoming a vague relation.

3. An Approach to Context-Dependent Near and Far

Our approach to represent Near is based on supervaluation over multiple
contexts. Returning to figure 1, given a user’s question for Rs that are V (e.g.
“Restaurants that are near”) under context c, we apply the vague predicates at
the intensional level. That is the set of answers A is:

λc.{x|R(x) ∧ V (x, c)} where V (x, c) ⇔ n(c) < val(x)

We focus on the case where R is a basic type predicate (for example Church,
Pub or Museum and V is a binary (as opposed to unary) vague predicate
near (or far) extended with a context argument. Specifically near(x, y, c) and
far(x, y, c) are true when object x is ‘near’ to (or ‘far’ from) object y in context
c. The val function represents the ‘distance’ between the geometries of two
objects. For now let us assume this distance function is the straight line distance
metric ∆sld and that the function geo maps from object ids to their associated
geometries (i.e. points, polygons or lines).

3.1. The definition of the context-dependent Near and Far

Ignoring types for now, the main rules that define the vague predicates are:

(∀x)(∀y)(∀c)(near(x, y, c) ⇔ ∆sld(geo(x), geo(y)) < low(c))

(∀x)(∀y)(∀c)(far(x, y, c) ⇔ high(c) < ∆sld(geo(x), geo(y)))

These rules provide the necessary and sufficient conditions2 for near(x, y, c)
and far(x, y, c). The necessary conditions state that if two objects are ‘near’
to (or ‘far’ from) one another in a given context, then the distance between
their associated geometries must be less than some threshold low (or greater
than some threshold high) for the context. The sufficient conditions state that
if the distance between two objects associated geometries is less than some
threshold low (or greater than some threshold high) for a given context, then
two objects are ‘near’ to (or ‘far’ from) one another in that context. Nowhere

2An error in the conference paper [14] was that only sufficient conditions were included.
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do we explicitly set these parameters low(c) and high(c), for they are to be
constrained by observations.

Note that the functions we are using in our system are partial and have
rigid signature restrictions: geo(x) maps object ids to geometries, ∆sld(gi, gj)
maps two geometries to a numeric value, and low(c) and high(c) map contexts
to numerical values. The relation < is defined over a finite set of numerical
values under active domain. The function signature requirements give a finite
Herbrand universe for any system specifying a finite set of contexts and a finite
set of observations. This along with the fact that rules are limited to the Horn
property gives us a tractable algorithm3.

Finally we model the ‘opposite’ relation between near and far in a given
context via:

(∀x)(∀y)(∀c)(near(x, y, c) ⇒ ¬far(x, y, c)).

3.2. Calculating thresholds from context-dependent observations

By way of example let us consider observations over the contexts c1 =
’10 minute stroll’, c2 = ’five minute sprint in rain’ and c3 = ’short bicycle ride’.
In the scene4 in Figure 2 we may have observations of the following sort:

near(m2, s1, c1) ∧ far(m2, s4, c1) ∧ ¬near(m4, s5, c2) ∧ far(s6, s2, c2) ∧ ...

Based on a set of such observations, the most conservative setting of the
thresholds could be low(c1) = 240, high(c1) = 600, low(c2) = 750, high(c2) =
5000 and low(c3) = 780, high(c3) = 4500. As will be discussed in Section 4, we
have a tractable algorithm to calculate these parameters.

3.3. Representing and comparing contexts

While the near(x, y, c) and far(x, y, c) predicates include a context argu-
ment, we also wish to associate facts as being true (or false) in contexts. To
achieve this we include a predicate ist(p, c) (standing for ‘is true’) that records
that a proposition p ∈ P holds in a particular context c. These facts are
propositions from an arbitrary finite set P . For example let us say that the
propositions are on-foot, raining, day-time, on-bike. Thus we might have the fol-
lowing facts: ist(on-foot, c1), ist(on-foot, c2) ¬ist(on-foot, c3), ¬ist(on-bike, c1),
¬ist(on-bike, c2), ist(on-bike, c3), ist(raining, c2). If a context ci makes no
claims about raining, then neither ist(raining, ci) nor ¬ist(raining, ci) will
be asserted.

Given the ist predicate and a set of context dependent observations, we are
able to calculate several useful relationships between contexts:

3Technically this is a fixed parameter tractable algorithm based fixing the arities of the
functions and predicates. See formal definitions and proofs developed in [14]

4We use OpenStreetMap data in PostgreSQL extended with PostGIS. The scene in 2
represents a section of Washington, DC and consists of over a thousand unique objects. Each
of these has an associated geometry type (e.g. a polygon, line or point) and a set of descriptive
attributes that associates name and types.
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Figure 2: Museums definitely near (•) and possibly near (◦) to a metro (∗) in the context of
a ’10 minute stroll’

Possibly Equal (ci ≈ cj)

When we take into account both observations as well as ist facts we may
calculate whether two contexts are possibly equal. We say that two contexts
ci and cj are possibly equal (denoted ci ≈ cj) if their equality is consistent
with the observations and ist facts. This can be tested by merely stating their
equality and testing whether the observations and ist facts are consistent. In our
example ist and observations in Section 3.2, none of the contexts can possibly
be equal to one another.

Generality (ci ❂ cj)

Ignoring observations we can speak of context ci being at least as general as
a context cj (denoted ci ⊒ cj) if and only if (∀p)(p ∈ P ∧ ist(p, cj) ⇒ ist(p, ci))
and (∀p)(p ∈ P ∧ ¬ist(p, cj) ⇒ ¬ist(p, ci)). This can be tested efficiently for
each context pair by testing the consistency of these rules with the ist facts. A
context ci is more general than cj (denoted ci ❂ cj) if ci ⊒ cj, but not cj ⊒ ci.
In our example c1 ❂ c2.

More Discerning (ci ≺ cj)

Ignoring ist facts, a relationship we calculate is what we call a context being
more discerning than another context. A context ci is at least as discerning as
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cj (denoted ci � cj) if everything that is ‘near’ in ci is ‘near’ in cj and everything
‘far’ in ci is ‘far’ in cj . A context ci more discerning as cj (denoted ci ≺ cj)
if ci � cj , but not cj � ci. Formally we can compute if ci � cj if we add the
following rules to above rules and observations and test for consistency:

(∀x)(∀y)((near(x, y, cj) ⇒ near(x, y, ci)) ∧ (far(x, y, cj) ⇒ far(x, y, ci)))

In our example above, it is the case that c1 ≺ c2.

3.4. Generating views

Based on the set of contexts, observations, and then the calculated high and
low parameters, we can generate views that capture what is ‘near’ and ‘far’ in a
given context. Thus the view definition of NEAR(XID, YID, CONTEXT) provides
the objects that are ‘near’ to one another in the given context. Its form is a
straightforward result of pairs 〈ci, low(ci)〉:

CREATE VIEW NEAR(id1,id2,context) AS

(SELECT x.osm_id,y.osm_id,’10 minute stroll’ FROM

planet_osm_point AS X, planet_osm_point AS Y

WHERE ST_Distance(x.way,y.way) < 240)

UNION

(SELECT x.osm_id,y.osm_id,’10 minute stroll’ FROM

planet_osm_polygon AS X, planet_osm_point AS Y

WHERE ST_Distance(x.way,y.way) < 240)

...

UNION

(SELECT x.osm_id,y.osm_id,’5 sprint in rain’

...

This view can be accessed via natural language through the natural language
interface system. An analogous view is defined for FAR(XID, YID, CONTEXT)

3.5. Multiple distance metrics

In practice, it is often the case that a straight line distance measure is an
unreliable metric of ‘real’ distance. Certainly the existence of a subway sys-
tem warps the notion of what is ‘near’. Modern GIS treatments are getting
more sophisticated in calculating such alternative distances. For example tak-
ing into consideration the road network and approximate travel times, it is fairly
straightforward to develop a metric ∆driving, it is even feasible that we can de-
velop ∆walking or ∆metro. Given this we could then imagine composing these
to generate metric functions such as ∆walking&metro.

Although we have not yet performed any experiments with these alternative
distance metrics, we note here that the impact of this will be to make the dis-
tance function definition based on input context. Thus the basic vague predicate
definition rules from above become:

(∀x)(∀y)(∀c)(near(x, y, c) ⇔ ∆(geo(x), geo(y), c) < low(c))

(∀x)(∀y)(∀c)(far(x, y, c) ⇔ high(c) < ∆(geo(x), geo(y), c))
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This will then necessitate the assignment of distance metrics to various con-
texts:

(∀x)(∀y)(∆(geo(x), geo(y), c1) = ∆sld(geo(x), geo(y)))

...

(∀x)(∀y)(∆(geo(x), geo(y), c10) = ∆driving(geo(x), geo(y)))

While this requires slightly more knowledge engineering, it does not alter
the tractability of the approach.

3.6. Type dependence
Based on our intuition that a person being ‘near’ to a waste paper basket and

a person being ‘near’ to a park should be accorded different distance thresholds,
let us entertain the possibility of extending our approach with types (e.g. a
restaurant, ATM, park, road, etc.). With respect to the definition of near (and
far) this would lead to a proliferation of rules including:

(∀x)(∀y)(∀c)(near(x, y, c) ⇔ ATM(X) ∧Restaurant(Y )∧

∆(geo(X), geo(Y ), c) < low(ATM,Restaurant, c))

Note that the low parameters now take types as well as the named context
as arguments. This is a straight forward extension to the basic case although it
results in many more rules – quadratic in the number of types.

A serious limitation with this approach is that monotonicity of logic will
result in the most restrictive threshold bounds to be induced between types.
This will likely quickly lead to hard to explain inconsistencies that render the
approach unworkable. A possible fix would be to stipulate that pairwise disjoints
between types. For example the types could included restaurants, ATMs, etc.
For example:

(∀x)(Restaurant(x) ⇒ ¬Road(x) ∧ ¬ATM(x) ∧ ...)

...

Even if we were able to work with a set of mutually exclusive types, the whole
approach suffers from requiring many more observations to fully constrain the
thresholds across all type combinations. For this reason we largely dismiss the
idea (originally proposed in [14]) of including types in the rules.

4. Prototype Implementation

The approach of section 3 is implemented in an initial LISP prototype in-
tegrated with the theorem prover SPASS and PostgreSQL extended with
PostGIS over OpenStreetMap data. The implementation consists of two
web-based tools: the teaching tool and the query tool. The teaching tool lets
an administrator build and manage contexts (see Figure 4). The output of the
learning tool is a set calculated relationships between contexts and the view
expressions that define the context-dependent NEAR and FAR relations. The
query tool lets casual users obtain answers to ‘near’ and ‘far’ queries via limited
natural language dialogue (see Figure 5).
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Figure 3: The overall architecture

4.1. The teacher tool

The teacher tool enables an administrator (hereafter referred to as the teacher)
to add and name contexts, set associated propositions in contexts to true, false
or unknown, and then to make statements of what is ‘near’ and ‘far’ in con-
texts. Additionally the teacher must specify which distance metric is relevant
in the context and must also specify a descriptive name for the context. These
descriptive names (e.g. a ’5 minute sprint in the rain’) will be used to identify
the context to casual users.

As the teacher builds up a library of contexts, the system alerts the teacher
to related contexts that are possibly equal (see ci ≈ cj) above to a new context
that they are asserting. The teacher is encouraged to refrain from defining a
context ci if there already exists a context cj, where ci ≈ cj and cj ❁ ci and
cj ≺ ci (see Section 3.3 for a formal definition of these terms). This captures

12



Figure 4: The interface to the teacher tool

the intuition that if a context is more specific, but in being so it widens a gap
between opposite predicates, then it is probably irrelevant. Likewise a new
context ci that is more general than a prior context cj (ci ❁ cj) and more
discerning ci ≺ cj should probably supersede cj and cj should be removed
from the library. These are just recommendations to the teacher however. The
teacher can author contexts as they see fit.

Once the teacher has defined a library of contexts, they generate a view
definition for the context library. This starts by calculating the most conserva-
tive settings of the parameters, followed by a translation of the entire body of
contexts into view definitions. This is achievable in polynomial time (see [14]).

Core reasoning services

The core reasoning services in the teaching tool are carried out by the first or-
der resolution theorem prover SPASS [22]. We encode the vague observations,
the ist statements, the unique names assumption and < over numerical con-
stants (under active domain) in first order logic limited to Horn clauses. These
encodings are confirmed to be consistent via a satisfiability check. One tricky
issue worth mentioning around the definition of <, is that must discretize the
active domain of ordered numerical values d1, ..., dn. This includes Horn-based
constraints such as:

x = di ⇐ x < di + 1 ∧ di − 1 < x

Assuming consistency of the defined contexts and observations, based on
the reasoning question we are seeking to answer, we encode constraints such
as the value of a parameter, or whether two contexts are equal, or any of the
other questions from Section 3.3, and test for consistency. The view compilation
routine which finds consistent settings of all the high and low function values is
the most expensive of the operations. However this does not require interaction
and, again based on the Horn case it is tractable. Further experiments are
underway to improve our prototype’s performance.
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4.2. The query tool

Figure 5: A dialog over the query tool.

Given that we have the view, materialized or otherwise, that defines the
vague predicate NEAR and FAR, the question is how do we use such a view in
querying the underlying database. A common use case is that we are unaware of
the user’s context and they then ask a nearness query. Now given the assumption
that the true context of the user matches a context defined in the context library,
this will mean that a family of possible thresholds will be possible.

To resolve a more discerning notion of near the system will need to obtain
from the user their context. This may involve setting predicates based on world
state (e.g. the weather or time of day) or via explicit questions (e.g. “Are you
driving, walking, or biking?”, “Can you take a metro?”, etc.) and using this to
narrow the set of possible contexts. This could also be based on users stating
that objects are definitely near or far, or the user even suggesting the actual
threshold values explicitly. The key point is that as the set of possible contexts
becomes more constrained, the boundary low and high parameters will become
more and more constrained. The dialogue in Figure 5 follows a strategy where
the set of answers common to all possible contexts are identified first, followed
by questions that systematically rule out contexts and progressively report all
answers in the next less restrictive context, etc. until all possible contexts are
addressed or ruled out.

5. Discussion

The original ambition of this article was to cover a wide class of vague
spatial preposition including ‘between’,‘on’,‘next to’,‘at’, etc. As it turned out,
we decided to focus our attention on the more limited case of ‘near’ (and ‘far’).
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Now that we have developed what we feel to be a concrete and practical approach
to this simpler case we will be generalizing our approach to more complex and
varied cases.

The general interpretation of vague language in this article has been as
‘convention’. In general this leads to difficulties. For example consider the
non-spatial request for “large cities in Alaska.” If we assume that the only
relevant gradable measure for a large city is it’s population, where would we
set the threshold? Obviously this depends on the comparison set. For example
do we want a large city by Alaskan standards, or do we want large cities by
more conventional standards – in which case perhaps the correct answer is that
Alaska does not have any large cities. A possible way to extend vague predicates
is with definitions such as “tall means above n1 standard deviations from the
mean.” The n1 here remains as a parameter, but one that becomes folded up
within a complex calculation that takes the distributional context into account.
Formally, in relation to figure 1, this would be:

λc.{x|x ∈ V ∗({y|R(y)}, c)} where x ∈ V ∗(S, c) when val(x) is at least n∗(c)

standard deviations above the mean val for members of S

This paper has based its approach on relational database technology and the-
orem provers applied over tractable cases of Horn clauses with a finite Herbrand
universes. No doubt our approach to context can be criticized for its simplicity
given the more sophisticated options [9, 19]. While we slightly extended our
notions of context to make certain propositions true or false in context, adding
a context argument to predicates is essentially our approach to context in this
paper. The main virtue of this is its simplicity and its representation in tractable
first-order logic.

Conventional wisdom says that limiting approaches to vagueness to classical
first-order logic is too restrictive. In fact Kees van Deemter concludes his book
[20] with the analogy of giving up classical logic with the expulsion of Adam and
Eve from paradise. It’s a painful, but necessary. While we acknowledge that this
is probably ultimately true to capture advanced cognitive aspects of vagueness,
in this paper we are fighting the expulsion on computational grounds.

6. Conclusions

The approach detailed in this paper treats vagueness in spatial databases
as a set of conventions, based on context. The approach is based on definite
logic programs with contexts represented as first-class objects and a type of
supervaluation over a set of threshold parameters. Given a set of context-
dependent rules with open threshold parameters, a tractable algorithm finds a
setting of the parameters that are consistent with a training corpus of vague
spatial statements. The results of this algorithm may then be compiled into
view definitions that may be integrated into normal SQL-based databases. And

15



in turn such view definitions may be exploited by natural language interfaces
employing, normal, non-exotic relational query answering mechanisms.

The need to map vague spatial descriptions to precise logical formulas over
spatial databases is a problem that is quite relevant as we develop natural lan-
guage interfaces for communicating with anything, anywhere. This article has
presented a scalable approach to support vague spatial relations for querying
spatial databases using natural language phrases such as ‘near’ and ‘far’. In
doing so, it has brought to bear work in supervaluation based approaches to
vagueness and treatments of context. Experiments have been encouraging and
efforts are underway to turn our prototype into a system.
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