
UD Treebank Sampling for Comparative Parser Evaluation

Miryam de Lhoneux and Joakim Nivre

Uppsala University
Department of Linguistics and Philology

{miryam.de lhoneux,joakim.nivre}@lingfil.uu.se
Abstract

In this abstract, we attempt to address the problem that although the Universal Dependencies project makes it possible to evaluate
parsers on a large variety of languages and domains, it is difficult to do that efficiently for two reasons. First, UD is growing
rapidly and second, the new state-of-the-art parsing methods that make use of neural networks are expensive to optimize. We
propose to incrementally evaluate parsers on small to large selections of the treebanks. We take a first step in testing this method
by attempting a comparison of transition-based parsers with and without neural network enhancement and make first tentative
observations on the results.

1. Introduction
Treebanks have recently been released for a large number
of languages in a consistent annotation within the frame-
work of the Universal Dependencies (UD) project (Nivre
et al., 2016). With a variety of languages and domains,
this project may help reshape the field of syntactic parsing
which has long been dominated by research on one lan-
guage and one domain: the English Penn Treebank (PTB).
Simultaneously to the development of this project, syntac-
tic parsing has seen a significant boost in accuracy in the
last couple of years with methods that make use of neural
networks to learn dense vectors for words, POS tags and
dependency relations (Chen and Manning, 2014; Weiss et
al., 2015; Andor et al., 2016) or stacks (Dyer et al., 2015).

Having a large and varied data set has the advantage that
our parsing models will generalize better. A disadvantage
is that it is expensive to train models for all the languages,
especially with the new neural network models that need
a search over a large hyperparameter space in order to be
optimized. As UD grows, it may become more and more
prohibitive to train models for all the languages when we
want to evaluate how a parser does as opposed to another
or as opposed to a modified version of itself. In this ab-
stract, we would like to discuss how we can overcome this
problem. In particular, we propose to incrementally evalu-
ate parsers on small to large selections of the treebanks.

Motivated by the success of neural network models on
the PTB and the Chinese treebank, Straka et al. (2015)
trained Parsito, a neural network model, on UD treebanks
and obtained good results, improving over their ‘classical’
counterpart MaltParser (Nivre et al., 2007). There was
however no systematic comparison between the classical
and the neural network approach and it may be that one ap-
proach is more suitable than another for specific settings.
We propose to use our method of sampling treebanks to at-
tempt a comparison of the two models. We take a first step
in this direction by presenting preliminary results of the two
parsing methods on a small sample of treebanks.

The aim of this abstract is thus twofold, first we dis-
cuss how to do comparative parser evaluation in UD parsing
by sampling the selection of treebanks and second, we use
this method to analyse the performance of two models on a
small, but hopefully representative, selection of treebanks.

2. UD treebanks sampling

As said in the introduction, if we want to evaluate a pars-
ing model, we might want to avoid training all models on
all treebanks. It is especially true for neural network mod-
els which are expensive to optimize. We therefore propose
that it might be wise to examine their behavior in a small-
scaled setting before training them for the large number of
treebanks in UD. We propose that parsing models can first
be evaluated on a small sample of UD treebanks. Subse-
quently, depending on the observations on the small set, we
can move to a medium sample before finally testing on all
the treebanks if evidence points towards a clear direction.
We have come up with a set of criteria to select the small
sample which we now turn to.

The objective was to have a sample as representative of
the whole treebank set as possible. To ensure typological
variety we divided UD languages into coarse-grained and
fine-grained language families. This led to a total of 15
different fine-grained families and 8 coarse-grained. We
made it a requirement to not select two languages from the
same fine-grained family and ensured to have some vari-
ety in coarse-grained families. We made sure to have at
least one isolating, one morphologically-rich and one in-
flecting language. We additionally ensured a variability of
treebank sizes and domains. Since parsing non-projective
trees is notoriously harder than parsing projective trees, we
also made sure to have at least one treebank with a large
amount of non-projective trees. The quality of treebanks
was also considered in the selection, in particular, there are
known issues1 about inconsistency in the annotation. We
selected languages that had as little of those as possible. To
ensure comparability, we finally made sure to select only
treebanks with morphological features (with one exception
for Kazakh). This resulted in a selection of 8 treebanks.
The selection is given in Table 1 together with main argu-
ments for inclusion for each.

1http://universaldependencies.org/svalidation.html



Table 1: Treebank Sample

coarse fine main argument for inclusion
Czech indo-european balto-slavic the largest UD treebank
Chinese sino-tibetan sinitic the only isolating language (without copyrights)
Finnish uralo-altaic finno-ungric morphologically rich; has many different domains
English indo-european germanic largest treebank with full manual check of the data
Ancient Greek-PROIEL indo-european hellenic large percentage of non-projective trees
Kazakh uralo-altaic turkic smallest treebank; full manual check of the annotations
Tamil dravidian tamil small treebank; language family considerations
Hebrew afro-asiatic semitic morphologically rich/language family considerations

Table 2: Parsing models comparison (LAS).
*The result for Czech is only with improvements from phase 1 out of the 3 phases due to memory heap issues

tokens MaltParser MaltOptimizer UDPipe SyntaxNet
Anc. Greek-PR 206K 59.90 67.40 69.60 73.15
Chinese 123K 64.80 68.10 - 71.24
Czech 1,503K 77.20 78.40* 82.60 85.93
English 254K 77.50 79.60 80.60 80.38
Finnish 181K 60.30 73.20 76.50 79.60
Hebrew 115K 74.10 74.90 76.80 78.71
Kazakh 4K 49.60 49.10 - 43.95
Tamil 8K 58.70 59.90 58.50 55.35

3. Comparing Transition-based Parsers
with and without Neural Network
enhancement

As said in the introduction, a fair comparison of classical
models for transition-based parsing as opposed to models
enhanced by neural network training is lacking. Straka
et al. (2015) reported results with MaltParser but using it
with default settings. If optimized, results obtained with
MaltParser can be significantly higher. For this reason, we
used MaltOptimizer (Ballesteros and Nivre, 2016). In Ta-
ble 2, we report those results together with MaltParser re-
sults with default settings. We additionally compare those
results with Parsito. For Parsito, we used the pretrained
models that the authors made available. They are trained
on UD version 1.2 but we tested them on version 1.3 since
that is the version used for the other parsers. We also add
the best reported results for SyntaxNet (Andor et al., 2016).
UDPipe (Straka et al., 2016) tagger models were trained for
all treebanks and both MaltParser and Parsito were tested
on the tagged test set. Note that SyntaxNet results are not
directly comparable as they use their own tagger.

Results are given in Table 2. As appears from the table,
SyntaxNet is largely the best model. However, even with
default settings, MaltParser performs better than neural net-
work enhanced parsers on very small data sets. With bigger
data sets, MaltParser with default settings largely lags be-
hind the other models. With automatically optimized set-
tings, however, those models are much closer to neural net-
work enhanced models.

In future work, we hope to further investigate the im-
pact of training size on neural network parsers. Looking at
these results, we can as a matter of fact hypothesize that the
success of neural network parsers over MaltParser depends
mostly on the size of the training set.

4. Conclusion and Future Work
In this abstract, we have given some points of discussion on
how to do parser evaluation for parsing with UD as it grows
and taking into account the fact that current state-of-the-art
models are expensive to optimize. We have proposed to
do incremental parsing model evaluation on small, medium
and large samples of the treebanks as well as proposed a
small selection with well-defined criteria. We have also
emphasized the value of comparing neural network mod-
els to the more classical approach and preliminary results
further supported that. Preliminary results pointed to the
importance of training size for the neural network models.
In the future, we hope to compare the two models further
and investigate for example the impact of training size on
each model.

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally normalized
transition-based neural networks. In Proceedings of the
54th Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers.

Miguel Ballesteros and Joakim Nivre. 2016. MaltOpti-
mizer: Fast and effective parser optimization. Natural
Language Engineering, 22(2):187–213.

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural networks.
In Empirical Methods in Natural Language Processing
(EMNLP).

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-based
dependency parsing with stack long short-term memory.
In Proceedings of the 53rd Annual Meeting of the Associ-



ation for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pages 334–343, Beijing,
China, July. Association for Computational Linguistics.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev,
Gülşen Eryiğit, Sandra Kübler, Svetoslav Marinov,
and Erwin Marsi. 2007. MaltParser: A language-
independent system for data-driven dependency parsing.
Natural Language Engineering, 13(2):95–135.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Manning,
Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia
Silveira, et al. 2016. Universal dependencies v1: A mul-
tilingual treebank collection. In Proceedings of the 10th
International Conference on Language Resources and
Evaluation (LREC 2016).

Milan Straka, Jan Hajič, Jana Straková, and Jan Hajič jr.
2015. Parsing universal dependency treebanks using
neural networks and search-based oracle. In Proceedings
of Fourteenth International Workshop on Treebanks and
Linguistic Theories (TLT 14), December.

Milan Straka, Jan Hajič, and Straková. 2016. UDPipe:
trainable pipeline for processing CoNLL-U files per-
forming tokenization, morphological analysis, pos tag-
ging and parsing. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Evalua-
tion (LREC’16), Paris, France, May. European Language
Resources Association (ELRA).

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers),
pages 323–333, Beijing, China, July. Association for
Computational Linguistics.


