
Ume̊a University
Department of Computing Science

Lecture notes on

TREE AUTOMATA

prepared by the participants of the course

Formal Languages
(spring term 09)

Frank Drewes (ed.)

Preface

These are the lecture notes of a slightly odd course on tree automata that
was held by me during the spring term 2009. When the regular course this
was supposed to be was cancelled in autumn 2008, a small group of interested
students and I discussed whether something could be done, anyway. We agreed
on a “light” version with a sparse schedule, consisting of lectures on selected
topics that the students would compile lecture notes of. The first version of
each chapter was reviewed by one of the fellow students and revised accordingly.
After another revision that was coordinated by Petter Ericson, the notes were
compiled into the current document. Altogether, it took quite a while, but
eventually we finished the project.

Be invited to read on if you want to get a first glimpse of
what tree automata are and what they may be good for!

However, be critical as well. This is not a book written by experts in the
field, but a collection of lecture notes prepared by students who have not been
exposed to that much formal language theory before. Moreover, the time the
students could invest in it was less than what would normally have been the
case. Consequently, not everything is perfect, and there are almost certainly
mistakes that neither the reviewer nor I have discovered. That said, I think the
text can be a valuable source of information especially for other students who,
without struggling with too much formalism, want to find out whether this is
a matter worth reading more about.

If you, after that, decide that you indeed would like to know more about tree
automata, there are numerous sources. Of course, there are thousands of origi-
nal research articles, but there are also books and general survey articles. Thus,
you may have a look at them before going on and reading the original liter-
ature in specific areas of tree automata theory. The earliest book by Gécseg
and Steinby summarizing the state of the art of the theory in the early 1980s
is [GS84]; an updated version can be found in [GS97]. In the beginning of the
1990s, a collection of survey articles was edited by Nivat and Podelski [NP92].
A book by Fülöp and Vogler focussing on the use of tree transducers for syntax-
directed semantics of programming languages is [FV98]. The most up-to-date
collection of survey articles on tree automata, which is available for free on the
Internet, is [CDG+07]. Tree automata (in the form of tree grammars and tree
transducers) also play a central role for so-called tree-based picture generation
in [Dre06], using the idea explained in Section 5 of Chapter V. Finally, a very
recent survey by Fülöp and Vogler on weighted tree automata (which are not
covered by these lecture notes) is [FV09].

Ume̊a, 19 April 2010

Frank Drewes

i

Contents

Chapter I

Bottom-Up and Top-Down Tree Automata
by Adam Sernheim

1 Alphabets and Trees . 1

2 Finite-State Tree Automata (FTA) . 3

3 On the Top Down Case . 6

Chapter II

Regular Tree Languages
by Johan Granberg

1 Regular Tree Grammars . 9

2 Tree Grammars Producing Strings . 10

3 Recognising Tree Languages . 11

4 Algebras . 12

5 Combinations of Regular Tree Grammars and Algebras 12

Chapter III

Tree Transformations and Transducers
by Lucas Lindström

1 Tree Transformations . 15

2 Tree Transducers . 16

Chapter IV

Macro Tree Transducers
by Lovisa Pettersson

1 Introduction to Macro Tree Transducers . 21

2 Excursion: Term Rewrite Systems . 21

3 Macro Tree Transducers – the Formal Definition. 23

4 Example . 25

Chapter V

Tree Automata on Unranked Trees
by Peter Winnberg

1 Definitions and Notation . 29

2 Converting the Unranked Case to the Ranked Case 32

ii

CHAPTER I

Bottom-Up and
Top-Down Tree Automata

by Adam Sernheim

The theory of tree languages and tree automata generalises the theory of string
languages and ordinary finite automata. It started in the 1960s, when the
bottom-up tree automaton and the equivalent regular tree grammar were intro-
duced and studied by Brainerd, Doner, Mezei, Thatcher, and Wright. [Bra68,
Bra69, Don65, Don70, MW67, Tha67, TW68]. To understand the idea behind
the generalization, recall that a string is a sequence of symbols taken from some
alphabet, see Figure 1.

A B C D · · ·

Figure 1: String

A string can be turned 90◦ and be viewed as a special case of a tree in which
every node has at most one child, called a monadic tree. By removing this
restriction, general trees over a given alphabet are obtained; see Figure 2.

A

B

C

D

A

D B

C

D

B

D D

D

Figure 2: A monadic tree corresponding to the string in Figure 1 and a non-
monadic tree

In the string case the task of an automaton is to check if a string belongs to a
certain language. Analogously, in the case of trees, we want to know if a tree
belongs to a certain set of trees, called a tree language.

1

1 Alphabets and Trees

The first step if we want to work with trees and tree automata is to define what
a tree is. There are several examples of trees in both computer science and in
mathematics. In computer science we encounter trees of many different kinds,
for example binary search trees, parse trees, arithmetic expressions, structured
documents such as XML-documents, and many more. The trees describing the
structure of XML documents belong to a family of trees called unranked trees,
these will be discussed in Chapter V. Since trees are an important special case
of graphs (namely graphs in which there is exactly one path between each pair
of nodes), trees and their algorithmic properties are extensively studied in graph
theory. In these lecture notes, trees are mainly viewed as formal expressions
that generalise strings in the sense of Figures 1 and 2 and are processed by some
type of finite automaton. These trees are usually built using symbols from a
ranked alphabet.

1.1 Ranked Alphabet

We mostly want to consider trees in which the label of each node determines
how many children this node has. This is called the rank of the node in question.
Because of this we define a ranked alphabet, where each symbol in the alphabet
has a rank. With this alphabet we can construct ranked trees.

Definition 1 (Ranked alphabet) A ranked alphabet is a tuple (Σ, rk)
where

• Σ is a finite alphabet and

• rk is a mapping, rk : Σ → N.

Definition 1 lets us create sets of symbols, each of which is given a specific rank.
Σ is called alphabet to indicate that its elements are used as symbols. However
it can be any finite set. The mapping rk gives each element f ∈ Σ a unique
rank, rk(f). Several symbols can have the same rank.

Notations

• We write Σ for (Σ, rk).

• Σ(k) = {f ∈ Σ | rk(f) = k} is the set of symbols in Σ with rank k.

• For f ∈ Σ, writing f (k) indicates that rk(f) = k.

Example 2 The ranked alphabet Σ = {a(2), b(2), c(1), d(0), e(0)} describes an
alphabet where a and b have rank two, rk(a) = rk(b) = 2, c have rank one,
rk(c) = 1, and the symbols d and e have rank zero, rk(d) = rk(e) = 0.

Each symbol in Σ has a unique rank, according to the definition, but it can
sometimes be convenient to disregard this restriction. Σ can then, for example,
contain both f (2) and f (1). Formally, this can be achieved by providing the

symbols with indices, f
(2)
2 and f

(1)
1 , and using the convention that these indices

are not explicitly written out.

2

1.2 Trees

We can now define the notion of trees used throughout the remainder of these
lecture notes, with the exception of Chapter V.

Definition 3 (Tree) A (ranked) tree over the ranked alphabet Σ is a string
over the symbols in Σ∪ {‘ [’, ‘]’, ‘ , ’} (where ‘ [’, ‘]’ and ‘ ,’ are not in Σ) of the
form f [t1, . . . , tk], where

• f ∈ Σ(k) for some k ∈ N and

• t1, . . . , tk are trees over Σ.

The symbol f is the root symbol of the tree and t1, . . . , tk are the subtrees.
Symbols f of rank 0 result in leaves and make the recursion in the definition
stop.

Notations

• We generally omit the brackets for the leaves. Thus, if rk(f) = 0, instead
of writing f [] we write f . Thus, Σ(0) can be viewed as a set of trees.

• TΣ is the set of all trees over Σ.

• For a set T of trees, Σ(T) = {f [t1, . . . , tk] | f (k) ∈ Σ, t1, . . . , tk ∈ T}.

The notation Σ(T) is used when we do not want to work with the whole set of
trees over Σ. An example is if we want the subtrees to be more specified, e.g.
of maximum height 5 or contain at least one specific symbol. These notations
will make it easier for us later on.

Example 4 The string a[b[d, c[d]], a[e, e]] is a tree over the ranked alphabet in
Example 2. The tree is shown in Figure 3. Thus, we draw trees in the usual
manner, with the root on top and the children of each node underneath it,
ordered from left to right.

a

b

d c

d

a

e e

Figure 3: A tree over the ranked alphabet in Example 2

From the notation we can see that the tree belongs to Σ(Σ({d, c[d], e})).

2 Finite-State Tree Automata (FTA)

When defining the first type of tree automata considered in these lecture notes,
we start from the definition of Non-Deterministic Finite Automata (NFA) in
string language theory and expand it to the case of trees. The NFA reads a

3

symbol and moves to a set of states. It then reads another symbol and goes
to another set of states, depending on the previous states. In the tree case
we would read the symbols in the leaves and go to a group of states. In the
next step the automaton would read a symbol and depending on the states
from the children move to a new set of states. Strings can be read forwards or
backwards. The direction in which a string is read does not affect the power of
the automaton, although it can affect the size. In the tree case this is true for
the non-deterministic case but not in the deterministic case; see the discussion
in Section 3, where it is shown that deterministic top-down tree automata are
much weaker. For this reason, we begin constructing the tree automaton to
read from the leaves and upwards, bottom up.

Definition 5 (Bottom-up NFTA) A bottom-up non-deterministic finite-
state tree automaton (NFTA) is a tuple A = (Q,Σ, δ, F) where

• Q is a finite set of states viewed as symbols of rank 0,

• Σ is the ranked input alphabet where Q ∩ Σ = ∅,

• δ : Σ(Q) → ℘(Q) is the transition function, where ℘(Q) denotes the power
set of Q, and

• F ⊆ Q is the set of accepting states.

For a tree t = f [t1, . . . , tk]), we define

δ∗(t) =
⋃

{δ(f [q1, . . . , qk]) | q1 ∈ δ∗(t1), . . . , qk ∈ δ∗(tk)}.

The language accepted by A is L(A) = {t ∈ TΣ | δ∗(t) ∩ F 6= ∅}.

Notations

• We write δ(f, q1, . . . , qk) instead of δ(f [q1, . . . , qk]) when using the transi-
tion function.

• We write (q0, .., qk)
f
→ q when the automaton goes to state q from states

q0, . . . , qk upon reading the symbol f of rank k.

When δ∗ is applied to a tree t, it recursively goes down to the leaves where δ
is applied. The result from δ, when applied to the leaves is the set of states
that the automaton is in initially on this lowest level of the tree. After that
the automaton applies δ to the parent nodes of the leaves intuitively resulting
in another set of states. In this way the automaton continues upwards to the
root. Thus the result from δ∗ is a set of states. If the intersection between the
δ∗(t) and the set of accepting states is non-empty then the automaton accepts
the tree as a member of the tree language.

Example 6 We have the alphabet Σ = {f (2), g(1), a(0), b(0)}. We want to
create a NFTA A over TΣ that non-deterministically chooses the leftmost a
and checks that there is no g on the path from the leftmost a to the root.
L(A) = {t ∈ TΣ | t contains at least one a and there is no g on the path from
the leftmost a to the root}

4

First create the transition function for the leftmost a,

a
→ ql.

For all other a in the tree,
a
→ q.

The last transition function for leaves is the one that reads a b,

b
→ qb.

One restriction on the NFTA is that it should not allow a g to be read on the
path starting at the leftmost a. Transitions that read a g after the leftmost a
are omitted because they are superfluous since the automaton will reject a tree
with a g after the leftmost a. We are left with the following transitions for the
symbols g and f :

q
g
→ q, qb

g
→ qb

(ql, q)
f
→ ql, (qb, ql)

f
→ ql

(q, q)
f
→ q, (qb, qb)

f
→ qb.

The set of accepting states for the NFTA is ql.

Let us now turn to the deterministic case of a tree automaton. A tree automaton
is deterministic if the transition function returns at most one state for each
argument. Thus, formally,

|δ(f, q1, . . . , qk)| ≤ 1

for all f (k) ∈ Σ and q1, . . . , qk ∈ Q. Regardless of where in the tree we are, and
which input symbol we read, there is at most one possible state to continue
in. From this we get |δ∗(t)| ≤ 1 for all t. If there is no possible state to go
to, the automaton rejects the tree. The deterministic finite string automata in
the literature are often total as well. If this definition would be adopted, all
transitions had to return exactly one state, |δ(f, q1, . . . , qk)| = 1.

In the case of string automata deterministic and non-deterministic are equally
powerful, i.e. they can recognise the same class of languages. This is also the
case for bottom-up tree automata.

Theorem 7 For every bottom up NFTA, A, there exists a total bottom-up
DFTA, A′, such that L(A) = L(A′)

Proof For an NFTA A = (Q,Σ, δ, F), we define an equivalent DFTA A′ =
(℘(Q), Σ, δ′, F ′). Here, F ′ = {Q′ ⊆ Q | Q′ ∩ F 6= ∅} and δ′(f, Q1, . . . , Qk) =
⋃

{δ(f, q1, . . . , qk) | qi ∈ Q; 1 ≤ i ≤ k} for f (k) ∈ Σ and Q1, . . . , Qk ⊆ Q. A′ is
by definition a DFTA.

L(A) = L(A′) holds if δ∗(t) = δ′∗(t) for all t ∈ TΣ, because of our choice of F ′.

5

The proof is by induction over the structure of the tree, t = f [t1, . . . tk], as
follows:

δ∗(t) =
⋃

{δ(f, q1, .., qk) | qi ∈ δ∗(ti)} (by definition of δ∗)

=
⋃

{δ′(f, q1, . . . , qk) | qi ∈ δ′∗(ti)} (by induction hypothesis)

= δ′(f, δ′∗(t1), . . . , δ
′∗(tk)) (by definition of δ′)

= δ′∗(t) (by definition of δ′∗)

Note that the base case k = 0, in which there are no trees ti, is included. This
completes the proof.

3 On the Top Down Case

A string can be read from both left and right. A string automaton that reads
its input from the right is as powerful as one that reads from the left. We can
read trees from the bottom up and from the top down, but these two modes do
not produce equally powerful tree automata in the deterministic case. However,
non-deterministic top-down tree automata are as powerful as bottom-up NFTA.

To define a top-down NFTA we consider an alternative representation of the
calculations of bottom-up NFTA.

Consider a bottom-up NFTA A = (Q,Σ, δ, F) as in Definition 5. We define
〈Σ, Q〉 = {〈f, q〉(k) | f (k) ∈ Σ, q ∈ Q}, a ranked alphabet of symbol-state pairs,
where the pairs have the same rank as the symbol.

A computation by A on a tree t = f [t1, . . . tk] ending in the state q is a tree

〈f, q〉[t′1, . . . t
′
k] in T〈Σ,Q〉 such that there exists a transition (q1, . . . qk)

f
→ q in A

and t′1, . . . t
′
k are computations on t1, . . . tk that end in q1, . . . qk. There exists

a computation on t that ends in q if and only if q ∈ δ∗(t). As a consequence,
t ∈ L(A) if and only if there exists a computation ending an accepting state.

We use this alternative definition of the semantics of bottom-up NFTA to define
a corresponding top-down version.

Definition 8 (Top-down NFTA) A top-down NFTA is a tuple A =
(Q,Σ, δ, S) where

• Q and Σ are the same as in Definition 5, with the difference being that
the states are now seen as symbols of rank 1,

• δ is a family of transition functions δf : Q → ℘(Qk) for f (k) ∈ Σ, and

• S ∈ Q denotes the initial state of the automaton.

A computation on a tree t starting in q is a tree 〈f, S〉[t′1, . . . t
′
k] so that t′1, . . . t

′
k

are computations on t1, . . . tk starting in q1, . . . qk, where (q1, . . . qk) ∈ δf (q). A
accepts t if it there exists a computation on t that starts in S.

We need to define a deterministic top-down FTA in order to show that it does
not have the same power as the bottom-up NFTA.

6

Definition 9 (Top-Down DFTA) A top-down NFTA A = (Q,Σ, δ, S) is
deterministic if |δf (q)| ≤ 1 for all q ∈ Q and f ∈ Σ. In this case, the mapping
δ̃ : TΣ → ℘(Q) is defined recursively by

δ̃(f [t1, . . . , tk] = {q | δf (q) ∈ δ̃(t1) × · · · × δ̃(tk)},

yielding the set of all states q ∈ Q such that there exists a computation starting
in q. Hence, t ∈ L(A) if S ∈ δ̃(t).

By “reversing transitions”, it is easy to show that top-down NFTAs recognise
the same class of tree languages as bottom-up NFTAs and, thus, bottom-up
DFTAs. We now prove that top-down DFTAs are not as powerful as these three
classes, by showing that they do not even recognise all finite tree languages. (It
is easy to show that every finite tree language L can be recognised by a bottom-
up DFTA whose states correspond to the subtrees of the trees in L.)

Theorem 10 There are tree languages that are recognisable by bottom-up
DFTAs but not by any deterministic top-down FTA.

Proof Let Σ(0) = {a, b} and Σ(1) = {f}. Consider the finite tree language
L = {f [a, b], f [b, a]}. Suppose that a top-down DTFA A = (Q,Σ, δ, q0, S)
recognises L. Let δf (S) = {(q1, q2)}. Since f [a, b] ∈ L(A), we must have
q1 ∈ δ̃(a) and q2 ∈ δ̃(b). But, since f [b, a] ∈ L(A), we also have q1 ∈ δ̃(b) and
q2 ∈ δ̃(a). This means that S ∈ δ̃(f [a, a]) (and S ∈ δ̃(f [b, b])), which shows that
the top-down DFTA A accepts f [a, a]. This contradicts the assumption that
L(A) = L.

7

CHAPTER II

Regular Tree Languages
by Johan Granberg

In this chapter we are going to look at and define regular tree languages. By
definition, this is the class of tree languages that are generated by regular
tree grammars [Bra69]. It turns out that this class is identical to the class of
languages recognisable by NFTA and Bottom up NFTA and DFTA. We will
look at how they relate to string languages and show that regular tree languages
are closely related to context-free string languages.

1 Regular Tree Grammars

A regular tree grammar is a device that generates trees by applying productions
that replace nonterminals of rank 0 with subtrees of nodes and nonterminals.

Definition 1 (Regular Tree Grammars) A Regular Tree Grammar (RTG)
is a tuple G = {N, Σ, P, S}, where

• N is a finite set of non-terminal symbols of rank 0,

• Σ is a finite ranked alphabet,

• P is a finite set of productions A → t with A ∈ N and t ∈ TΣ∪N , and

• S ∈ N is the initial nonterminal.

A derivation step s →p s′, where s, s′ ∈ TΣ∪N is obtained by selecting an occur-
rence of a nonterminal A in s and a production A → t in P and constructing
s′ from s by replacing the selected nonterminal occurrence with t.

The language defined by G is denoted L(G) and is given by

L(G) = {s ∈ TΣ|S →∗
P s′},

where →∗
P denotes the transitive and reflexive closure of →P .1

If it is clear from context the P in →P can be omitted. The language does
not change if the derivations are done in parallel, that is, instead of in every
derivation step selecting a single nonterminal, a set of nonterminals in the tree

1The transitive reflexive closure a →
∗ b is defined as a sequence of applications over

a1, · · · , an where n ≥ 1, a = a1, b = an and a1 → a2 → · · · → an.

9

can be selected and replaced using (potentially different) productions in P . This
is because the order in which productions are applied to distinct nonterminals
is of no importance — hence they can be applied in parallel.

2 Tree Grammars Producing Strings

Regular tree grammars are closely related to context free string grammars in
(at least) two different ways:

• Regular tree grammars are special cases of context free string grammars
as the right hand side of a rule is a string that can be interpreted as a
tree and the left hand side is a nonterminal. (These strings are built using
symbols from N and Σ and auxiliary brackets and commas.)

• Every generated tree can be seen as the parse tree of the string that is
given by reading the leaves of the tree from left to right. This sequence
of leaves is called the yield of a tree.

The yield can be computed by the yield function that is defined as follows.

Definition 2 (yield of a tree) Let t = f [t1, ..., tk] be a tree. The yield of t
is the string yield(t) defined recursively as follows:

yield(t) =

{

f if k = 0

yield(t1) · · · yield(tk) if k > 0.

For a function f : A → B and a subset S of A, let f(S) = {f(a) | a ∈ S}. For
example, yield(L) = {yield(t) | t ∈ L} for every tree language L.

As mentioned above, the yield of a tree can be seen as the result of a parse tree.
Thus, yield(L) corresponds to the set of all strings having a correct parse tree
(with respect to a given grammar). For the case of regular tree languages this
yields the following formal result.

Theorem 3 Let CFL and RTL denote the classes of context-free string
languages (not containing the empty string) and regular tree languages, respec-
tively. Then yield(RTL) = CFL.

Proof (⊆) Let G = (N, Σ, R, S) be a regular tree grammar. Consider the
context-free grammar G′ = (N, Σ0, R

′, S) with R′ = {A → yield(t) | (A → t) ∈
R}. It follows by a straightforward structural induction on t that, for every tree
t ∈ TΣ∪N , t →R t′ implies yield(t) →R′ yield(t′). Conversely, for all strings w
such that yield(t) →R′ w, there is a tree t′ such that t →R t′ and yield(t′) = w.
By induction on the length of derivations, this yields L(G′) = yield(L(G)).

(⊇) Now let G = (N, Σ, R, S) be a context-free grammar without empty right-
hand sides. Let K be the set of all |w| such that w is a right-hand side of
a rule in R, and define ∆ = {σ(0) | σ ∈ Σ} ∪ {∗(0) | k ∈ K}. Consider the
regular tree grammar G′ = (N, ∆, R′, S) such that, if A → a1 · · · ak is in R,
then A → ∗[a1, . . . , ak] is in R′.

10

Clearly, if the construction of the first direction of the proof is applied to G′,
then G is obtained. Hence, yield(L(G′)) = L(G).

3 Recognising Tree Languages

To recognise a tree language a tree automaton can be used. To construct an
automaton that recognises a specific tree language L(G) generated by a regular
tree grammar G, one can proceed as follows:

• normalise the grammar.

• turn around the rules to obtain transitions (where nonterminals become
states).

In the following, this is made more precise.

Definition 4 A regular tree grammar G = (N, Σ, P, S) is in normal form
if all right-hand sides of rules in P are in Σ(N). In other words, only the
root symbol of the right-hand side is an output symbol, whereas all children are
nonterminals.

Lemma 5 Every regular tree grammar G can be rewritten to a regular tree
grammar in normal form G′, such that L(G′) = L(G).

Proof
Step 1: Let P ′ = {(A → t) ∈ P | t ∈ N} where G = (N, Σ, P, S). Define
P0 = {A → t′ | (A → t) ∈ P \ P ′ and t →∗

P ′ t′}. In P0 we thus have no rules
left whose right-hand side is in N . It should be clear that G0 = (N, Σ, P0, S)
generates the same language as G.

Step 2: As long as there exists a rule A → f [t1, · · · , tk] and an index i, 1 ≤
i ≤ k, such that ti 6∈ N , add a new nonterminal A′ and replace the rule by
A → f [t1, · · · , ti−1, A

′, ti+1, · · · , tk] and A′ → ti. Clearly, this does not affect
L(G). After a finite number of steps of this kind the grammar is in normal
form. Note that termination is guaranteed since each of the right-hand sides
f [t1, · · · , ti−1, A

′, ti+1, · · · , tk] and ti are strictly smaller than f [t1, · · · , tk].

Once the grammar is rewritten to normal form a tree automaton can be be cre-
ated by turning nonterminals into states and “turning rules around” to obtain
the transitions of the automaton. More precisely, every rule A → f [A1, · · · , An]

is turned into the transition (A1, · · · , An)
f
→A. It should be obvious that the

automaton obtained in this way accepts exactly L(G) if S is the (only) accept-
ing state. Since the construction can obviously be reversed, we get the following
result:

Theorem 6 A tree language is recognisable by a bottom-up NFTA if and only
if it is regular.

11

4 Algebras

Algebras define the semantic interpretation of a tree similarly to how tree au-
tomata define which trees follows a syntax. By combining a tree automaton
with an algebra we can define a language in an arbitrary domain A. In this
way, semantics is kept separate from syntax.

Definition 7 Let Σ be a ranked alphabet.

A Σ-algebra is a pair A = (A,F), where

• A is an arbitrary set called the domain of A and

• F is a family of functions F = (fA)f∈Σ with fA : Ak → A for f (k) ∈ Σ.

In particular, if k = 0 then fA : A0 → A, which corresponds to a constant in A
represented by a function that takes no input and returns an element in A.

Trees in TΣ can be evaluated with respect to a Σ-algebra by means of the mapping
ValA(t) : TΣ → A, which is defined as follows:

ValA(t) = fA(ValA(t1), ...,ValA(tk))

for all trees t = f [t1, · · · , tk].

If L ⊆ TΣ is a tree language then ValA(L) = {ValA(t) | t ∈ L} is a subset of
A. This means that by combining tree automata for syntax with appropriate
algebras for semantics we can specify subsets of arbitrary domains. This division
gives us a clear separation between the syntactic structures (the trees in L) and
their semantics (the result of evaluating them in A). The algebra and the
automaton cooperate to express a language of elements of A.

5 Combinations of Regular Tree Grammars and Algebras

As algebras can be used to assign semantics to any tree language there is a large
number of uses for them. A few examples are given by the string algebra, the
free term algebra and the YIELD algebra. Notationally calligraphic uppercase
letters will be used to represent algebras and blackboard bold uppercase letters
will be used to represent the domain of those algebras.

Definition 8 (String algebra) The string algebra S (with respect to a given
ranked alphabet Σ) has the domain S = (Σ(0))∗. Its operations are defined as
follows:

• for a(0) ∈ Σ, aS = a and

• for f (k) ∈ Σ, k > 0, fS(u1, ..., uk) = u1 · · ·uk.

Given that, it should be clear that ValS(t) = yield(t). This gives us another
formulation of when a string language is context free, that is of Theorem 3.

Theorem 9 A string language L is context free if and only if there is a regular
tree language L′ such that L = ValS(L′).

12

Our next well-known example of algebra is the so-called free term algebra.

Definition 10 (Free term algebra) The free term algebra FΣ has the do-
main TΣ = TΣ. For f (k) ∈ Σ and t1, · · · , tk ∈ TΣ: fTΣ

(t1, ..., tk) = f [t1, ..., tk].

Given this definition, we obviously have ValFΣ
(t) = t for all trees t ∈ TΣ.

In other words, ValFΣ
is simply the identity. This shows us that nothing is

necessarily lost when using an algebra to assign a semantics to the trees in
some tree language.

Definition 11 (YIELD algebra) The YIELD algebra Y over Σ and the

variables in Xn = {x
(0)
1 , ..., x

(0)
n } (where Σ∩Xn = ∅) has the domain Y = TΣ∪Xn.

The signature it is defined over contains the following symbols, which are defined
together with their respective operations.

• For all f (k) ∈ Σ ∪ Xn, there is a symbol f<k> of rank 0, where
ValY(f<k>) = f<k>

Y = f [x1, · · · , xk].

• For all k ≤ n, there is a symbol subst
(k+1)
k . Given trees t0, · · · , tk ∈

TΣ∪Xn, we define substkY
(t0, · · · , tk) to be the tree obtained from t0 by

replacing every occurrence of xi (where i ∈ {1, ..., k}) by ti.

Thus, the semantic interpretation of substk takes the first argument t0 and
replaces any variable xi in it with the argument tree ti.

Example 12

Let t =
subst2

f<2> x<0>
1 x<0>

1

in the tree t5 =
subst1

t subst1

t subst1

t subst1

t subst1

t a<0>

If we apply the YIELD algebra to this tree (which is mostly extending in one
branch), the inner-most subtree subst1[t, a

<0>] evaluates to f [a, a] by first eval-
uating t to ValY(t) = f [x1, x1] and then replacing the variables in f [x1, x1] with
the value of the second child of subst1 (which is ValY(a<0>) = a).

Similarly, evaluating the second lowest subst1, we replace the variables in t with
the value f [a, a] yielding f [f [a, a], f [a, a]].

By continuing this evaluation all the way to the root we will create a tree looking
like this

13

f

f

f

f

f

aa

f

aa

f

f

aa

f

aa

f

f

f

aa

f

aa

f

f

aa

f

aa

f

f

f

f

aa

f

aa

f

f

aa

f

aa

f

f

f

aa

f

aa

f

f

aa

f

aa

We started evaluating the initial tree bottom up by means of recursion as this
evaluation order ensures that all child nodes are evaluated before being used as
arguments to its parents corresponding subst-function.

Generalising the example a bit, we may consider the trees

tn = subst1[t, subst1[t, · · · subst1[t, a
<0>] · · ·]]

that consist of n nested occurrences of subst1 with t as the first parameter.
Then ValY(tn) is the fully balanced tree with 2n leaves.

We can easily produce a regular tree grammar G such that L(G) = {tn | n ∈ N}.
According to the observations made above, we have yield(ValY(L(G))) = a2n

,
which is not context free. According to theorem 9 ValY(L(G)) is thus not a
regular tree language.

On the other hand it can easily be shown that every regular tree grammar G
can be rewritten to a G′ such that ValY(L(G′)) = L(G). The combination of
the YIELD algebra with regular tree grammars is thus strictly more powerful
than only regular tree grammars.

Theorem 13 The regular tree languages are a proper subset of the tree
languages of the form ValY(L(G)), where Y is a YIELD algebra and G is a
regular tree grammar.

In fact, it can be proved that the monadic tree languages of the form ValY(L(G))
are precisely the context-free string languages (up to the details of representa-
tion; see the discussion at the beginning of Chapter I).

14

CHAPTER III

Tree Transformations and
Transducers
by Lucas Lindström

In this chapter we are going to explore the concept of a tree transformation,
which is a function that maps one tree to another in a possibly non-deterministic
manner. To this end, we will define a computational model that realises this
function, which we call a tree transducer. The most basic types of tree trans-
ducers were introduced soon after the first papers on tree automata and tree
grammars. In particular, Rounds and Thatcher invented the top-down and the
bottom-up tree transducer [Rou68, Rou70, Tha70, Tha73].

The first section of this chapter will focus on general notions and notations
concerning tree transformation. The second section will define and describe
different types of tree transducers. Some concepts that will be discussed are
elaborated upon in [Eng75] and [Bak79].

1 Tree Transformations

A tree transformation is a binary relation τ ⊆ TΣ × TΣ′ . We use τ(t) to denote
the set {t′ ∈ TΣ′ | (t, t′) ∈ τ} for all t ∈ TΣ. This can be thought of as a non-
deterministic function, as the output is the set of all trees in TΣ′ that t maps
to. If |τ(t)| ≤ 1 for all t ∈ TΣ then τ is considered to be a (partial) function
τ : TΣ → TΣ′ .

Notations

• For t ∈ TΣ∪Xk
and t1, . . . , tk ∈ TΣ′ , t[[t1, . . . , tk]] denotes the tree obtained

from t by replacing each occurrence of xi, where i ∈ {1, . . . , k} by ti. (Note
that while ti can contain variables, this replacement is not recursive.)

• For a set T of trees, TΣ(T) denotes the set of all trees t[[t1, . . . , tk]] such
that t ∈ TΣ∪Xk

and t1, . . . , tk ∈ T , where k ∈ N. Notice that TΣ(T)
contains all of TΣ since t need not contain any variables, which implies
that TΣ(∅) = TΣ. To mention another special case, t may consist of
only a single variable, which means T ⊆ TΣ(T). In fact, as an inductive
definition, TΣ(T) is the smallest set of trees such that:

1. T ⊆ TΣ(T) and

2. Σ(TΣ(T)) ⊆ TΣ(T).

15

2 Tree Transducers

In this section we will define a couple of common types of tree transducers, go
through some examples that describe their use, and look at how they relate
to each other in terms of expressiveness. We start with the top-down tree
transducer, which is one of the most useful classes of tree transducers.

Definition 1 (top-down tree transducer) A top-down tree transducer (td
transducer for short), is a tuple td = (Σ, Σ′, Q, R, q0), where

• Σ and Σ′ are the input and output alphabets, respectively,

• Q is a finite set of states which are symbols of rank 1,

• R is a finite set of rules of the form q[f [x1, . . . , xk]] → t[[q1[xi1], . . . , ql[xil]]]
with q, q1, . . . , ql ∈ Q, f ∈ Σk, t ∈ TΣ′(Xl), i1, . . . , il ∈ {1, . . . , k} and
xi1 , . . . , xil ∈ Xk (in other words, R ⊆ Q(Σ(X)) × TΣ′(Q(X)), where
X = {x1, x2, . . .}), and

• q0 ∈ Q is the initial state.

A td transducer can be deterministic or non-deterministic. The difference be-
tween the types is that the deterministic case requires the left-hand side of each
rule in R to be unique to the set.

For trees s, s′ ∈ TΣ′(Q(TΣ)) there is a computation step s →td s′ if s can be
written as s = s0[[q[f [t1, . . . , tk]]]] with q ∈ Q (where s0 contains exactly one
occurrence of x1), R contains a rule as above, and

s′ = s0[[t[[q1[ti1], . . . , ql[til]]]]].

The tree transduction computed by td is given by td(t) = {t′ ∈ TΣ′ | q0[t] →
∗
td t′}

for all t ∈ TΣ. 2

Example 2 (deterministic case) Let Σ = {f (2), g(1), a(0)} and Σ′ =

{F (2), G(1),a(0)
}, Q = {start , copy ,mirror} and q0 = start . Let R consist of

the following rules:

start [f [x1, x2]] → F [start [x1], start [x2]]

start [g[x1]] → G[F [copy [x1],mirror [x1]]]

start [a] → a

copy [f [x1, x2]] → F [copy [x1], copy [x2]]

copy [g[x1]] → G[copy [x1]]

copy [a] → a

mirror [f [x1, x2]] → F [mirror [x2],mirror [x1]]

mirror [g[x1]] → G[mirror [x1]]

mirror [a] → a

2The star superscript suggests any number of computation steps, i.e. →∗
td is the transitive

and reflexive closure of →td; see also Definition 1.

16

Simply put, this transducer traverses the tree from the root and copies or
mirrors some subtrees according to the rules stated above, depending on what
input symbol it encounters. More precisely, starting at the root, the input tree
is copied to the output (turning f into F and g into G) until the top-most g’s
are reached. For each of them, the second rule in R duplicates the subtree,
using states copy and mirror to output the first copy unchanged and to mirror
the second copy. (Note that the mirroring takes place in the last but third rule.)

Observation 3 All computations of a td transducer will terminate, since
the depth of the subtree of each state decreases for each step. The height of the
output tree is linearly bounded from above in the height of the input tree, and the
size of the output tree is exponentially bounded in the size of the input tree. This
is because the height of the output tree can be no larger than c times the height of
the input tree, where c is the largest height of t over all rules q[f [x1, . . . , xk]] →
t[[q1[xi1], . . . , ql[xil]]]. The bound on the size follows directly from this, together
with the fact that the rank of symbols in the output trees is bounded.

Now we will introduce a different type of tree transducer. The bottom-up tree
transducer differs from the td transducer in that it begins its computation at
the leaves of the tree and works its way towards the root.

Definition 4 (bottom-up tree transducer) A bottom-up tree transducer
(bu transducer for short), is a tuple bu = (Σ, Σ′, Q, R, F), where

• R is a finite set of rules f [q1[x1], . . . , qk[xk]] → q[t[[xi1 , . . . , xil]]] where
q, q1, . . . , qk ∈ Q, f ∈ Σk, t ∈ TΣ′(Xl) and i1, . . . , il ∈ {1, . . . , k}, and

• F ∈ Q is a set of final states.

A bu transducer can be deterministic or non-deterministic as in the case of a
td transducer.

Intuitively, the bu transducer begins by assigning states to leaf nodes, and at
the same time transmuting each node. Once a state has been assigned to each
child of a node, that node is itself assigned a state, and is transmuted according
to the transducer rule set. This process is repeated until the root node has been
assigned a state, which is required to belong to the set of final states.

Example 5 (deterministic case) Let Σ = {f (2), g(1), a(0)}, Σ′ = {F (1), G(1),
H(2), a(0)}, Q = {p, q} and F = {q}. Let R be defined by the following rules:

a → p[a]

f [p[x1], p[x2]] → p[F [x1]]

g[p[x1] → q[H[G[x1], G[x1]]]

f [q[x1], q[x2]] → q[H[x1, x2]]

This bu transducer accepts those trees (in the sense that bu(t) 6= ∅) in which all
paths from the leaves to the root contain exactly one g, and performs various
transformations. The second subtree of f branches are removed according to

17

the second rule of R if no g has been encountered below it. Subtrees of g are
duplicated under a new H branch if no previous g has been encountered below it
according to the third rule. Finally, f branches where a g has been encountered
in both children are turned into H branches according to the fourth rule.

Example 6 (non-deterministic case) The rule set of a non-deterministic
bu transducer might look like this:

a → q[a]

f [q[x1]] → q[f1[x1]]

f [g[x1]] → q[f2[x1]]

g[q[x1]] → q[g[x1, x1]]

This transducer, if completed, would non-deterministically change f into either
f1 or f2, and would also duplicate the subtrees of any g. a is left unchanged.
And respectively, the rule set of a non-deterministic top-down transducer, which
performs a somewhat similar operation:

q[a] → a

q[f [x1]] → f1[q[x1]]

q[f [x1]] → f2[q[x2]]

q[g[x1]] → g[q[x1], q[x1]]

The reader may wish to figure out why these two tree transducers do not com-
pute the same tree transformation.

Clearly, Observation 3 is valid even for bottom-up tree transducers, using the
same line of arguments. However, this does not mean that both formalisms are
equivalent. In fact, there are tree transformations that can be realised with a
td transducer but not with a bu transducer, and vice versa. In other words,
the two devices are incomparable with respect to their transformational power,
i.e., neither class of tree transformations is contained in the other.

Example 7 Let Σ = {a(1), e(0)} Σ′ = {a(2), b(2), e(0)}, and Q = {q}. Let Rtd

consist of the rules

q[a[x1]] → a[q[x1], q[x1]]

q[a[x1]] → b[q[x1], q[x1]]

q[e] → e

and let Rbu consist of

a[q[x1]] → q[a[x1, x1]]

a[q[x1]] → q[b[x1, x1]]

e → q[e]

18

This defines a td and a bu transducer, using Rtd and Rbu, respectively. Since
the td transducer can non-deterministically choose to produce either a or b as
output when consuming each a from the input alphabet, the transducer can
generate all balanced trees over Σ′. This is impossible for the bu transducer,
because it can only copy the subtrees of the state in each step. On the other
hand, for this very reason, the bu transducer can guarantee that all symbols on
each level in the tree will be the same, which the td transducer cannot.

This limitation can be overcome by applying two transducers of the same type
on the input tree in sequence, as is formally described in the next theorem.

Theorem 8 (See [Eng75], [Bak79]) Let TD and BU denote the classes of top-
down and bottom-up tree transductions respectively. Then the following holds:

1. TD * BU and BU * TD (TD and BU are incomparable),

2. Neither TD nor BU is closed under composition.

3. BU ⊂ TD2 and TD ⊂ BU2, where TD2 and BU2 denote the classes
of compositions of two top-down and bottom-up tree transductions respec-
tively.

In fact, it is known [Eng82] that the above holds for any number of compositions
of tree transductions. That is, BUn is incomparable with TUn, and vice versa,
while BUn ⊂ TDn+1 and TDn ⊂ BUn+1, for any n ∈ N+.

...

TD3

@
@

@
@@

BU3

�
�

�
��

TD2

@
@

@
@@

BU2

�
�

�
��

TD BU

Figure 4: Inclusion diagram for compositions of td and bu tree transformations.

19

CHAPTER IV

Macro Tree Transducers
by Lovisa Pettersson

In this chapter we will define macro tree transducers, originally introduced
and studied in [Eng80, CFZ82, EV85], and explain how they work. To this
end, we will first mention some properties of MTTs, then formally define term
rewrite systems and macro tree transducers. Finally, we will try to give an
intuitive explanation with an example. For more information about macro tree
transducers, the book [FV98] by Fülöp and Vogler may be of interest.

1 Introduction to Macro Tree Transducers

A macro tree transducer is a transducer more powerful than bottom-up and
top-down tree transducers. They are related to other devices known from the
literature or discussed in this report.

• They generalise top-down tree transducers. They are an extension of top-
down tree transducers in the sense that every top-down tree transducer
is a macro tree transducer, but not the other way around.

• They are related to context-free tree grammars. A context-free grammar
is a generalisation of regular tree grammars, which allows non-terminals
of rank ≥ 0 [Rou69].

• They are related to attribute grammars, which play an important part in
computer language semantics. Attribute grammars were first introduced
by Knuth [Knu68].

Macro tree transducers have been obtained by combining the ideas behind these
devices.

2 Excursion: Term Rewrite Systems

Tree transducers and tree automata are special cases of term rewrite systems.3

Term rewrite systems are used as a formal basis for functional and logic pro-
gramming. Computationally, they are equivalent with Turing machines.

In the following, consider a ranked alphabet Σ and an alphabet V of symbols
of rank 0, which we shall use as variables. A substitution is a mapping σ : V →

3In these areas, tree and term are synonyms. Thus, in the terminology of these lecture
notes, term rewrite systems rewrite trees.

21

TΣ(V). Such a substitution is often denoted by [v1/σ(v1), . . . , vn/σ(vn)] if V =
{v1 . . . vn}. Applying σ to a tree t ∈ TΣ(V) results in

tσ =

{

σ(t) if t ∈ V

f [t1σ, . . . , tkσ] if t = f [t1, . . . , tk], f /∈ V.

Substitution is a small generalisation of the notation used in the previous chap-
ter. If V = Xk = {x1, . . . xk} then tσ = t[[t1, . . . tk]] where σ = [x1/t1, . . . , xk/tk].

If V = {v} and v occurs exactly once in t, then tσ is often denoted t · t′ where
t′ = σ(v). This is a convenient notation, because we can write s = t · t′ to “cut”
an occurrence of a subtree t′ out of a larger tree s, the remainder being t.

Example 1 (Substitution of variables) Let t = f [x, g[a, y, y]] and consider
the alphabet of variables V = {x, y} and the substitution [x/h[y], y/f [a, x]].
The substitution may be read “x and y are substituted by h[y] and f [a, x],
resp.” Applying the substitution to t gives the output tree t[x/h[y], y/f [a, x]] =
f [h(y), g[a, f [a, x], f [a, x]]. As was already pointed out in Chapter III, the op-
eration is not performed recursively, so the substitution will not be applied to
inserted subtrees.

Definition 2 (Term rewrite system) A term rewrite system is a finite set
R of rules of the form l → r such that:

1. l, r ∈ TΣ(V) and

2. all variables in r occur in l as well.

We write s →
R

t (for s, t ∈ TΣ) if s and t can be decomposed as s = s0 · lσ and

t = s0 · rσ for some substitution σ, a suitable tree s0, and a rule l → r ∈ R;
s0 · lσ is called the decomposition the step s →

R
t is based on.

Example 3 Consider the tree s0[f [a, x]], which can be seen in Figure 5(a).
The variable x represents a subtree σ(x) in a particular context, such that the
rule (l → r) = (f [a, x] → f [g[x], a]) applies. The resulting output tree will then
be s0[f [g[x], a]], illustrated in Figure 5(b).

s0

f

a x

(a) The input tree

s0

f

g

x

a

(b) The output tree

Figure 5: The input- and output trees

22

When using term rewriting as a model of computation, rules from the given
term rewrite system R are applied as long as possible. When there are no
more rules in R that match the current tree, the computation terminates. In
general, this process is non-deterministic. It may be interesting to note that it
is undecidable whether a term rewrite system terminates or not, even for term
rewrite systems containing only one rule [Dau92].

A term rewrite system may have the property of confluence. Confluence means
that regardless of which rules are applied, the end result will always be the
same. This means that the term rewrite system computes a partial function,
yielding at most one result for every input, even though the computation as
such may be non-deterministic.

A rule is left linear if each variable occurs just once in the left side. Similarly, it
is right linear if each variable occurs at most once in the right side, and linear
if each variable occurs just once in each side, that is, it is both left linear and
right linear.

When a system is left-linear, there are no constraints on the input-subtrees.
There can, for example, be no rules that forces two input-subtrees to be equal.
When it is right-linear, there will be no duplications of the subtrees in the
resulting trees.

3 Macro Tree Transducers – the Formal Definition

Macro tree transducers generalise top-down tree transducers by allowing states
with rank ≥ 1. That allows the macro tree transducer to carry the result of
finitely many sub-computations in each state and insert them into the tree at
a later stage, allowing for far more powerful computations. In particular, this
gives the possibility to have nested right-hand sides. With nested right-hand
sides comes the requirement to decide in which order nodes are to be evaluated,
because this may influence the result of the computation.

Definition 4 (Macro tree transducer) A macro tree transducer, MTT for
short, is a tuple mt = (Σ, Σ′, Q, R, q0) where

1. Σ and Σ′ are ranked alphabets of input- and output symbols,

2. Q is a ranked alphabet of states of rank ≥ 1,

3. R is a term rewrite system, where every rule l → r in R satisfies l =
q[f [x1, . . . , xk], y1, . . . , yp] for some q(p+1) ∈ Q, f (k) ∈ Σ and r ∈ RHSp

k

(see below), and

4. q
(1)
0 ∈ Q.

The set RHSp
k is defined inductively as follows:

1. TΣ′(RHSp
k) ⊆ RHSp

k,

2. q′[xi, t1, . . . , tm] ∈ RHSp
k for q′ ∈ Q(m+1), 1 ≤ i ≤ k and t1, . . . tk ∈

RHSp
k, and

3. y1, . . . , yp ∈ RHSp
k.

23

Definition 5 (Semantics of MTTs) Let mt = (Σ, Σ′, Q, R, q0) be an MTT.
Given a tree s ∈ TΣ, the computation of mt with input s starts with q0[s]. There
are three different computation modes:

1. An unrestricted computation step t ⇒mt t′ is a term rewrite step t →
R

t′.

2. An IO, Inside-Out, computation step t ⇒mt,IO t′ is a term rewrite step
t →

R
t′ based on a decomposition s · s′ of t such that s′ contains only one

state (namely, the root symbol).

3. An OI, Outside-In, computation step t ⇒mt,OI t′ is a term rewrite step
t →

R
t′ based on a decomposition s ·s′ of t such that s does not contain any

non-terminal on the path from the root to its unique variable.

We let:
mt(s) = {s′ ∈ TΣ′ | q0[s]

∗
⇒
mt

s′}4

mtIO(s) = {s′ ∈ TΣ′ | q0[s]
∗
⇒

mt,IO
s′}

mtOI(s) = {s′ ∈ TΣ′ | q0[s]
∗
⇒

mt,OI
s′}.

Note that, as a direct consequence of these definitions, mtIO(s) ⊆ mtunr(s) and
mtOI(s) ⊆ mtunr(s). In fact, it can be shown that mtunr(s) ⊆ mtOI(s). Thus
we have mtIO(s) ⊆ mtOI(s) = mtunr(s).

3.1 Simulating MTTs with the YIELD Algebra

Macro tree transducers can be simulated using td transducers and the YIELD
algebra. (See Definition 11 for the definition of the YIELD algebra.) In par-
ticular, this makes use of the substitution operation substk, where k is the
number of variables yi used in the rules of the MTT. When we want to sim-
ulate a state of rank k + 1, the td transducer can output a tree of the form
substk[t0, t1 . . . , tk]. When this tree is evaluated using a YIELD algebra Y, it
results in ValY(t0)[[ValY(t1), . . . ,ValY(tk)]], thus making it possible to simulate
the ability of the MTT to insert ValY(t1), . . . ,ValY(tk) into a computed sub-
tree ValY(t0). The basis for this recursion is ValY(f<l>) = f [x1, ..., xl]; see the
following example.

Example 6 (MTT implementation of ValY) Given a state q, and assum-
ing that the computation has reached the leaves of the tree, applying the state
q on f<l>, with the parameters y1, . . . , yk would result in q[f<l>, y1, . . . , yk] →
f [y1, . . . , yl], where l ≤ k. Similarly, applying q on x<0>

i , would result in
q[x<0>

i , y1, . . . , yk] → yi.

Note that this example is specialised, and MTTs are not forced to use these
rules to implement a YIELD mapping.

Conversely, deterministic total MTTs can quite easily be simulated by td trans-
ducers and YIELD algebras. (For the other cases, see [FV98].) More precisely,

4Similarly to the notations used in previous chapters,
∗
⇒ denotes the transitive and reflexive

closure of ⇒.

24

we have MTTdt = Y ◦ TDdt where MTTdt denotes all the deterministic total
MTTs, Y denotes the set of all ValY , where Y is a YIELD algebra, and TDdt

denotes the set of all deterministic total td transductions. Deterministic total
is defined as that for each left side, there is exactly one rule in R.

Let us finally mention that, when MTTs are composed an arbitrary number of
times, the difference between Inside out and Outside in MTTs vanishes. This
can be formally written as MTT ∗

IO = (TD ∪ Y)∗ = MTT ∗
OI = MTT ∗.

4 Example

In this example, the input tree is an arbitrary tree over f (2), g(1) and a(0).
Figure 6 shows such an input tree, and Figure 7 shows the tree we want to
transform it into. Compared with the input tree, all gs have been extracted
and moved to the top of the output tree.

This transformation cannot be computed by any combination of top-down tree
transducers, since it is unknown how many gs there are in the input tree when
the first f is encountered. If one subtree is followed, the others are thrown
away, and it will be unknown how many gs there are on those subtrees.

The transformation cannot be computed by bottom-up tree transducers either,
because all the gs must be deleted on the way up, and remembering how many
gs were deleted would require an infinite number of states.

So, neither top-down nor bottom-up nor any composition of finitely many of
these tree transducers work. To produce the output tree, part of the original
tree has to be rearranged. Top-down tree transducers can go down different
branches, and replace or copy. But independent subtrees would remain inde-
pendent. That is what can be overcome using macro tree transducers.

4.1 The Idea

We use states of rank ≥ 1, where the first subtree is the input (sub)tree to
be processed and the other subtrees are temporarily stored output trees. The

f

g

f

g

a

g

a

f

g

f

a
a

g

f

a
a

Figure 6: An input-tree

25

g

g

g

g

g

f

f

a
a

f

f

a
a

f

a
a

Figure 7: The output-tree

output trees do not need to be finished yet and can contain states that operate
on other parts of the input tree.

Suitable rules for this example would be:

q0[f [x1, x2]] → qg[x1, qg[x2, f [q[x1], q[x2]]]]

q0[g[x1]] → g[q0[x1]]

q0[a] → a

qg[f [x1, x2], y1] → qg[x1, qg[x2, y1]]

qg[g[x1], y1] → g[qg[x1, y1]]
5

qg[a, y1] → y1

q[f [x1, x2]] → f [q[x1], q[x2]]

q[g[x1]] → q[x1]

q[a] → a

The state q0 is the start state, qg is a state whose task it is to extract the gs
and produce a monadic tree of them, and q is a state to remove the gs. The

5qg[g[x1], y1] → qg[x1, g[y1]] is also possible, but will, intuitively, reverse the order of the
extracted gs.

26

ys represent parts of the output trees and cannot be inspected by macro tree
transducers.

4.2 A Non-Deterministic Case

Assume we have the same macro tree transducer as before, but with the ad-
ditional rule qg[g[x1], y1] → gg[qg[x1, y1], qg[x1, y1]], where gg(2) is a symbol of
rank 2. We will now have to decide if we want to keep the g, or turn it into
a gg by copying the subtree. The MTT is now non-deterministic. Depend-
ing on which evaluation strategy is used, the non-determinism have different
consequences.

1. Outside-In (OI). Here the copying takes place before the subtrees are
evaluated, which means that the two copies of the same subtree do not
have to be equal.

2. Inside-Out (IO). Here the subtrees are evaluated before the copying, as-
suring that the two copies of the same subtree are equal.

3. Unrestricted. Non-deterministically apply rules. Different states could
have different evaluation strategies.

Example 7 (OI evaluation) Given the tree in Figure 8(a), doing an Outside-
In evaluation without the additional rule would yield the tree seen in Fig-
ure 8(b), which is the expected result. But with the additional rule, subtrees
may be copied, and the result is non-deterministic. Figure 9(a) shows a tree
where the copying rule has been used. As can be seen, the copying is done
before the subtrees are evaluated, and therefore the two subtrees do not have
to be evaluated equally.

Example 8 (IO evaluation) Using the same input tree and rules as previ-
ously (without the additional rule) will yield the same result as the deterministic
example. With the additional rule, the output tree may be as in Figure 9(b).
Note that the subtrees are equal since they were evaluated before being copied.

q0

f

g

a

f

g

a

g

a

(a) The input tree
to be evaluated

g

g

g

f

a f

a a

(b) The out-
put tree (de-
terministic)

Figure 8: The input tree and the deterministic output tree

27

gg

g

g

f

a f

a a

gg

gg

f

a f

a a

f

a f

a a

g

f

a f

a a

(a) The output tree (OI, non-deterministic)

g

g

gg

f

a f

a a

f

a f

a a

(b) The output tree (IO,
non-deterministic)

Figure 9: The results of OI and IO-evaluation.

CHAPTER V

Tree Automata on
Unranked Trees

by Peter Winnberg

Unranked trees are more general than the ranked case, in the sense that re-
moving the rank from the nodes in a ranked tree turns it into an unranked
tree.

A major motivation for looking at unranked trees is the eXtensible Markup
Language (XML). An XML document can be viewed as a tree. Consequently,
an XML document class corresponds to a tree language. Several methods (e.g.,
Document Type Definitions (DTDs), XML Schema, and Relax NG) exist to
specify the structure of a class of XML documents by defining the corresponding
tree language.

The first section will look at unranked tree languages in general and introduce
the necessary notation. The second section will look at an important method
for converting between the ranked and unranked case, thus yielding a way to
carry over results and techniques from the theory of ranked tree languages to
unranked ones.

1 Definitions and Notation

In an unranked tree, the number of children of a given node is not determined
by its label. The sequence of children of a given node is called a hedge, a term
was coined by Bruno Courcelle [Cou78]. In other words, an unranked tree is
a root symbol with a hedge of subtrees, this hedge being a (possibly empty)
sequence of unranked trees.

Definition 1 (unranked trees and hedges) Let Σ be an unranked alphabet.
The sets of all unranked trees and of all hedges over Σ are the smallest sets
TΣ and HΣ, respectively, such that

• every sequence of trees in TΣ is in HΣ (including the empty hedge ǫ), and

• for every f ∈ Σ and h ∈ HΣ, f [h] ∈ TΣ.

In the following, we may drop the attribute unranked when there is no risk
of causing confusion. The simplest trees in TΣ are single leaves, i.e., trees

29

consisting of a symbol f ∈ Σ with the empty hedge below. Adopting the
notation introduced after Definition 3 for the unranked case, this is the set
Σ(∅).

Definition 2 (unranked tree automaton) An unranked tree automaton is
a tuple A = (Σ, Q, R, F) consisting of

• an alphabet Σ,

• a finite set Q of states,

• a finite set R of rules of the form f [L] → q with f ∈ Σ, L ⊆ Q∗ a regular
language and q ∈ Q, and

• F ⊆ Q is the set of final states.

For a tree t = f [t1, . . . , tn] and a state q ∈ Q, we let t →∗
A q if there are states

q1, . . . , qn ∈ Q such that

• ti →
∗ qi for all i, 1 ≤ i ≤ n, and

• R contains a rule f [L] → q with q1, . . . , qn ∈ L.

The language accepted by A is L(A) = {t ∈ TΣ | t →∗ q for some q ∈ F}.

Note that Definition 2 does not say anything about how R should be repre-
sented. One possible solution would be to represent each of the (finitely many)
string languages L by a finite automaton that recognises L. However, it would
be more concise to represent the complete set R using a single finite automa-
ton. More precisely, we may demand that this automaton does the following
for us. For each rule f [L] → q, if the automaton is started in a special state
initf associated with f , it ends up in state q upon reading q1 · · · qn ∈ L. In
fact, since there may be other rules f [L′] → q′ also satisfying q1 · · · qn ∈ L′, this
automaton may non-deterministically end up in q′ as well.

Definition 3 (stepwise tree automaton) A stepwise tree automaton is an
unranked tree automaton A = (Σ, Q, R, F) in which the rules are specified as
follows: A′ is a (possibly nondeterministic) finite string automaton of the form
A′ = (Q, Q, R′, inits, ∅) where

• Q is the set of states, as well as the alphabet of the automaton,

• R′ is the set of transitions of the automaton, and

• inits is a mapping Σ → Q, which for each symbol f ∈ Σ defines the initial
state initf ∈ Q of the string automaton

The set R of rules of the tree automaton A is defined by A′ as follows:

R = {f [Linitf ,q] → q | f ∈ Σ, q ∈ Q},

where Linitf ,q denotes the string language accepted by A′ if initf is chosen as
the initial state and q is chosen as the final state.

Example 4 (XML representing people and groups) Consider an XML
format that represents people and groups. The G element represents a group

30

and groups can be part of other groups. The ID element represents an identifier.
Each group must have one identifier that can appear at any place within a G

element.

The P element represents a person. The F element represents a given (first)
name, of which each person has one or more. The L element represents a family
(last) name. Each person has exactly one element of this type. Further, the L

element must be the last child of the P element.

A document structured according to these rules may look like this:

<?xml version="1.0"?>

<G>

<G>

<P>

<F/>

<L/>

</P>

<ID/>

</G>

<P>

<F/>

<F/>

<L/>

</P>

<P>

<F/>

<L/>

</P>

<ID/>

</G>

The corresponding tree is shown in Figure 10.

G

P

F F L

G

P

F L

ID

ID P

F L

Figure 10: The XML document represented using a tree.

The stepwise tree automaton in Figure 11 accepts the tree language in the
example. In the figure, for f ∈ {L, L, P, ID, G}, the state initf is indicated by an

f -labelled arrow that points to initf . Thus, in this example, initf = qf
0 for all

f ∈ {L, L, P, ID, G}.

When the tree in Figure 10 is run trough it, the leaves will first be turned into
the corresponding initial states. For example, when the left-most subtree of
the root is processed, its hedge of leaves will be turned into qF0q

F

0q
L

0. This is
because processing a node labelled with f always results in the state q obtained
by starting A′ in state initf and running it on the string w of states assigned
to the children of f . If f is a leaf, then w is the empty string. Consequently,

31

qF0F qL0L qID0ID

qP0P qP1 qP

qG0G qG

qF0

qF0

qL0

qG, qP

qID0
qG, qP

Figure 11: Stepwise tree automaton accepting the tree language corresponding
to the XML document class discussed in Example 4.

the computation ends immediately in q = initf . Going one level higher up, the
string qF0q

F

0q
L

0 will be processed, starting in the state qP0, and the resulting state
qP will be assigned to the P-labelled node.

2 Converting the Unranked Case to the Ranked Case

The tree presented in Example 4 can be converted into a ranked tree by using a
technique called currying to transform it. This is interesting because it allows
us to use theory developed for ranked trees on converted unranked trees. The
technique is named after the famous American logician Haskell Curry. The
technique is known from mathematical logic, where it takes a function with
multiple arguments and transforms it into function that can return functions.
The actual function for doing the tree transformation is defined as follows, for
t = f [t1, . . . , tn]:

curry(t) =

{

f if n = 0

@[curry(f [t1, . . . , tn−1]), curry(tn)] if n > 0.

Figure 12 shows the tree in Figure 10 after it has been transformed.

For every stepwise tree automaton (STA) A, the ranked bottom-up tree au-
tomaton Ar on curried trees is obtained by turning every transition q1 →q2 q in

R′ into (q1, q2)
@
→ q and adding all transitions

a
→ inita for a ∈ Σ. This conver-

sion of unranked tree automata to ranked ones leads gives rise to an interesting
and useful observation.

Observation 5

• L(Ar) = curry(L(A)), that is, Ar accepts exactly the curried versions of
trees in L(A).

32

@

@

@

@

G @

@

@

P F

F

L

@

@

G @

@

P F

L

ID

ID

@

@

P F

L

Figure 12: The tree on page 31 converted to a binary tree.

• The mapping A 7→ Ar is bijective.

• Ar is deterministic if and only if A is deterministic.

Since the correspondence established by the conversion of unranked into ranked
tree automata is bijective, there is exactly one STA A that corresponds to
the ranked tree automaton Ar and vice versa. As a consequence STA can be
determinised, and deterministic STA can be minimised in polynomial time.
Minimised STA are unique, so it is possible to see if two STA recognise the
same language by determinising, minimising, and comparing them.

References

[Bak79] Brenda S. Baker. Composition of top-down and bottom-up tree
transductions. Information and Control, 41:186–213, 1979.

[Bra68] Walter S. Brainerd. The minimalization of tree automata. Informa-
tion and Computation, 13:484–491, 1968.

[Bra69] Walter S. Brainerd. Tree generating regular systems. Information
and Control, 14:217–231, 1969.

[CDG+07] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard,
Christof Löding, Denis Lugiez, Sophie Tison, and Marc Tommasi.
Tree Automata Techniques and Applications. Internet publication
available at http://tata.gforge.inria.fr, 2007. Release October
2007.

[CFZ82] Bruno Courcelle and Paul Franchi-Zannettacci. Attribute grammars
and recursive program schemes I, II. Theoretical Computer Science,
17:163–191, 235–257, 1982.

[Cou78] Bruno Courcelle. A representation of trees by languages I. Theoret-
ical Computer Science, 6:255–279, 1978.

33

[Dau92] Max Dauchet. Simulation of turing machines by a regular rewrite
rule. Theoretical Computer Science, 103(2):409–420, 1992.

[Don65] John E. Doner. Decidability of the weak second-order theory of two
successors. Notices of the American Mathematical Society, 12:365–
368, 1965.

[Don70] John E. Doner. Tree acceptors and some of their applications. Jour-
nal of Computer and System Sciences, 4:406–451, 1970.

[Dre06] Frank Drewes. Grammatical Picture Generation – A Tree-Based Ap-
proach. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2006.

[Eng75] Joost Engelfriet. Bottom-up and top-down tree transformations – a
comparison. Mathematical Systems Theory, 9:198–231, 1975.

[Eng80] Joost Engelfriet. Some open questions and recent results on tree
transducers and tree languages. In R. V. Book, editor, Formal
Language Theory: Perspectives and Open Problems, pages 241–286.
Academic Press, 1980.

[Eng82] Joost Engelfriet. Three hierarchies of transducers. Mathematical
Systems Theory, 15:95–125, 1982.

[EV85] Joost Engelfriet and Heiko Vogler. Macro tree transducers. Journal
of Computer and System Sciences, 31:71–146, 1985.

[FV98] Zoltán Fülöp and Heiko Vogler. Syntax-Directed Semantics: Formal
Models Based on Tree Transducers. Springer, 1998.

[FV09] Zoltán Fülöp and Heiko Vogler. Weighted tree automata and tree
transducers. In Werner Kuich, Manfred Droste, and Heiko Vogler,
editors, Handbook of Weighted Automata, chapter 9, pages 313–403.
Springer, 2009.

[GS84] Ferenc Gécseg and Magnus Steinby. Tree Automata. Akadémiai
Kiadó, 1984.

[GS97] Ferenc Gécseg and Magnus Steinby. Tree languages. In G. Rozen-
berg and A. Salomaa, editors, Handbook of Formal Languages. Vol.
3: Beyond Words, chapter 1, pages 1–68. Springer, 1997.

[Knu68] Donald E. Knuth. Semantics of context-free languages. Theory of
Computing Systems, 2:127–145, 1968.

[MW67] Jorge Mezei and Jesse B. Wright. Algebraic automata and context-
free sets. Information and Control, 11:3–29, 1967.

[NP92] Maurice Nivat and Andreas Podelski, editors. Tree Automata and
Languages. Elsevier, 1992.

34

[Rou68] William C. Rounds. Trees, Transducers and Transformations. PhD
thesis, Stanford University, 1968.

[Rou69] William C. Rounds. Context-free grammars on trees. In Proceed-
ings of the 1st Annual ACM Symposium on Theory of Computing
(STOC), pages 143–148, 1969.

[Rou70] William C. Rounds. Mappings and grammars on trees. Mathemat-
ical Systems Theory, 4:257–287, 1970.

[Tha67] James W. Thatcher. Characterizing derivation trees of context-
free grammars through a generalization of finite automata theory.
Journal of Computer and System Sciences, 1:317–322, 1967.

[Tha70] James W. Thatcher. Generalized2 sequential machine maps. Journal
of Computer and System Sciences, 4:339–367, 1970.

[Tha73] James W. Thatcher. Tree automata: an informal survey. In A.V.
Aho, editor, Currents in the Theory of Computing, pages 143–172.
Prentice Hall, 1973.

[TW68] James W. Thatcher and Jesse B. Wright. Generalized finite au-
tomata theory with an application to a decision-problem of second-
order logic. Mathematical Systems Theory, 2:57–81, 1968.

35

