
The straw that broke the camel’s back:
safe cloud overbooking with application brownout

Luis Tomás, Cristian Klein, Johan Tordsson, Francisco Hernández-Rodrı́guez
Department of Computing Science, Umeå University, Sweden

Email: {luis,cristian.klein,tordsson,hernandf}@cs.umu.se

Abstract—Resource overbooking is an admission control tech-
nique to increase utilization in cloud environments. However, due
to uncertainty about future application workloads, overbooking
may result in overload situations and deteriorated performance.
We mitigate this using brownout, a feedback approach to applica-
tion performance steering, that ensures graceful degradation dur-
ing load spikes and thus avoids overload. Additionally, brownout
management information is included into the overbooking system,
enabling the development of improved reactive methods to over-
load situations. Our combined brownout-overbooking approach
is evaluated based on real-life interactive workloads and non-
interactive batch applications. The results show that our approach
achieves an improvement of resource utilization of 11 to 37
percentage points, while keeping response times lower than the
set target of 1 second, with negligible application degradation.

I. INTRODUCTION

Combining statistical multiplexing of resource demands,
server consolidation and economy of scales, cloud providers
are able to offer users resources at competitive prices. Users
often exaggerate the sizes of the Virtual Machines (VMs) they
lease, either because the provider forces them to use pre-
defined sizes [1], common practice [2], or to compensate for
uncertainty [3]. Hence, a provider could practice overbooking:
An autonomic [4] admission controller selects whether to
accept a new user application or not, based on predicted
resource utilization, which is likely smaller than the requested
amount of resources [5]. Overbooking is beneficial both to the
provider, who can gain a competitive advantage and increase
profits [6], and the user, who may observe lower prices.

Unfortunately, as overbooking relies on predictions, even
the most sophisticated prediction algorithms may make mis-
takes (see Section II-A). For example, a conservative provider
may reject user requests to avoid infrastructure overload, and
observe a posteriori that the resources are underutilized. This
leads to revenue loss, which, on the long term, forces the
provider to increase prices. Conversely, a risk-willing provider
may accept a request, expecting no overload, and observe
a posteriori that the infrastructure was shortly overloaded,
impacting user performance.

In addition to overbooking actions, unexpected events may
impact the performance: unexpected peaks — also called flash
crowds — may increase the workload by up to 5 times [7].
Similarly, unexpected hardware failures in data centers are
the norm rather than an exception [8], [9]. Given the large
magnitude and the relatively short duration of such unexpected
events, it is often economically unfeasible to provision enough
capacity for such events through well known techniques such
as elasticity [10] for load peaks, replication against failures, or
dynamic load balancing [11], [12]. As a result, an application

can saturate, i.e., it can become unable to serve users in a
timely manner. Depending on the intended purpose of the
application, user tolerable waiting time may be as high as
2 seconds [13] or as low as 100 milliseconds [14]. Hence,
for users to safely benefit from overbooking, cloud providers
need some kind of mechanism to withstand short, temporary
overloads (due to either overbooking decisions or unexpected
events). One such solution is making interactive applications
more robust to these unexpected events. A promising direc-
tion is brownout [15], a software engineering paradigm that
has been shown to make cloud application more robust to
capacity shortages, such as during flash-crowds or hardware
failures. Brownout self-optimizes application resource require-
ment through user experience degradation (see Section II-B).

Although combining overbooking and brownout may seem
straight-forward, the two approaches should not be used with-
out thorough evaluation. Indeed, the two autonomic feed-
back loops, belonging to the brownout application and the
overbooking provider, may take conflicting decisions, which
may degrade performance. By contrast, if both approaches
are effectively combined, the overbooking system may take
advantage of the application performance knowledge from
brownout, and use both reactive and proactive methods to avoid
overload situations.

In this paper, we explore two methods to combine over-
booking and brownout: a naı̈ve one and a smart one. At the
core of both approaches lies a provider-operated overbook-
ing controller that admits or rejects new applications, and
a user-operated brownout controller that adapts the capacity
requirements of already accepted applications. In the naı̈ve
approach, the overbooking controller bases its decision on a
statically configured target resource utilization chosen by the
provider, whereas in the smart approach, this parameters is
self-optimized using brownout-specific monitoring information
sent by the application. Our contribution is twofold:

1) We present two approaches to increase resource
utilization through overbooking, while at the same
time avoiding temporary overloads through brownout
(Section III).

2) We evaluate the benefits of our approaches, using
interactive applications, as well as non-interactive
batch applications that have either steady or bursty
resource requirements (Section IV).

The experimental results show that resource utilization and
capacity allocated can be increased by 11 to 37 percentage
points, while maintaining the response times below the upper
bound, in our case 1 second, with negligible impact on user
experience.



II. BACKGROUND AND RELATED WORK

In this section, we present the necessary background to
understand our contribution. First we describe overbooking for
cloud infrastructures, then we present the brownout paradigm
for cloud application development.

A. Overbooking: Increasing Infrastructure Utilization

Cloud computing is defined by on-demand access to com-
puting resources from a shared pool. Capacity is allocated
to users by leasing VMs of a certain size, determined by a
number of CPU cores and amount of memory. Note that, the
capacity actually used by the user may be arbitrarily smaller
than the requested capacity, i.e., the size of the VM. Indeed, as
several workload studies show, cloud data centers are currently
poorly utilized [16]. There are several factors contributing
to low data center utilization, such as cloud providers only
offering predefined VM sizes, applications requiring variable
amounts of resources, or users overestimating their application
requirements.

One way of addressing those problems and increasing
resource utilization is resource overbooking. In essence, the
provider allocates more capacity than the real capacity of
the data center [17]. In other words, a new VM is admitted
although the sum of requested cores or memory exceeds
the number of cores or total memory in the data center.
However, such an approach may lead to resource overload
and performance degradation. Therefore, besides carefully
choosing how to place VMs on physical machines [18], a
new resource management challenge appears: estimating the
appropriate level of overbooking that can be achieved without
impacting the performance of the cloud services. Admission
control techniques are therefore needed to handle this trade-
off between increasing resource utilization and risking perfor-
mance degradation.

Examples of studies centered on evaluating the risk of
resource overbooking are [17], [19] and [20]. The former
performs a statistical analysis of the aggregate resource usage
behavior of a group of workloads and then applies a threshold-
based overbooking schema. The later two are based on Service
Level Agreement (SLA) management to handle the trade-off
between overbooking and risk of performance degradation,
which implies payment of penalties. They calculate the proba-
bility of successfully deploying additional VMs. However, all
of the cited works only consider CPU overbooking.

We presented in [21] an overbooking framework based on
a long term risk evaluation of the overbooking decisions in
order to avoid resource shortage in three different dimensions:
CPU, memory, and I/O. This framework implements a fuzzy
logic risk assessment that estimates the risk associated to
each overbooking action. Fuzzy logic was chosen to avoid
having to handle large amount of critical information for
the risk evaluation, combined with the need to deal with
uncertainty, e.g., unknown application workload in the fu-
ture. The overbooking system pursues a pre-defined target
utilization by accepting or rejecting new applications based
on their associated fuzzy risk values. A Proportional-Integral-
Derivative (PID) controller [22] is used to dynamically change
a threshold for the acceptable level of risk, depending on

how much the data center utilization deviates from the desired
utilization level.

The presented framework tries to avoid overload situations,
but these are still possible due to uncertainty and inaccurate
predictions. Additionally, the impact of potential overload is
hard to assess. The impact is both application- and capacity-
coupled — each application may tolerate a different level
of overbooking — highlighting the need of mitigation and
recovery methods. One such method was proposed by Be-
loglazov et al. [23], where a Markov chain model and a
control algorithm are used to detect overload problems in the
physical servers. When a problematic situation is detected,
the system migrates some VMs to less loaded resources.
Another example is the Sandpiper engine presented in [24],
which detects hotspots and performs the needed migration
actions in order to reduce the performance degradation. Both
approaches use live migration [25], which imply a performance
degradation while VMs are moved. Furthermore, both resource
usage and applications downtime due to migration is very hard
to predict [26]. At any rate, these techniques only deal with
overload localized on a few physical machines and do not
provide solutions if the whole data center is overloaded. The
Sandpiper framework also compares an applications-agnostic
approach with another exploiting application-level statistics,
demonstrating the improvements achieved by having more
information about the applications. However, our previous
overbooking framework lacks information about what kind of
cloud applications are being provisioned and about whether or
not the application meets its target performance. Therefore, we
need a method that (1) allows the overbooking framework to
have information about current performance of running cloud
applications so that it can react to overload situations and do
better overbooking, and (2) provides quick temporal solutions
while the overbooking system is reconfiguring itself to adapt
to the current load situation.

B. Brownout: Making Cloud Applications More Robust

To allow applications to more robustly handle unexpected
events and avoid saturation (i.e., high response times) due to
lack of computing capacity, applications could be extended
to gracefully degrade user experience and reduce resource
requirements. Several solutions have been proposed [27], [28],
[29], [30], but these are not applicable to cloud applications for
two reasons: they are very specific to one type of application
and, second, they use CPU usage to detect saturation, which
is not a reliable measure for spare capacity in virtualized
environments, due to hypervisor preemption of VMs, also
called steal time [31].

For making cloud applications more robust, in a generic
and non-intrusive manner, we proposed a new programming
paradigm called brownout [15]. The term is inspired from
brownout in electrical grids, which are intentional voltage
drops used to prevent more severe blackouts. Brownout can
be added to applications in three steps. First, the developer
identifies which part of the request-response application can be
considered optional. For example, product recommendations in
e-commerce application may be discarded without impacting
usability while greatly reducing the capacity requirements
of the application. Second, a control knob is exported to
control how often these optional computations are executed.



This knob, the dimmer, represents the probability of serving
a query with optional content. Last, a separate component,
the brownout controller, is added to adjust the dimmer as
required to avoid saturation. More specifically, an adaptive
PID controller is used to maintain maximum response times
around a configured set-point, for example, 1 second. Thus, if
a brownout application is close to saturation due to insufficient
capacity, it reduces the dimmer, which in turn reduces the
number of requests served with optional content and capacity
requirements.

However, as a side-effect of controlling maximum
response-time, brownout applications tend to keep resources
slightly underutilized in expectation of sudden query bursts.
Hence, an infrastructure hosting such an application may
interpret this underutilization as a sign that the application is
performing well, when in fact, the application has to operate
at reduced dimmer value and only occasionally serve optional
content. Therefore this fact should be considered by the cloud
provider when taking its management decisions, including
overbooking.

III. BOB: BROWNOUT OVERBOOKING

Based on the advantages and complementary features of
overbooking and brownout approaches, we propose two ar-
chitectures that combine them in order to increase utilization
while at the same time maintaining applications performance:
a naı̈ve one and a smart one.

A. Naı̈ve BOB

In the naı̈ve version of our architecture, the existing
brownout and overbooking components are simply put together
with no integration effort. This allows us to evaluate the bene-
fits of brownout inside a non-supporting data center, paving the
path to an incremental deployment. Effectively, the system fea-
tures two non-coordinated autonomic feedback loops (Fig. 1).
At the data center level, the overbooking controller monitors
resource utilization, computes an acceptable risk based on a
target utilization and accepts or rejects new VMs based on
the calculated acceptable risk level. On the applications level,
each brownout application i features a controller that monitors
response times ti and adjust the dimmer θi accordingly, based
on a target response time – note that not all the applications
running inside the data center must be brownout applications.

Noteworthy is the lack of an explicit communication mech-
anism to coordinate the two feedback loops. The overbooking
controller is unaware that the hosted applications may change
their resource requirements over time and may thus assume
that low VM utilization is due to over-provisioning, whereas,
in fact, the application reduced its dimmer to avoid saturation
due to insufficient capacity. Despite this, a careful choice of
the target utilization would allow all hosted applications to
execute without triggering brownout.

Besides the inconvenience of manually choosing this pa-
rameter, it is still possible that the obtained results are subop-
timal. Some applications might work well with higher target
utilizations, whereas others might be more sensitive, requiring
the infrastructure to maintain lower target utilization.

Algorithm 1 Target Utilization Controller
Configuration parameters: duration, update interval of output

TUmin and TUmax, minimum and maximum acceptable target
utilization
incrementStep, how much to increase utilization

1: TU ← 0.80 { default target utilization }
2: while true do
3: ni← number of negative matching values sent by application

i since the last update
4: num← number of ni > 0, i.e., number of impacted applications
5: if num > 0 then
6: totalImpact = ∑i ni

7: decrementStep =
√

totalImpact
num∗duration

8: TU ← TU− (TUmax−TUmin)∗decrementStep
9: else

10: TU ← TU +(TUmax−TUmin)∗ incrementStep
11: saturate TU between TUmin and TUmax
12: send TU to overbooking controller
13: sleep for duration

B. Smart BOB

Our aim is thus to design an architecture that self-optimizes
target utilization, to maximize actual utilization while min-
imally triggering brownout. Building on naı̈ve BOB, we ex-
tended it to produce an autonomic coordinated version (Fig. 1).
In essence, we added an explicit communication mechanism
between the brownout controllers and the overbooking con-
troller to achieve coordination of the two feedback loops. The
mechanism consists of an application level matching value and
a data center level target utilization controller.

In addition to the dimmer value, the brownout controller
also computes a matching value mi, that expresses how
well the application is performing with its current resource
allocation. A formula for the matching value was proposed
in [32], which showed good behavior when dealing with
capacity auto-scaling (vertical elasticity) among competing
brownout applications. Hence, we chose to maintain the same
formulation for the matching value in the present admission
control problem:

mi = 1− ti/t̄i (1)

where ti is the maximum response time over the last control
interval and t̄i is the target response time. The matching
value abstracts application performance indicators and self-
optimization, such as target response time and control strategy,
from the infrastructure. The matching value hides from the
infrastructure applications performance indicators, such as
response-time, and how they are used in self-optimization.

At the data center level, these matching values are collected
by the Target Utilization Controller (TUC). Based on match-
ing values received from all applications, the TUC periodically
updates the target utilization (TU) that is then sent to the
overbooking controller. As described in Algorithm 1, if at least
one application sends a negative matching value, then the target
utilization is decreased as a function of the number of negative
matching values per application received since the last update.
TU can decrease up to a configured minimum acceptable target
utilization TUmin. Otherwise, if no application sent a negative
matching value, the target utilization is progressively increased
until it reaches a configured maximum TUmax.



Fig. 1: Brownout OverBooking architectures. The gray component is used only in the smart architecture.

All in all, Smart BOB, besides minimizing dimmer reduc-
tion, includes applications performance at the data center de-
cision level, enabling improved reactive methods for overload
situations, that further reduce their impact. By self-optimizing
the target utilization depending on applications performance,
smart BOB relieves the provider from manually selecting and
readjust this value. Hence, the infrastructure could adapt the
degree of overbooking to the performance profiles of the hosted
applications, increasing resource utilization while at the same
time minimizing the amount of application brownouts.

IV. EVALUATION

The performance of our two suggested architectures is
evaluated with two different brownout applications and the
resource utilization is studied under four workloads – two
real traces and two generated ones – which are compared in
four different scenarios: no overbooking, overbooking without
brownout, naı̈ve BOB, and smart BOB.

We study web servers and investigate four metrics. The
average and 95-percentile response time represents the time
elapsed since an end-user sends the first byte of the HTTP
query until the last byte of the reply is received. The dimmer
represents the percentage of queries served with optional
content and quantifies the quality of experience of the end-user
interacting with a brownout application and the revenue that
the cloud user may generate. Capacity allocated measures
the sum of applications’ resource requests and quantifies
the revenue that the provider could obtain. Finally, the real
utilization measures the capacity actually used by hosted
applications, showing insight into missed opportunities to
accept more applications. Although all the capacity dimensions
were considered in the performance evaluation, the capacity
allocated and real utilization metrics in the subsequent figures
only refer to CPU usage. The other dimensions, memory and
I/O, were prevented from overloading thanks to the fuzzy-logic
overbooking controller alone, as explained in [21].

The tests were conducted on two machines, one hosting ap-
plications and one generating the workload, connected through
a 100 MB link. The first machine is a server consisting of a
total of 32 CPU cores (AMD OpteronTM 6272 at 2.1 GHz) and
56 GB of memory. KVM was used as a hypervisor and each
application was deployed inside a VM. The second machine
is a Ubuntu 12.04 desktop featuring a 4-core Intel CoreTM i5

0 200 400 600 800 1000 1200 1400

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

Time (Minutes)

U
s
a
g
e
 (

U
s
e
r 

re
q
u
e
s
ts

 p
e
r 

s
e
c
o
n
d
)

RUBBoS
RUBiS
Accumulated

(a) Predictable, Wikipedia-based

0 200 400 600 800 1000 1200 1400

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

Time (Minutes)

U
s
a
g
e
 (

U
s
e
r 

re
q
u
e
s
ts

 p
e
r 

s
e
c
o
n
d
)

RUBBoS
RUBiS
Accumulated

(b) Unpredictable, FIFA-based

0 100 200 300 400 500 600 700

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

Time (Minutes)

U
s
a
g
e
 (

U
s
e
r 

re
q
u
e
s
ts

 p
e
r 

s
e
c
o
n
d
)

(c) Extreme increasing workload

0 200 400 600 800 1000 1200 1400

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Time (Minutes)

U
s
a
g
e
 (

U
s
e
r 

re
q
u
e
s
ts

 p
e
r 

s
e
c
o
n
d
)

RUBBoS
RUBiS
Accumulated

T1 T2 T3 T4

(d) Extreme varying workload

Fig. 2: Workloads for web service applications.

processor at 3.4 GHz and 16 GB of memory. The client queries
were generated using the httpmon tool [33].

We aimed at keeping 95-percentile response times below
1 second, as recommended for interactive, non-real-time appli-
cations [13], [14]. Note that, due to various uncertainties, such
as caching effects and context switches, it is impossible to pre-
cisely maintain this target, while at the same time maximizing
the amount of optional content served. As a compromise, we
configured the brownout controller to maintain the maximum
response time around 1 second, so as to leave a safety margin
for the 95-percentile response time target.

A. Applications and Workload

We create a representative cloud environment by mixing
applications from two classes: services and jobs.



0
2

0
0

4
0

0
6

0
0

8
0

0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)

D
im

m
e

r 
(%

)

0 200 400 600 800 1200

(a) Without overbooking
0

2
0

0
4

0
0

6
0

0
8

0
0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)
D

im
m

e
r 

(%
)

0 200 400 600 800 1200

(b) With overbooking

0
2

0
0

4
0

0
6

0
0

8
0

0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)

D
im

m
e

r 
(%

)

0 200 400 600 800 1200

(c) Naı̈ve BOB

0
2

0
0

4
0

0
6

0
0

8
0

0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)

D
im

m
e

r 
(%

)

0 200 400 600 800 1200

(d) Smart BOB

Fig. 3: RUBiS performance for the predictable, Wikipedia-based workload.

The service class represents interactive applications that
run for a long time (months, years) and are accessed by
a varying number of users, which determines their resource
requirements. We used two popular cloud benchmarks: RUBiS
and RUBBoS. RUBiS [34] is an auction website benchmark
modeled after eBay, whilst RUBBoS [35] is a bulleting board
benchmark modeled after Slashdot. Comments and recom-
mendations are optionally served, based on the value of
the dimmer [15]. For both of them, a workload consisting
of a number of queries received as a function of time is
generated using information extracted from the Wikipedia [36]
and FIFA [37] traces. We selected these two traces due to
their complementary nature: The former has a diurnal, rather
predictable trend, whereas the latter has an unpredictable trend.
For each service, we selected a representative day and time-
shift the original workload 12 hours for RUBiS, as shown in
Fig. 2 (a) and (b). This creates different trends and peaks,
to model that services may have diverse daily usage patters.
Additionally, two more workloads were generated to test the
system in extreme scenarios, as depicted in Fig. 2 (c) and (d),
respectively. Notably, for the extreme varying workload sce-
nario (Fig. 2 (c)) only one of the services is stressed at a time.

The job class consists of a realistic mix of non-interactive,
batch applications with highly heterogeneous and time-varying
resource requirements [21]. Their execution may take from
minutes to months, during which they may present bursty or
steady usage of CPU, memory, or I/O resources. We used the
3node test from the GRASP benchmark [38] (for the steady
CPU behavior) and several shell scripts to generate burstiness
in the different capacity dimensions. Their arrival pattern is
generated using a Poisson distribution with λ = 10 seconds.

The two application classes are mixed to mimic today’s
data centers [39]. Initially, half of the server capacity is
assigned to services, i.e., RUBiS and RUBBoS each deployed
inside an 8-cores VM. The other 16 cores host jobs. Notably,
due to overbooking decisions, jobs may end up utilizing more
than half of the server capacity.

B. Results

The evaluation is focused on services, since they are time-
sensitive, hence more prone to be disturbed by overbooking
decisions than jobs. We first analyze the behavior of the system
when the workload trend is predictable (Wikipedia-like) and

unpredictable (FIFA-like). Then, to stress-test our system, we
use an extreme scenario where the load is gradually increased
until the system gets fully saturated. Finally, a more varying
workload scenario is used to evaluate the difference between
the naı̈ve and smart BOB approaches.

1) Predictable Workload: Fig. 3 shows response times
and utilization levels for the RUBiS service when following
the predictable workload with daily seasonality (Wikipedia).
Fig. 3a and Fig. 3b show the results without and with
overbooking, respectively. Overbooking (without brownout)
increases real utilization and capacity allocated by roughly
50% without significant performance degradation. This is due
to the fact that the overbooking framework accurately predicts
the future load, which is facilitated by RUBiS’s close-to-linear
response time increase with the number of client queries.
Even though the response times are still acceptable, they are
close to the limit and a further increase in the amount of
concurrent users might lead to response times exceeding the
user’s tolerable waiting time. Moreover, for other services
the overbooking system may result in significant performance
degradations, as presented for RUBBoS in Fig. 4. In that case
overbooking increases the response time above 1 second, as
shown in Fig. 4b from time 1000 onwards. This is caused by
the fact that RUBBoS has a highly non-linear response time
behavior. One may also observe a spike (not exceeding the
1 second target) at the beginning of the experiment, caused
by the overbooking framework’s need to learn the behavior of
hosted applications1.

By complementing overbooking with brownout, it is possi-
ble to maintain acceptable response times at all times. Fig. 3c
and Fig. 3d show the improved results when the naı̈ve and
smart approaches are used with the RUBiS service. They
achieve lower response times thanks to a reduction of the
dimmer value (percentage of optional content being served).
The same results are observed for RUBBoS services, as
depicted in Fig. 4c (naı̈ve BOB) and Fig. 4d (smart BOB),
where 95-percentile response time is kept below 1 second, at
the expense of dimmer reduction. Note that due to the fact
that RUBBoS’s optional code requires a lot of capacity, only a
small dimmer reduction was necessary. Moreover, the response
time spike encountered at the beginning of the experiment

1We have repeated this experiment several times to confirm that this is
indeed a recurring phenomenon and not an experimental error.



0
2

0
0

4
0

0
6

0
0

8
0

0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)

D
im

m
e

r 
(%

)

0 200 400 600 800 1200

(a) Without overbooking
0

2
0

0
4

0
0

6
0

0
8

0
0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)
D

im
m

e
r 

(%
)

0 200 400 600 800 1200

(b) With overbooking

0
2

0
0

4
0

0
6

0
0

8
0

0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)

D
im

m
e

r 
(%

)

0 200 400 600 800 1200

(c) Naı̈ve BOB

0
2

0
0

4
0

0
6

0
0

8
0

0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)

D
im

m
e

r 
(%

)

0 200 400 600 800 1200

(d) Smart BOB

Fig. 4: RUBBoS performance for the predictable, Wikipedia-based workload.

without brownout was successfully mitigated with negligible
impact on the dimmer value.

On the other hand, when comparing both BOB approaches,
we see a significant difference in the dimmer values. The com-
munication between the brownout controllers and overbooking
framework (smart BOB) allows the system to readjust itself
and slightly lower the overbooking pressure during the peak of
concurrent users, this way the amount of time that the dimmer
has to be reduced is significantly decreased (especially for the
RUBiS service), whilst the response time are also noticeable
reduced (especially for the RUBBoS service).

2) Unpredictable Workload: As presented in Fig. 3
and Fig. 4, when the workload is predictable and the service
response time is linear to the number of queries, the over-
booking framework alone is enough to keep the performance
over time. However, when one or both of these conditions
are not fulfilled, the overbooking system may need the help
of brownout to avoid temporary performance degradation, and
coordination of both techniques is required to keep the dimmer
high.

As Fig. 5a illustrates, even without overbooking, the RUB-
BoS service is not responding properly all the time with a
peak around minute 650. When overbooking framework is used
(see Fig. 5b), utilization is increased around 50% but at the
expense of more disturbances and response times above one
second for a period of time (same as without overbooking,
but wider). By using the brownout approach as a mitigation
technique (Fig. 5c) the high response times around minute
650 are avoided thanks to dimmer reduction. Finally, smart
BOB (Fig. 5d) further reduces the response times and the
dimmer is used less often. Therefore, the smart BOB proposal
adapts itself to the current needs over time, achieving higher
utilization rates when services allow so, and lower rates upon
unexpected situations or when services are more disturbed by
overbooking decisions.

Plots regarding RUBiS service following FIFA-based work-
load are omitted as they do not present any interesting results
— in all the cases the response times are kept below half
a second without reducing the dimmer — mainly because the
workload is not as high as for the Wikipedia traces even though
it changes faster (Fig. 2a and Fig. 2b), and due to the more
linear response time increase with the number of client queries
that RUBiS presents (see Table I).

3) Extreme Increasing Workload: In order to test the in-
frastructure in a more extreme scenario, we have also tested
the performance of RUBiS when the load is progressively
increased until saturation, increasing the number of concurrent
users by 100 every hour as presented in Fig. 2 (c).

Fig. 6 (a) to (d) show the results obtained for RUBiS
without overbooking, with overbooking, naı̈ve BOB, and smart
BOB, respectively. From those plots three main advantages of
smart BOB over naı̈ve BOB can be observed:

1) Response times are better maintained (around half
a second after the saturation). Note that this met-
ric is improved even when compared to the non-
overbooking scenario.

2) The level of overbooking is dynamically adjusted
over time (capacity allocated) depending on the per-
formance of the service.

3) The dimmer value remains higher.

As Fig. 6d shows, the level of overbooking (capacity
allocated) is around 150% of the real capacity during the first
3 hours and then starts decreasing to keep the performance of
the accepted applications. The overbooking is reduced up to
the point of almost having no overbooking at all (around 100%
capacity allocated from Minute 300 onwards). From that point,
the system is too saturated (even without overbooking) and the
service needs to reduce the dimmer provided. For the naı̈ve
BOB no recommendations are provided at all from Minute
450 whilst for smart BOB this occurs from minute 600. For the
cases where brownout is not used (Fig. 6a and Fig. 6b), from
time 600 onwards, around 20% user queries are not served
due to saturation. Therefore, if we compare those situations
with the smart BOB results, we obtain an increased resource
utilization, with lower response times and at least serving all
the user queries even though they are served without optional
content for the most saturated time interval.

Table I shows a summary of all the tests previously
presented. To sum up, the smart BOB approach keeps the over-
booking and utilization levels roughly the same as the other
overbooking techniques but reduces the response time of the
allocated services remarkably. This effect is most prominent
for the services where the response time does not increase
linearly with the number of users or when the number of
concurrent users varies unpredictably. This fact is highlighted



0
2

0
0

4
0

0
6

0
0

8
0

0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)

D
im

m
e

r 
(%

)

0 200 400 600 800 1200

(a) Without overbooking
0

2
0

0
4

0
0

6
0

0
8

0
0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)
D

im
m

e
r 

(%
)

0 200 400 600 800 1200

(b) With overbooking

0
2

0
0

4
0

0
6

0
0

8
0

0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)

D
im

m
e

r 
(%

)

0 200 400 600 800 1200

(c) Naı̈ve BOB

0
2

0
0

4
0

0
6

0
0

8
0

0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)

D
im

m
e

r 
(%

)

0 200 400 600 800 1200

(d) Smart BOB

Fig. 5: RUBBoS performance for the FIFA-based workload.

0
2

0
0

4
0

0
6

0
0

8
0

0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)

D
im

m
e

r 
(%

)

0 100 200 300 400 500 600 700

(a) Without overbooking

0
2

0
0

4
0

0
6

0
0

8
0

0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)

D
im

m
e

r 
(%

)

0 100 200 300 400 500 600 700

(b) With overbooking

0
2

0
0

4
0

0
6

0
0

8
0

0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)

D
im

m
e

r 
(%

)

0 100 200 300 400 500 600 700

(c) Naı̈ve BOB

0
2

0
0

4
0

0
6

0
0

8
0

0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)

D
im

m
e

r 
(%

)

0 100 200 300 400 500 600 700

(d) Smart BOB

Fig. 6: RUBiS performance for the extreme incremental workload.

TABLE I: Summary of the tests. Values in bold highlight deficiencies of a given technique.

Workload Service Technique Response Time (ms) Utilization (%) Dimmer Value (%)
Average Max. of 95th

Wiki

RUBiS (min. 200-800)
No Over 51 171 53 100

Over 218 752 78 100

(Fig. 3) Naı̈ve BOB 157 408 78 71.4
Smart BOB 138 396 72 98.1

RUBBoS (min. 800-1400)
No Over 23 162 50 100

Over 1458 4166 78 100

(Fig. 4) Naı̈ve BOB 99 685 78 94.6
Smart BOB 59 343 73 97.5

FIFA

RUBiS

No Over 10 22 35 100
Over 21 420 76 100

Naı̈ve BOB 20 287 76 99.6
Smart BOB 23 42 73 99.6

RUBBoS (min. 200-700)
No Over 103 3522 40 100

Over 415 4479 76 100

(Fig. 5) Naı̈ve BOB 78 639 77 96.5
Smart BOB 42 223 72 99.0

Extreme RUBiS (Fig. 6)

NoOver 477 1640 55 100
Over 620 2852 76 100

Naı̈ve BOB 210 1001 76 40.5 (25.3 in interval 200-600)
Smart BOB 182 560 66 57.5 (53.8 in interval 200-600)

for the RUBBoS service under the FIFA traces load, where
not only the level of utilization is increased compared to
the non-overbooking technique, but the response time is also
reduced — 32.9% average response time reduction with 32

percentage-points increment on resource utilization. In the
extreme scenario it can be seen that the dimmer is maintained
higher in the smart BOB approach, 28.5 percentage-points
more on average for the interesting time period, i.e., where



0
2

0
0

4
0

0
6

0
0

8
0

0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)

D
im

m
e

r 
(%

)

0 200 400 600 800 1200

(a) RUBiS with naı̈ve BOB (target utilization 70%)
0

2
0

0
4

0
0

6
0

0
8

0
0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)

D
im

m
e

r 
(%

)

0 200 400 600 800 1200

(b) RUBiS with naı̈ve BOB (target utilization 80%)

0
2

0
0

4
0

0
6

0
0

8
0

0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)

D
im

m
e

r 
(%

)

0 200 400 600 800 1200

(c) RUBiS with smart BOB

0
2

0
0

4
0

0
6

0
0

8
0

0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)

D
im

m
e

r 
(%

)

0 200 400 600 800 1200

(d) RUBBoS with naı̈ve BOB (target utilization
70%)

0
2

0
0

4
0

0
6

0
0

8
0

0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)

D
im

m
e

r 
(%

)

0 200 400 600 800 1200

(e) RUBBoS with naı̈ve BOB (target utilization
80%)

0
2

0
0

4
0

0
6

0
0

8
0

0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average Response Time
95 Percentile Response Time
Real Utilization
Capacity Allocated

U
ti
liz

a
ti
o

n
 a

n
d

 C
a

p
a

c
it
y
 A

llo
c
a

te
d

 (
%

)
0

5
0

1
0

0
1

5
0

2
0

0

0
4

0
1

0
0

Time (min.)
D

im
m

e
r 

(%
)

0 200 400 600 800 1200

(f) RUBBoS with smart BOB

Fig. 7: RUBiS and RUBBoS performance for varying workload.

the dimmer is progressively reduced from 100 to 0, while the
average dimmer increment over the whole experiment is 17
percentage-points.

4) Extreme Varying Workload: In order to compare the
performance provided by naı̈ve and smart BOB under different
situations, a test was performed where RUBiS and RUB-
BoS workloads change over time, showing 4 different phases
(see Fig. 2d). The main objective of this test was to investigate
how smart BOB self-optimizes to the different situations and
applications needs over time.

Fig. 7 shows the results for RUBiS and RUBBoS services
following the workload depicted in Fig. 2d for the naı̈ve
and smart BOB approaches. For the naı̈ve BOB we have
tried two different configurations, one more pessimistic, only
pursuing a 70% utilization level (Fig. 7a and Fig. 7d), and one
more optimistic, targeting 80% utilization rate (Fig. 7b and
Fig. 7e). For the smart BOB, the target utilization is allowed to
range between 60% and 85%, depending on the applications’
performance (Fig. 7c and Fig. 7f). Additionally, a summary of
these figures is outlined in Table II, where results per phase
and aggreated numbers are presented.

When comparing naı̈ve BOB pursuing 70% utilization with

smart BOB, there are no significant differences regarding
response times, both in average and 95%. However, overall and
for highly loaded periods, both utilization and dimmer values
are slightly higher for smart BOB. Moreover, if we take a look
at the less loaded period of time (interval from minute 0 to
360), utilization is increased by 12.1 percentage-points when
the smart BOB approach is used.

If naı̈ve BOB is configured to target higher utilization
levels, 80% in this case, then the overall utilization (and the
one obtained at the most loaded periods) is higher than for the
smart BOB approach. However, for the RUBiS service this
leads to a large reduction of the dimmer value over time in
order to keep the response times – unlike with smart BOB,
where there is no need to reduce the dimmer value noticeably.
Moreover, for the RUBBoS service, the dimmer reduction is
also higher and the response times (both average and 95%) are
significantly higher for the naı̈ve approach. Average dimmer
values for high loaded intervals are up to 75 and 22 percentage-
points higher for smart BOB for RUBiS and RUBBoS services,
respectively.

Finally, if these two approaches are compared for the time
interval when the services are less loaded, we obtain similar



TABLE II: Summary of the varying workload test. Values in bold highlight deficiencies of a given technique.

Service Technique Time interval (s) Response Time (ms) Utilization (%) Dimmer Value (%)
Average Max. of 95th

RUBiS

Naı̈ve BOB (70%)

T1 (1-360) 15.3 261.3 65.6 99.5
T1 (361-720) 249.0 493.4 69.8 84.6

T3 (721-1080) 17.9 343.3 69.2 99.5
T4 (1081-1440) 219.1 455.8 71.1 91.4

Overall 128.5 493.4 68.9 93.7

Naı̈ve BOB (80%)

T1 17.1 328.7 73.9 99.8
T2 155.0 633.0 77.9 19.7
T3 19.1 396.9 77.4 99.1
T4 165.6 472.5 79.1 32.8

Overall 91.4 633.0 77.1 61.8

Smart BOB

T1 16.7 256.9 77.7 99.6
T2 255.5 500.5 67.5 92.8
T3 18.1 367.2 67.4 99.6
T4 224.9 445.8 71.1 95.1

Overall 131.9 500.5 70.9 96.7

RUBBoS

Naı̈ve BOB (70%)

T1 22.7 41.1 65.6 100
T2 24.4 300.8 69.8 99.8
T3 128.8 989.8 69.2 90.8
T4 102.8 723.6 71.1 94.6

Overall 71.0 989.8 68.9 96.2

Naı̈ve BOB (80%)

T1 25.7 58.6 73.9 100
T2 29.4 456.4 77.9 99.8
T3 381.4 1275.3 77.4 68.8
T4 329.9 1249.9 79.1 76.8

Overall 196.4 1275.3 77.1 85.9

Smart BOB

T1 26.7 63.7 77.7 100
T2 23.0 177.7 67.5 100
T3 133.0 843.8 67.4 90.8
T4 91.2 670.6 71.1 96.3

Overall 69.8 843.8 70.9 96.7

response times and dimmer values, but the utilization is higher
for smart BOB as this technique detects when the applications
are behaving properly and the overbooking pressure is slightly
increased — utilization rise around 4 percentage-points.

To sum up, adding an explicit communication mecha-
nism between the application and the infrastructure, as smart
BOB does over naı̈ve BOB, improves overbooking decisions.
Brownout applications are less subjected to capacity shortages,
hence, they require a smaller reduction in user experience to
maintain target response times.

V. CONCLUDING REMARKS

Overbooking has proven to increase data center utilization.
However, it may impact applications performance, in addition
to other unexpected events, such as flash crowds or resource
failures that may aggravate the situation. Therefore, not only
the overbooking system needs mechanisms to react to those
situations, but the application itself should also be designed in
a robust way so that it can quickly react to resource shortages
and avoid saturation. We present two approaches where the
overbooking system and the brownout applications interact
implicitly (naı̈ve BOB) or explicitly (smart BOB) to achieve
higher utilization levels with low performance degradation.

Naı̈ve BOB does achieve some benefits, hence allowing our so-
lution to be deployed incrementally or partially, i.e., brownout
can be used inside a non-supporting data center. However, full
benefits can only be obtained using smart BOB. Thanks to
its explicit communication, the overbooking controller reduces
overbooking pressure when informed that applications struggle
to keep target performance. In the meantime, the affected appli-
cations temporarily reduce user experience to avoid saturation
thanks to the brownout controller. The proposed techniques
increase the overall utilization around 50%, while keeping the
response times below 1 second, and with negligible impact on
users’ experience.

As guidelines for future work, we plan on investigating how
to devise differentiated pricing depending on how frequently an
application is willing (or able) to tolerate temporary capacity
shortages. Also, we currently rely on the hypervisor to map
VM cores to physical cores. We aim at using the knowledge
acquired by the overbooking controller, such as class of
application (normal service, brownout service or job), to pin
VM cores to physical cores so as to further reduce the impact
of overbooking on application performance.



ACKNOWLEDGMENTS

This work was supported in part by the Swedish Research
Council under grant number 2012-5908 for the Cloud Control
project, and by European Commission project VISION Cloud
under grant agreement no. 257019.

REFERENCES

[1] D. Gmach, J. Rolia, and L. Cherkasova, “Selling t-shirts and time shares
in the cloud,” in 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid 2012), 2012, pp. 539–546.

[2] R. Birke, A. Podzimek, L. Y. Chen, and E. Smirni, “State-of-the-
practice in data center virtualization: Toward a better understanding
of vm usage,” in 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2013, pp. 1–12.

[3] Oracle, Oracle Enterprise Manager Cloud Control Advanced
Installation and Configuration Guide, 2013, available online:
http://docs.oracle.com/html/E24089 21/sizing.htm, visited 2014-02-19.

[4] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[5] L. Tomás and J. Tordsson, “Improving cloud infrastructure utilization
through overbooking,” in ACM Cloud and Autonomic Computing Con-
ference (CAC), 2013.

[6] T. Wo, Q. Sun, B. Li, and C. Hu, “Overbooking-based resource
allocation in virtualized data center,” in 15th IEEE International Sym-
posium on Object/Component/Service-Oriented Real-Time Distributed
Computing Workshops (ISORCW), 2012, pp. 142–149.

[7] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson,
“Characterizing, modeling, and generating workload spikes for stateful
services,” in 1st ACM Symposium on Cloud Computing (SoCC), 2010,
pp. 241–252.

[8] Z. Guo, S. McDirmid, M. Yang, L. Zhuang, P. Zhang, Y. Luo, T. Bergan,
P. Bodik, M. Musuvathi, Z. Zhang, and L. Zhou, “Failure recovery:
When the cure is worse than the disease,” in 14th USENIX Conference
on Hot Topics in Operating Systems (HotOS), 2013, pp. 8–8.

[9] M. Nagappan, A. Peeler, and M. Vouk, “Modeling cloud failure data:
A case study of the virtual computing lab,” in 2nd Intl. Workshop on
Software Engineering for Cloud Computing, 2011, pp. 8–14.

[10] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in cloud com-
puting: What it is, and what it is not,” in 10th ACM International
Conference on Autonomic Computing (ICAC), 2013, pp. 23–27.

[11] L. A. Barroso, J. Clidaras, and U. Hölzle, The Datacenter as a
Computer: An Introduction to the Design of Warehouse-Scale Machines,
2nd ed. Morgan & Claypool, 2013.

[12] J. Hamilton, “On designing and deploying internet-scale services,” in
21st Large Installation System Administration Conference (LISA), 2007,
pp. 18:1–18:12.

[13] F. F.-H. Nah, “A study on tolerable waiting time: how long are web
users willing to wait?” Behaviour and Information Technology, vol. 23,
no. 3, pp. 153–163, 2004.

[14] R. Shea, J. Liu, E.-H. Ngai, and Y. Cui, “Cloud gaming: architecture
and performance,” IEEE Network, vol. 27, no. 4, pp. 16–21, 2013.

[15] C. Klein, M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez,
“Brownout: Building more robust cloud applications,” in 36th Inter-
national Conference on Software Engineering. ACM, 2014.

[16] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.
Kozuch, “Towards understanding heterogeneous clouds at scale:
Google trace analysis,” Carnegie Mellon University, Pittsburgh, PA,
USA, Tech. Rep. ISTC–CC–TR–12–101, Apr. 2012, http://www.istc-
cc.cmu.edu/publications/papers/2012/ISTC-CC-TR-12-101.pdf.

[17] R. Ghosh and V. K. Naik, “Biting off safely more than you can chew:
Predictive analytics for resource over-commit in iaas cloud,” in 5th Intl.
Conference on Cloud Computing (CLOUD), 2012, pp. 25–32.

[18] L. Lu, H. Zhang, E. Smirni, G. Jiang, and K. Yoshihira, “Predictive
VM consolidation on multiple resources: Beyond load balancing,”
in IEEE/ACM 21st International Symposium on Quality of Service
(IWQoS), 2013, pp. 1–10.

[19] A.-F. Antonescu, P. Robinson, and T. Braun, “Dynamic SLA manage-
ment with forecasting using multi-objective optimization,” in IFIP/IEEE
International Symposium on Integrated Network Management (IM).
IEEE, 2013, pp. 457–463.

[20] D. Breitgand, Z. Dubitzky, A. Epstein, A. Glikson, and I. Shapira,
“SLA-aware resource over-commit in an IaaS cloud,” in Conference
on Network and Service Management (CNSM), 2012, pp. 73–81.

[21] L. Tomás and J. Tordsson, “An autonomic approach to risk-aware data
center overbooking,” IEEE Transactions on Cloud Computing, vol.
PrePrint, 2014.

[22] K. J. Åström and R. M. Murray, Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, 2008.

[23] A. Beloglazov and R. Buyya, “Managing overloaded hosts for dynamic
consolidation of virtual machines in cloud data centers under quality
of service constraints,” IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 7, pp. 1366–1379, 2013.

[24] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Sandpiper:
Black-box and gray-box resource management for virtual machines,”
Computer Networks, vol. 53, no. 17, pp. 2923–2938, 2009.

[25] W. Hu, A. Hicks, L. Zhang, E. M. Dow, V. Soni, H. Jiang, R. Bull, and
J. N. Matthews, “A quantitative study of virtual machine live migration,”
in ACM Cloud and Autonomic Computing Conference (CAC), 2013.

[26] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth, “Evaluation of delta
compression techniques for efficient live migration of large virtual
machines,” in 7th ACM SIGPLAN/SIGOPS Intl. Conference on Virtual
Execution Environments (VEE), 2011, pp. 111–120.

[27] T. F. Abdelzaher and N. Bhatti, “Web content adaptation to improve
server overload behavior,” in 8th Intl. conference on World Wide Web
(WWW), 1999, pp. 1563–1577.

[28] J. Philippe, N. De Palma, F. Boyer, and O. Gruber, “Self-adaptation of
service level in distributed systems,” Software Practice and Experience,
vol. 40, no. 3, pp. 259–283, Mar. 2010.

[29] Y. He, Z. Ye, Q. Fu, and S. Elnikety, “Budget-based control for
interactive services with adaptive execution,” in ACM International
Conference on Autonomic Computing (ICAC), 2012, pp. 105–114.

[30] J. Kim, S. Elnikety, Y. He, S.-W. Hwang, and S. Ren, “Qaco: Exploiting
partial execution in web servers,” in ACM Cloud and Autonomic
Computing Conference (CAC), 2013.

[31] CPU time accounting, Web page at
http://www.ibm.com/developerworks/linux/linux390/perf /tun-
ing cputimes.html, Visited 2014-01-27.

[32] C. Klein, M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez,
“Resource management for service level aware cloud applications,” in
2nd International Workshop on Real-Time and Distributed Computing
in Emerging Applications, 2013.

[33] Service-level Aware Cloud Resource Manager, Web page at
https://github.com/cristiklein/cloudish, Visited 2014-01-27.

[34] RUBiS: Rice University Bidding System, Web page at
http://rubis.ow2.org/, Visited 2013-11-4.

[35] RUBBoS: Bulletin Board Benchmark, Web page at
http://jmob.ow2.org/rubbos.html, Visited 2013-11-4.

[36] Page view statistics for Wikimedia projects, Web page at
http://dumps.wikimedia.org/other/pagecounts-raw/, Visited 2014-01-27.

[37] 1998 World Cup Web Site Access Logs - The Internet Traffic Archive,
Web page at http://ita.ee.lbl.gov/html/contrib/WorldCup.html, Visited
2014-01-27.

[38] G. Chun, H. Dail, H. Casanova, and A. Snavely, “Benchmark probes
for Grid assessment,” in Proc. of 18th Intl. Parallel and Distributed
Processing Symposium, 2004, pp. 26–30.

[39] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: Flexible, scalable schedulers for large compute clusters,” in
8th ACM European Conference on Computer Systems (EuroSys), 2013,
pp. 351–364.


