
Outsourcing morphology in Grammatical Framework: a case study for
Hungarian

Inari Listenmaa

Department of Computer Science and Engineering
University of Gothenburg and Chalmers University of Technology

inari@chalmers.se

Abstract
We implement a miniature resource grammar in Grammatical Framework (GF) by using resources developed in the Apertium
community: a finite-state morphological transducer and a disambiguation grammar. Our goals are twofold: to share resources
within the rule-based community, as well as to prevent the GF grammar growing in size. Especially for languages with complex
morphology, not having to store large inflection tables makes the grammar smaller and faster. As for development effort, we hope
that the external resources would also save time in the grammar writing process. The next steps are to scale up to a full resource
grammar, and parametrise the grammar for different tagsets.

1. Introduction
Grammatical Framework (GF, (Ranta, 2004)) is a grammar
formalism and a programming language for writing multi-
lingual grammars. A GF grammar consists of an abstract
syntax, which declares the categories and constructions in
the grammar, and a number of concrete syntaxes, where the
categories and constructions are implemented, separately for
each language. By allowing multiple concrete syntaxes for a
single abstract syntax, GF is a natural choice for interlingual
translation.

One of the most important contributions of GF is its Re-
source Grammar Library (Ranta, 2009), which contains 31
languages as of September 2016. All the languages share
the same core abstract syntax, and each language can have
an extra module for constructions that are particular to that
language. Via the common core, we can translate basic syn-
tactic structures between any pair of the 31 languages; any
new language added to the library will be connected to all
of the existing languages.

Typically, writing a morphological description is the first
step in starting a resource grammar. A new grammar writer
can easily spend weeks or months in defining inflection
classes and writing morphophonological transformation
rules for their language. Such a description in GF may
well be valuable on its own right: it may provide insights
about the morphological complexity of a language (Détrez
and Ranta, 2012), or even lend itself for language descrip-
tion. However, creating a morphological description in GF
is time-consuming, and the result is often less efficient than
a finite-state description. If a new RGL language already has
morphological resources, using them would ideally speed up
both development and performance of the resource grammar.

2. Implementation
We implemented a miniature version (44 functions) of the
GF resource grammar (Ranta, 2009) for this experiment.
The development of this initial grammar took just a couple
of hours; the author has no knowledge of Hungarian, but
years of experience with GF and Apertium.

In the following sections, we present briefly the traditional
way of writing GF grammars, followed by the new method.

2.1 Traditional GF grammar
A self-contained GF grammar stores inflection tables in
each lexical entry. Then, the syntactic functions select the
appropriate forms from the tables. We will illustrate the
process with a grammar that has four categories: NP, V, VP
and S, and two syntactic functions: complementation and
predication. The Compl function combines a NP and a V
into a VP, and Pred combines a NP and a VP into an S.
The abstract syntax of this grammar is shown below.

abstract Grammar = {

cat
S ; NP ; VP ; V ;

fun
Pred : NP -> VP -> S ;
Compl : V -> NP -> VP ;

}

Next, we write a concrete syntax for a language where
verbs inflect for agreement and nouns for case. We introduce
the parameters Case and Agr, and create the categories
specific to this language.

param
Case = Nom | Acc | Dat | ... ;
Agr = SgP1 | SgP2 | ... | PlP3 ;

lincat
S = Str ;
VP = Agr => Str ;
V = { s : Agr => Str ; compl : Case } ;
NP = { s : Case => Str ; agr : Agr } ;

Then we implement the functions which operate on the
given categories. The complementation function must
choose a right case from the object NP, depending on the
verb. Likewise, the predication function must choose the
right agreement from the VP, depending on the subject NP.

lin
Compl v obj =
table { agr => verb.s ! agr

++ obj.s ! v.compl } ;



Pred subj vp = subj ! Nom
++ vp ! subj.agr ;

These parameters prevent the grammar from overgenerating.
Given the NP a fa ‘the tree’ and the verb szeret ‘love’, the
grammar will only accept a fa szereti a fát ‘the tree loves the
tree’, no other combinations of cases and verb inflections.

On the high level, this grammar design looks simple. But
under the hood, the GF source code is compiled into a low-
level format. Adding a new value to a parameter or a new
field to a record does not change much in the high-level rules,
but each addition multiplies the number of low-level rules.
As a result, GF grammars for morphologically complex
languages often suffer from performance issues.

2.2 GF grammar with external resources

In the version with an external morphological analyser, all
lexical entries contain only a base form, along with a POS
tag. The features, which were used to select right forms from
the inflection tables, are now replaced with string fields for
tags, such as following.

lincat
S = Str ;
VP = { verb : Str ; obj : Str } ;
NP = { s : Str ; agrTag : Str } ;
V2 = { s : Str ; complTag : Str } ;

Then, the syntactic functions can be reduced into concate-
nating tags, and taking care of the right word order. Below
are the same syntactic functions for complementation and
predication.

lin
Compl v o = { verb = v.s ;

obj = o.s + v.complTag } ;

Pred subj vp = (subj + "<nom>")
++ (vp.verb + subj.agrTag)
++ vp.obj ;

With this setup, the GF trees are linearised
into what looks like Apertium analyses: for ex-
ample, mi<prn><pers><p1><mf><pl><nom>
jár<vblex><past><p3><pl> for ‘we walked’.

2.3 Pipeline

The user of the grammar types in normal Hungarian words,
and the input is analysed by the external morphological
analyser, which is further disambiguated by a Constraint
Grammar (Karlsson et al., 1995). Only then is the sentence
given to the GF grammar, which will return the syntactic
parse tree. The grammar can also be used in translation from
another language to Hungarian. First the source language
is analysed into a GF tree, then the tree is linearised into
Hungarian with tags. To get actual Hungarian, the morpho-
logical analyser is called to generate the inflected forms
from the tags.

Morphdb.hu én/NOUN<PERS<1>><CAS<ACC>>
Apertium én<prn><pers><p1><mf><sg><acc>

Table 1: Analyses for the pronoun engem ‘me’

3. Discussion
Adding external tools into a GF grammar makes the system
more complex. In comparison, a 100 % GF grammar is
easier to understand, and immune to eventual changes in the
other systems. If we only wanted to speed up development,
we could use the FS morphology inside GF: generate all
forms of the FS lexicon, and convert it into GF inflection
tables. This solution would save the time in writing morpho-
logical rules, but not affect the size of the grammar. If there
is already a GF morphology, we can also convert it into a
FS morphology, via LEXC output from GF: this would aid
performance, but not development.

There is another potential benefit of a GF grammar with
tags: mapping from one tagset to another. To demonstrate,
Table 3. shows two analyses of the Hungarian first person
singular pronoun engem ‘me’, in Morphdb.hu (Trón et al.,
2006) and Apertium. If we want to support both tagsets, we
can write a second concrete syntax; or better yet, use the
GF module system to parametrise over the concrete tags and
the functions to combine them. The latter will require more
work than the straight-forward solution shown in Section 2.2,
but it is preferable to duplicating the work in syntax.

4. Conclusion
The experiment has been small, but promising in terms
of effort. We estimate it would take days to write similar
fragment in full GF, especially for a developer who doesn’t
know the language; in contrast, this grammar took merely
hours to write. Evaluating the performance and correctness,
as well as scaling up to a full resource grammar, is left for
future work. In conclusion, we are happy with the results,
and hope the experiment will encourage more sharing of
resources within the rule-based community.

References
Grégoire Détrez and Aarne Ranta. 2012. Smart Paradigms

and the Predictability and Complexity of Inflectional Mor-
phology. In EACL (European Association for Computa-
tional Linguistics), Avignon, April. Association for Com-
putational Linguistics.

Fred Karlsson, Atro Voutilainen, Juha Heikkilä, and Arto
Anttila. 1995. Constraint Grammar: a language-
independent system for parsing unrestricted text, vol-
ume 4. Walter de Gruyter.

Aarne Ranta. 2004. Grammatical Framework: A Type-
Theoretical Grammar Formalism. Journal of Functional
Programming, 14:145–189.

Aarne Ranta. 2009. The GF Resource Grammar Library.
Linguistic Issues in Language Technology, 2.

Viktor Trón, Péter Halácsy, Péter Rebrus, András Rung,
Péter Vajda, and Eszter Simon. 2006. Morphdb.hu: Hun-
garian lexical database and morphological grammar. In
Proceedings of 5th International Conference on Language
Resources and Evaluation (LREC’06).


