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Abstract—Cloud computing is mostly allocating resources
at course grain, e.g., entire CPU cores are allocated for
as long as an hour. For improving resource efficiency of
clouds, the Resource-as-a-Service cloud is envisioned, which
allocated resources at fraction of a core and second granularity.
Despite technology enabling such infrastructure, e.g., through
lightweight virtualization such as LXC or vertical elasticity in
the Xen hypervisor, performance models to decide how much
capacity to allocate to each application are lagging behind.

In this paper, we evaluate two performance models for mean
response time, a previously proposed one and a novel one. The
models are tested with 3 applications in both open and closed
system models. Results show that the inverse model reacts fast
and remains stable for targets as low as 0.5 seconds.

I. INTRODUCTION

One of the defining features of Infrastructure as a Service
(IaaS) cloud computing, leading to its widespread adoption,
is elasticity. It consists in the ability to provision and release
computing resources, usually packed as Virtual Machines
(VMs), on-demand, rapidly and automated. Elasticity can
be of two types. Horizontal elasticity consists in adding or
removing VMs to or from an application, e.g., based on
the number of end-users. It requires more support from the
application, e.g., to clone and synchronise state among VMs,
but requires no extra support from the hypervisor, hence its
widespread adoption in public clouds.

Vertical elasticity consists in adding or removing re-
sources, such as CPU cores and memory, from a VM. It
requires little support from the application, which in essence
only needs to be multi-threaded, while the bulk support of
elasticity is handled by the hypervisor and guest operating
system’s kernel. In general, horizontal elasticity is course-
grained, i.e., a whole core is exclusively allocated to a VM
for a relative long duration such as an hour, while vertical
elasticity is fine-grained, i.e., only a fraction of a core can
be allocated to a VM for as short as a few seconds. Indeed,
vertical elasticity might be a key enabler for the resource-
as-a-service cloud [6], an infrastructure that leases resources
at CPU-cycle and second granularity, benefiting both cloud
users, as they truly pay only for the resources they use, and
the cloud providers, as they can make better use of their
resources and accept more users. In fact, the technological
cornerstone is already laid by lightweight virtualization

frameworks such as LXC [7] and commercial offerings such
as dotCloud.

However, to fully enable vertical elasticity, a key chal-
lenge is to decide the amount of capacity, e.g., cores and
fraction of cores, to allocate to an application. For example,
it is well-known that users are sensitive to response time [15]
and that response times as high as 4 seconds may determine
them to abandon the application. While a lot of research
has been done for horizontal elasticity, these solutions are
not directly applicable to the vertical case, due to their
course-grain allocation. Other works deal with the vertical
case, but suffer from a number of deficiencies, amongst
others, they may require a lot of time for training, e.g.,
up to 20 minutes [14], [16] (see Section II). We argue
that, given the accelerating pace at which new versions
of a cloud application are deployed [18], truly enabling
the envisioned resource-as-a-service cloud would require
faster performance models: They should require minimal
knowledge and training about the hosted applications, while
at the same time react as fast as possible to environmental
changes, such as a sudden increase in the number of users.

In this paper, we present an empirical study of two
performance models for mean response time (Section III):
Queue length based, which has been previously proposed in
literature, works by measuring queue length and applying
Little’s law. Our novel inverted response time works by
inverting the response time of M/M/1 queue. The highlight
of our contribution is to validate the performance models
both for open- and closed-system models for targets as low
as 0.5 seconds (Section IV). We show using several widely-
used prototype cloud applications that our inverse response
time model outperforms the queue length based: It maintains
response times around the target when no environmental
changes occur and reacts within 40 seconds (or 8 control
intervals) when changes do occur. We present our initial
findings here, hoping to promote early feedback from the
research community in the issue of faster performance
models.

II. RELATED WORK

Guitart et al. published an extensive survey on per-
formance management for Internet application [12]. Ac-
cording to their taxonomy, our work best fits in dynamic



resource management on virtualized platforms, that base
their decisions on a combined approach. We gather run-
time observations of response time and queue length to
fit a queuing model, and use a control theoretic approach
to filter potential noise and modeling errors. The cited
authors themselves highlighted a deficiency of works that
use combined approaches, which showed to be the most
promising. Hence, our works comes at a timely moment
to fill this gap.

We have noted two more shortcomings of related work
presented in the above survey. First, validation is done only
using simulations or using a single application. Second,
some works base their decisions on CPU usage, which is not
a reliable measure of spare capacity in vertical elasticity, due
to hypervisor preemption of virtual machines, also called
steal time [10]. In contrast, our work bases its decision
on response time and queue length, that can be reliably
measured.

Among some newer works, we observed that they require
up to 20 minutes of training [14] or off-line profiling [16]. As
businesses embrace the lean movement, several application
versions are deployed on a daily basis [18], which makes
cited approaches cumbersome. Indeed, no training and fast
reaction was one of our work’s main objectives.

III. PERFORMANCE MODELS FOR RESPONSE TIME

In this section we first describe our constraints and as-
sumptions, then we describe two models to predict capacity
requirements of a cloud application, given past behavior and
a target response time.

A. Assumptions

Performance models need to fulfill several constraints.
First, due to the heterogeneity of hosted applications, the
performance models need to be as generic as possible
and should require no knowledge of application internals.
Second, they should predict average behavior and ignore
sporadic noise observed in the past. Such noise may be
caused, for example, by variation in retrieving data, some
being cached in memory, other needing to be fetched from
disk. Third, these performance models should quickly adjust
to variation in workload and capacity requirements. For
example, an increase in the number of users, or a change in
request distribution may need refitting the model parameters.

Ideally, given a Key Performance Indicator (KPI) value as
input, a performance model should return the exact capacity
that needs to be allocated to an application to reach that KPI
value. However, as this is difficult to achieve, a performance
model should at least drive capacity allocations to the correct
value, i.e., by periodically refitting the model parameters
when allocating estimated capacity, the application should
eventually reach the desired performance.

The load of the cloud application can be of three types:
open, closed or partly-open [19]. In an open system model,

typically modeled as Poisson process, requests are issued
with an exponentially-random inter-arrival time, character-
ized by a rate parameter, without waiting for requests to
actually complete. In contrast, in a closed system model,
a number of users access the application, each executing
the following loop: issue a request, wait for the request
to complete, “think” for a random time interval, repeat.
The resulting average request inter-arrival time is the sum
of the average think-time and the average response time
of the application, hence dependent on the performance of
the evaluated application. A partly-open system model is a
mixture between the two: Users arrive according to a Poisson
process and leave after some time, but behave closed while
in the system. As with the closed model, the inter-arrival
time depends on the performance of the evaluated system.

For the performance models, we start from an open
system assumption. The response time in such a scenario
increases faster as the system is approaching saturation [19],
hence capacity allocation through vertical elasticity has to
be performed more carefully. Nevertheless, in Section IV we
also evaluate the proposed performance models if the load is
closed, to test their suitability in case our open assumption
does not hold.

B. Response Time Models

End-users of interactive applications are sensitive to re-
sponse time. Indeed, several studies show that increased
response time reduces revenue. In particular, end-users aban-
don the service if response time is above 4 seconds [15]
and are likely to join the competition, thus incurring long-
term revenue loss. Therefore, it is desirable to maintain
target response time for an application. However, modeling
response time is challenging due to its non-linear relation-
ship with capacity. We present two different response time
models: the queue length model, which was tested using
only simulations in [8], and our novel inverse model.

1) Queue Length Model: Starting from Little’s Law, the
relation between average response time R and capacity c for
an application can be represented as:

q = λ ·R, (1)

where q is the average queue length, i.e., the number of
requests that entered the application but have yet to exit, and
λ is the arrival rate. Next, we use the formula for average
response time given by the M/M/1 queuing model:

R =
1

µ− λ
, (2)

where µ is the average service rate of the application. To
model the relationship between capacity and response time,
one can model µ = c/α, where α is a model parameter. By
replacing λ from Eq. (1) in Eq. (2) and resolving R, one
obtains the formula for the average response time as:



R = α(q + 1)/c, (3)

where α is a model parameter and q is the number of
requests waiting to be serviced. The parameter α can
be estimated online from past measurements of average
response time, average queue length and capacity, thus
compensating dynamically for small non-linearities in the
real system. However, to reduce the impact of measurement
noise, we decided to use a Recursive Least Square (RLS)
filter [13]. In essence, such a filter takes past estimation of
α and the current ratio (Rc)/(q + 1) to output a new value
that minimizes the least-squares error. A forgetting factor
allows to trade the influence of old values for up-to-date
measurements. In our experiments, we use a forgetting factor
of 0.2. The queue length model was only validated using
simulation [8] and has yet to be tested in a real environment.

2) Inverse model: We model the inverse relationship
between average response time R of an application and the
capacity allocated to it as:

R = β/c, (4)

where β is a model parameter. As with queue length, the
parameter model β can be estimated using past measure-
ments of capacity and average response time using Eq. (4).
As before, to reduce the influence of measurement noise, we
use an RLS filter with forgetting factor 0.2.

Note that the inverse model needs less information from
the application as compared to the queue length model.

In our experiments, we recompute capacity to the appli-
cation periodically, with a control interval of 5 seconds,
which is short enough to make the system reactive and long
enough to observe the effects of the new capacity allocation
on the performance of the application [17].

IV. EVALUATION

In this section, we evaluate our contribution. First, we
describe the experimental setup. Next, we perform time
series and cumulative analyses of the performance models
under different configurations.

A. Setup

Experiments were conducted on a single Physical Ma-
chine (PM) equipped with a total of 32 cores1 and 56 GB of
memory. To emulate a typical cloud environment and easily
perform vertical elasticity, we used the Xen hypervisor [5].
To our knowledge, Xen is the only hypervisor that support
hot-unplugging virtual cores from VM, which was necessary
for our tests. Each tested application was deployed with all
its components – e.g., web server, database server – inside
its own VM, as is commonly done in practice [21], e.g.,
using a LAMP stack [1]. Since we are primarily interested

1Two AMD OpteronTM 6272 processors, 2100 MHz, 16 cores each, no
hyper-threading.

in evaluating CPU allocation strategies, we configured each
VM with 6 GB of memory, enough to avoid disk activity.

To test the applicability of our contribution to a wide
range of applications, we performed experiments using three
applications: RUBiS [3], RUBBoS [4] and Olio [2]. These
applications are widely-used cloud benchmarks (see [11],
[20], [25], [23], [24], [22], [9]) and represent an eBay-like
e-commerce application, a Slashdot-like bulleting board and
an Amazon-like book store, respectively.

To emulate the users accessing the applications, we used
our custom httpmon workload generator2, which supports
clients behaving both as open and closed system models. For
open clients, we changed the arrival rate during experiments,
as required to stress-test the system. For closed clients, the
think-time of each client is constantly 1 second, whereas
the number of users is varied. These parameters allow for a
meaningful comparison of the behavior of the system among
the two clients models. Indeed, as the application’s response
time decreases, the throughput of closed clients approaches
the same value as for open clients.

Metrics: The response time of a request is defined as
the time elapsed from sending the first byte of the request
to receiving the last byte of the reply. We are mostly inter-
ested in the mean response time over 20 seconds intervals
(4 control intervals), which is a long enough interval to
filter measurement noise, but short enough to highlight the
transient behavior of an application.

B. Time series analysis
To evaluate the performance models, we injected a vari-

able load, so as to test how each model reacts during sudden
workload spikes under both open and closed system models.
Furthermore, we configured the system with relatively high
to small target values in order to see how the models behave.

The plots in this section are structured as follows. Each
figure shows the results of a single experiment. The bottom
x-axis represents the time elapsed since the start of the
experiment. The time is divided in 5 equal intervals, each
featuring a different arrival rate (for open system model)
or number of users (for closed system model), as presented
on the top x-axis. The top graph of each figure plots the
measured mean response time value. The bottom graph plots
the required capacity as computed by the performance mod-
els and allocated to the application over the next 5 second
interval.

Figs. 1a to 1d show the two models with different target
response time configurations under open and closed system
models for RUBiS application. In general, both performance
models are stable for higher target values under both system
models. Moreover, both models converge to the target values
within short period (see Section IV-D) after detecting a
sudden increase or decrease in workload which is manifested
as quick increase or decrease in response time.

2https://github.com/cloud-control/httpmon



The other important point to note is that the two models
properly detect and adapt to the capacity requirements for
both open and closed model systems. Indeed, for higher
target response times, the open system model requires more
capacity compared to the closed system model for the same
value of arrival rate and users, respectively. For lower target
response time, the capacity requirements needed for both
system models becomes almost the same. These situations
are properly dealt with by the two models as depicted in
Fig. 1a and Fig. 1c for higher targets, and Fig. 1b and Fig. 1d
for lower targets.

We also did experiments with Olio and RUBBoS. How-
ever, due to lack of space, we only present time series plots
for target response time of 0.5. As can be observed from
Figs. 2 and 3, the queue length model does not behave
well for lower target values while the inverse model remains
stable.

In general, the inverse model remains relatively stable
irrespective of the target values under both system models.
On the other hand, the queue length model is less stable for
lower target values under both system models.

The time series results show that the models behave as in-
tended. In the following sections, we analyse the cumulative
behaviors such as the aggregate errors over the span of the
experiment (Section IV-C) and the total time it takes each
model to arrive stable state after a change in load occurs
(Section IV-D).

C. Aggregate Analysis

To see the aggregate behavior of the models over the
course of the experiment, we use two control theoretic
metrics which measure the total error observed during the
life span of the system. These metrics are Integral of Squared
Error (ISE) and Integral of the Absolute Error (IAE) which
are computed as shown in below:

ISE =
∑

(e (t))
2
, (5)

IAE =
∑
|e (t)| , (6)

Tables I and II show the aggregate errors of the two
models for the three applications under different targets
and system models. For higher target values, both the ISE
and IAE are relatively smaller for the queue length model
compared to the inverse model under the open system model.
On the contrary, the reverse holds true for smaller target
values. The implication is that, under open system model
the queue length model is slightly preferable for higher
target values while the inverse model is more preferable
for lower target values. Under the closed system model, the
error values for ISE and IAE are smaller for inverse model
than the queue length model irrespective of the targets. This
indicates that the inverse model is more preferable for closed
system model.

Table I: Errors of the two models for RUBiS.

Target
[seconds]

System
Model

Performance
Model ISE IAE

1.5
open inverse 80.20 34.80

queue length 73.61 32.62

closed inverse 148.07 70.47
queue length 131.14 64.71

1.0
open inverse 55.04 29.82

queue length 43.36 26.87

closed inverse 119.40 67.05
queue length 103.30 72.98

0.5
open inverse 6.01 75.23

queue length 88.38 85.75

closed inverse 43.68 57.05
queue length 110.76 100.69

0.1
open inverse 2.60 8.91

queue length 7.11 14.33

closed Inverse 2.05 7.05
queue length 2.21 8.74

Table II: Errors of the two models for Olio and RUBBoS
with 0.5s target.

Application System
Model

Performance
Model ISE IAE

Olio
open inverse 19.27 35.42

queue length 48.57 41.73

closed inverse 17.01 33.70
queue length 188.74 93.54

RUBBoS
open inverse 10.19 14.65

queue length 9.95 16.61

closed inverse 50.78 53.76
queue length 319.86 160.25

D. Adaptation Period

The adaptation period measures the duration (in the worst
case) each model takes to converge to the target value
after a change in the system (i.e., number of users) was
introduced. We say that the system converged if the deviation
of measured response time is within 10% of the target.
Table III shows the values of the adaptation period of each
performance model for different applications. With higher
target values, the system always converges within 10 to 30
seconds. With lower targets, the queue length model does
not converge according to the above definition, as it does
not maintain response time close enough to the target. The
inverse model failed to keep response time close to target
with an open system model, however, it managed to converge
with a closed system model within 40 seconds.

Table III: Adaptation period for the three applications.

Adaptation period [seconds]

Application Target
[seconds]

Open Closed

Inverse Queue
length Inverse Queue

length

Olio 1.5 20 20 20 20
0.5 – – 25 –

RUBBoS 1.5 10 20 10 10
0.5 20 35 40 –

RUBiS

1.5 25 25 20 25
1.0 25 20 30 30
0.5 – – 10 –
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(c) closed system model, 1.5s target
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(d) closed system model, 0.5s target

Figure 1: RUBiS–under open and closed system models with 0.5s and 1.5s target response time.
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(a) open system model, 0.5s target
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(b) closed system model, 0.5s target

Figure 2: RUBBoS–under open and closed system models with 0.5s target response time.
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(b) closed system model, 0.5s target

Figure 3: Olio–under open and closed system models with 0.5s target response time.



E. Discussion

Experiments highlighted that both models behave well for
relatively higher response time targets under both closed
and open system models. However, for lower response time
targets the inverse model performs better. Specifically, the
results show the following key findings:

1) The models properly detect and allocate the capacity
required for both open and closed system models.

2) Both models show more stability for relatively higher
targets. However, the inverse model is more stable for
lower targets than queue length model.

3) The inverse model is more stable under closed system
model than under open system model for lower targets.

4) Both models reach stability very fast (i.e., less than 40
seconds or 8 control intervals) after detecting change
in the system.

V. CONCLUSION

We presented two generic performance models for mean
response time that map performance to capacity in order
to provide performance guarantees for interactive applica-
tions deployed in the cloud. We carried out an extensive
set of experiments using different applications by varying
the workload mix over time under both closed and open
system models. We also varied the target response time
of each application to see how the models behave. The
results demonstrate that the two models are stable for higher
response time targets. However, our inverse model, shows
more stability than the queue length model for lower targets.
Furthermore, our inverse model converges within 40 sec-
onds, which is relatively low compared to the 20 minutes
required by the state-of-the-art. Thus, our contribution paves
the way to capacity allocation for vertical elasticity, enabling
the future Resource as a Service (RaaS) cloud.

Future work includes improving the stability and reaction
time of our inverse model and extending it to handle the tail
of response time.
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