
P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS ??, 2024, pp. 135–138, doi:10.4204/EPTCS.??.12

© E. Guerrero, J.C. Nieves
This work is licensed under the
Creative Commons Attribution License.

Semantic Argumentation using Rewriting Systems

Esteban Guerrero
Department of Computing Science, Umeå University, Sweden

esteban.guerrero@umu.se

Juan Carlos Nieves
Department of Computing Science, Umeå University, Sweden

juan.carlos.nieves@umu.se

In this article, we introduce a general framework for structured argumentation providing consistent
and well-defined justification for conclusions that can and cannot be inferred and there is certainty
about them, which we call semantic and NAF-arguments, respectively. We propose the so-called
semantic argumentation guaranteeing well-known principles for quality in structured argumentation,
with the ability to generate semantic and NAF-arguments, those where the conclusion atoms are se-
mantically interpreted as true, and those where the conclusion is assumed to be false. This framework
is defined on the set of all logic programs in terms of rewriting systems based on a confluent set of
transformation rules, the so-called Confluent Logic Programming Systems, making this approach a
general framework. We implement our framework named semantic argumentation solver available
open source.

1 Motivation

We propose a general argument construction based on the partial interpretation of programs using differ-
ent families of logic programming semantics induced by rewriting systems functions [6]. Rewriting rules
are used to replace parts of a logic program based on the concept of a normal form, which is the least
expression of a program that cannot be rewritten any further [9]. For example, having a program with
the only rule: innocent(x)← not guilty(x), current structured argumentation approaches [10] generate
the only consistent argument: ⟨{innocent(X)← not guilty(x)}︸ ︷︷ ︸

Support

, innocent(x)︸ ︷︷ ︸
Conclusion

⟩, expressing that person x

is innocent if x can not be proved guilty. However, in domain applications that need the generation of
argument-based reason explanations, providing structured and well-defined reasons why x is not guilty
(not guilty(x)) are needed. We emphasize the role of investigating such computational mechanisms that
can also build arguments justifying conclusions based on the atoms that are inferred as false, e.g., to
state that there is certainty in affirming that the guiltiness of x is false (there is no evidence), therefore
the x must be innocent, i.e., ⟨{innocent(X)← not guilty(x)}︸ ︷︷ ︸

Support

, not guilty(x)︸ ︷︷ ︸
Conclusion

⟩. These types of arguments

have been less explored in the formal argumentation theory, except for assumption-based argumentation
(ABA) [8].

2 Syntax and semantics
We use propositional logic with the following connectives ∧,←, not, and⊤ where ∧, and← are 2-place
connectives, not and⊤. The negation symbol not is regarded as the so-called negation as failure (NAF).

http://dx.doi.org/10.4204/EPTCS.??.12
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


136 Semantic argumentation

We follow standard logic programming syntax, e.g., [5], for lack of space we do not include some basic
and well-established syntax.

An interpretation of the signature LP is a function from LP to {false,true}. A partial interpretation
of LP, are the sets ⟨I1, I2⟩ where I1∪ I2 ⊆LP. We use SEM(P) = ⟨Ptrue,P f alse⟩, where Ptrue := {p| p←
⊤ ∈ P} and P f alse := {p| p ∈LP\HEAD(P)}. SEM(P) is also called model of P [6]. We use three value
semantics that are characterized by rewriting systems following a set of Basic Transformation Rules
for Rewriting Systems (see details in [6]), those rules are named: RED+, RED-, Success, Failure,
Loop, SUB, and TAUT. Then, two rewriting systems (C S ) can be defined based on the previous basic
transformations: CS0 = {RED+, RED−, Success, Failure, Loop }, induces the WFS [3]. CS1 = CS0 ∪
{SUB,TAUT,LC}, induces WFS+ [6]. The normal form of a normal logic program P with respect to
a rewriting system C S is denoted by normC S (P). Every rewriting system C S induces a 3-valued
logic semantics SEMC S as SEMC S (P) := SEM(normC S (P)). To simplify the presentation, we use the
entailment |=SEMC S

applied to a logic program P is defined by SEMC S (P)= ⟨T,F⟩ in which P |=
SEM

T
C S

a
if and only if a ∈ T , similarly, if P |=

SEM
F
C S

a if and only if a ∈ F . We use the entailment |=SEMC S 0
and

|=SEMC S 1
for confluent rewriting system CS0 and CS1 respectively; and the form |=SEMC S

to indicate
that any rewriting system can be used.

3 Semantic and NAF-arguments

Let us introduce a formal definition of semantic arguments.

Definition 1 (Semantic argument) Given a normal logic program P and S ⊆ P. ArgP = ⟨S, g⟩ is a
semantic argument under SEMC S w.r.t. P, if the following conditions hold true:

1. S |=
SEM

T
C S

g

2. S is minimal w.r.t. the set inclusion satisfying 1.

We simplify the notation of these semantic arguments as A rg+. Condition 1 states that the interpre-
tation of conclusion g is true w.r.t. T in SEMC S (S). Condition 2 in Definition 1 guarantees the support
minimality.

Now, let us define NAF-arguments as follows:

Definition 2 (NAF-arguments) Given a normal logic program P and S ⊆ P. ArgP = ⟨S, not g⟩ is a
NAF-argument under the SEMC S w.r.t. P, if the following conditions hold true:

1. S |=
SEM

F
C S

g,

2. S is minimal w.r.t. the set inclusion satisfying 1.

Condition 1 in Definition 2 is the interpretation of the conclusion w.r.t. |=
SEM

F
C S

, with the set of all
the NAF-arguments noted as A rg−. The addition of not in the conclusion of a NAF-argument stresses
that such an atom is interpreted as false by SEMC S .

Example 1 Let us consider a program P3 for building semantic and NAF-arguments considering C S 0
and C S 1.

We build semantic and NAF-arguments as follows: 1) get related clauses of atoms (Si); 2) for every
related clause compute SEMC S 0(Si) and SEMC S 1(Si); 3) the support (every Si) is joined to the conclu-
sion1. Then, the following sets of arguments are built considering C S 0 and C S 1:

1We implemented this procedure and the sources are open, then can be found in https://people.cs.umu.se/~esteban/
argumentation/

https://people.cs.umu.se/~esteban/argumentation/
https://people.cs.umu.se/~esteban/argumentation/


E. Guerrero, J.C. Nieves 137

Semantic Attack

Case C S 0: A rgP3 = {A+
1 ,A

+
2 ,A

+
3 ,A

−
1 ,A

−
2 ,A

−
3 ,A

−
4 ,A

−
6 }.

Case C S 1: A rgP3 = {A+
1 ,A

+
2 ,A

+
3 ,A

+
5 ,A

−
1 ,A

−
2 ,A

−
3 ,A

−
4 ,A

−
6 }.

An effect of interpreting argument supports under SEMC S is that some atoms (or sets of them) are evalu-
ated in opposition to other arguments (e.g., A+

1 = ⟨S2,a⟩ and A−1 = ⟨S1, not a⟩ in Example 1), suggesting
a semantic attack relationship.

Definition 3 (Semantic attack) Let A = ⟨SA,a⟩ ∈A rg+, B = ⟨SB,not b⟩ ∈A rg− be two semantic ar-
guments where SEMC S (SA) = ⟨TA,FA⟩ and SEMC S (SB) = ⟨TB,FB⟩. We say that A attacks B if x ∈ TA and
x ∈ FB, denoted attacks(x,y).

Lemma 1 Semantic and NAF-arguments built from any normal logic program are always consistent.

Definition 4 (Semantic Argumentation Framework (SAF)) Let P be a normal program. Then, a se-
mantic argumentation framework is the tuple: SAFP = ⟨A rgP,A tt⟩

We can straightforward extend the definitions of argumentation semantics in [7] as follows:

Definition 5 Let SAFP = ⟨A rgP,A tt⟩ be a semantic argumentation framework. An admissible set of
arguments S⊆ AR is:

• stable if and only if S attacks each argument which does not belong to S.

• preferred if and only if S is a maximal (w.r.t. inclusion) admissible set of AF.

• complete if and only if each argument, which is acceptable with respect to S, belongs to S.

• grounded if and only if S is the minimal (w.r.t. inclusion) complete extension of AF2.

Example 2 Let us consider P5 = {a← not b; b← not a; c← not c,not a; d← not d,not b;}. SEMC S

will remove rules involving atoms c and d. Then, applying Definition 4, we have the framework: SAFP5 =
⟨{A−6 = ⟨{a ← not b}, not a⟩,A+

6 = ⟨{b ← not a}, b⟩, A−5 = ⟨{b ← not a}, not b⟩, A+
5 = ⟨{a ←

not b}, a⟩}, attacks(A+
5 ,A

+
6 ), attacks(A

+
5 ,A

−
6 ), attacks(A

+
6 ,A

+
5 ), attacks(A

+
6 ,A

−
5 )⟩. When we

apply Definition 5 to SAFP5 we obtained the following extensions:
• Stable = preferred: {{A+

5 ,A
−
5 }, {A

+
6 ,A

−
6 }}

• Complete: {{A+
5 ,A

−
5 }, {A

+
6 ,A

−
6 }, {}}

• Grounded: {}

4 Conclusions
The main contributions are: 1) Semantic Argumentation Frameworks (SAF) can be used for justifying
true and false interpreted conclusions. 2) SAF is based on families of rewriting confluent systems. 3)
Satisfies all the well-known argumentation postulates [1, 4]. Future work will involve the exploration of
our framework under other Confluent Logic Programming Systems, the satisfaction of other argumenta-
tion principles, and the investigation of commonalities between ABA and semantic argumentation.

2In [2] it is shown that grounded can be characterized in terms of complete extensions.



138 Semantic argumentation

References
[1] Leila Amgoud (2014): Postulates for logic-based argumentation systems. International Journal of Approxi-

mate Reasoning 55(9), pp. 2028–2048, doi:10.1016/j.ijar.2013.10.004.
[2] Pietro Baroni, Martin Caminada & Massimiliano Giacomin (2011): An introduction to argumentation se-

mantics. The knowledge engineering review 26(4), pp. 365–410, doi:10.1017/S0269888911000166.
[3] Stefan Brass, Ulrich Zukowski & Burkhard Freitag (1997): Transformation-based bottom-up computation

of the well-founded model. In: Non-Monotonic Extensions of Logic Programming, Springer, pp. 171–201,
doi:10.1007/BFb0023807.

[4] Martin Caminada & Leila Amgoud (2007): On the evaluation of argumentation formalisms. Artificial Intel-
ligence 171(5-6), pp. 286–310, doi:10.1016/j.artint.2007.02.003.

[5] Jürgen Dix (1995): A Classification Theory of Semantics of Normal Logic Programs: I. Strong Properties.
Fundam. Inform. 22(3), pp. 227–255, doi:10.3233/FI-1995-2234.

[6] Jürgen Dix, Mauricio Osorio & Claudia Zepeda (2001): A general theory of confluent rewriting systems
for logic programming and its applications. Annals of Pure and Applied Logic 108(1-3), pp. 153–188,
doi:10.1016/S0168-0072(00)00044-0.

[7] Phan Minh Dung (1995): On the Acceptability of Arguments and its Fundamental Role in Nonmono-
tonic Reasoning, Logic Programming and n-Person Games. Artificial Intelligence 77(2), pp. 321–358,
doi:10.1016/0004-3702(94)00041-X.

[8] Phan Minh Dung, Robert A. Kowalski & Francesca Toni (2009): Assumption-Based Argumentation. In:
Argumentation in Artificial Intelligence, Springer, pp. 199–218, doi:10.1007/978-0-387-98197-0_10.

[9] Juan Carlos Nieves & Mauricio Osorio (2016): Ideal extensions as logical programming models. Journal of
Logic and Computation 26(5), pp. 1361–1393, doi:10.1093/logcom/exu014.

[10] Henry Prakken (2010): An abstract framework for argumentation with structured arguments. Argument and
Computation 1(2), pp. 93–124, doi:10.1080/19462160903564592.

https://doi.org/10.1016/j.ijar.2013.10.004
https://doi.org/10.1017/S0269888911000166
https://doi.org/10.1007/BFb0023807
https://doi.org/10.1016/j.artint.2007.02.003
https://doi.org/10.3233/FI-1995-2234
https://doi.org/10.1016/S0168-0072(00)00044-0
https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1007/978-0-387-98197-0_10
https://doi.org/10.1093/logcom/exu014
https://doi.org/10.1080/19462160903564592

	Motivation
	Syntax and semantics
	Semantic and NAF-arguments
	Conclusions

