DECISION-MAKING PLANNING & REASONING

LAB 5: planning

November 16, 2020

Ph.D. Esteban Guerrero esteban@cs.umu.se

AGENDA

- Answers from micro survey
- Planning tools
- Reasoning + planning

BEFORE START...

• Any question about topics of the previous lecture/lab?

Go to www.menti.com and use the code 60 11 33 4

MICRO SURVEY: ANSWERS

Go to www.menti.com and use the code 59 99 89 8

Thank Jo Write keywords about intersting topics from previous lecture labs

mixed reality new technology unity visualization of data missing shorter lectures cooperative gaming ontologies real life examples

serious games

MICRO SURVEY: ANSWERS

What is missing from previous lecture labs

f abox tbox real life applications
what we can do with this more about ontologies
clear lab intentions

Thank you again!

QUICK RECAP ABOUT ONTOLOGIES

UNFAIR ONTOLOGY VS DATABASE SCHEME

• Ontology:

- Focus: meaning (shared understanding)
- o Defines a set of concepts and relationships
- Represents content and structure
- o Core purpose: agents communication, interoperability, search, etc.

• Database scheme

- o Focus: Data
- o Defines structure of database
- o Core purpose: structure instances for efficient storage and querying

UNFAIR ONTOLOGY VS DATABASE SCHEME

Recap

Database:

- Closed world assumption (CWA)
 - Missing information treated as false
- Unique name assumption (UNA)
 - Each individual has a single, unique name
- Schema behaves as constraints on structure of data
 - Define legal database states

Ontology:

- Open world assumption (OWA)
 - Missing information treated as unknown
- No UNA
 - Individuals may have more than one name
- Ontology axioms behave like implications (inference rules)
 - Entail implicit information

UNFAIR ONTOLOGY VS DATABASE SCHEME

Recap

Database:	Ontology:
• Entities	• Classes
Attributes, relations	• Properties
• Constraints	• Axioms
No taxonomy	Taxonomy is backbone
Constraints for integrity, foreign key	Constraints for meaning, consistency and integrity RR

A-BOX T-BOX

• A-box related to instances:

o To define "taxonomical" relationships in an ontology "Esteban is an Adult" in

PeopleOntology

- T-Box relates oriented to semantics relationships
 - To define specific relations among classes: "Dewey eats"

PLANNING TOOLS

PLANNING PLATFORMS

1. JaCaMo

URL: http://jacamo.sourceforge.net

Language: AgentSpeak + Java

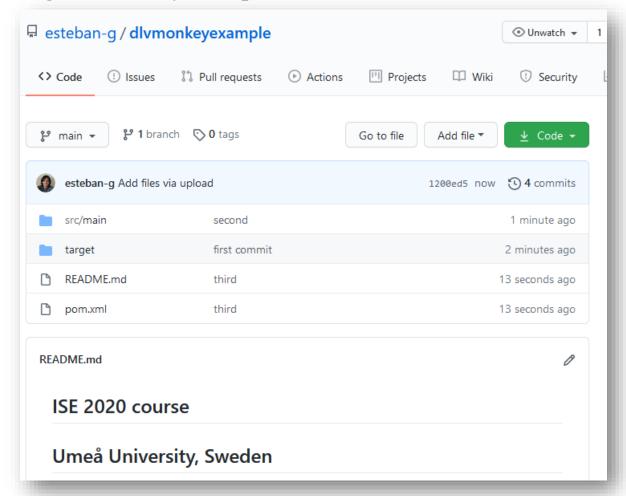
```
/* Plans */
//plan1 greetings to human
+!start : message(X) <- .print(X).
//+!start : message(X) <- printMsg(X).
//+!start : true <- .print("hello world.").
//"whenever I have the goal !start and I believe in message(X), I will achieve this goal by doing .print(X)
+!talkto : true <- .send(uicontroller,tell,givemevalue).</pre>
```


PLANNING PLATFORMS

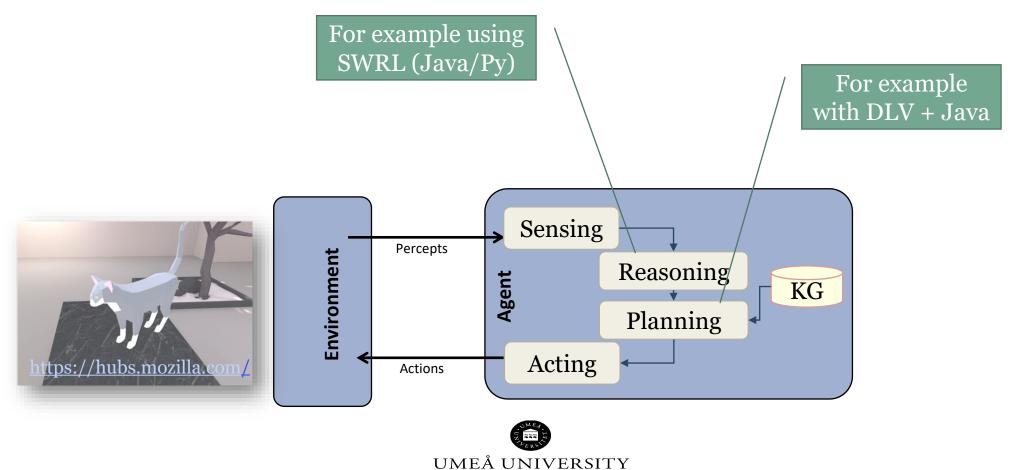
1. DLV system

URL: http://www.dlvsystem.com/

Language: Disjunctive logic programs + Java


Demo: DLV system monkey banana


```
■ monkey.dl
               🐂 monkey.plan 🗙
🖶 monkey.plan
      fluents: at(0,L) requires object(0), #int(L).
                onBox.
               hasBanana.
      actions: walk(L) requires #int(L).
               pushBox(L) requires #int(L).
                climbBox.
                graspBanana.
      always: caused at(monkey,L) after walk(L).
               caused -at(monkey,L) after walk(L1), at(monkey,L), L<>L1.
               executable walk(L) if not onBox.
               caused at(monkey,L) after pushBox(L).
               caused at(box,L) after pushBox(L).
               caused -at(monkey,L) after pushBox(L1), at(monkey,L), L<>L1.
                caused -at(box,L) after pushBox(L1), at(box,L), L<>L1.
               executable pushBox(L) if at(monkey,L1), at(box,L1), not onBox.
                caused onBox after climbBox.
               executable climbBox if not onBox, at(monkey,L), at(box,L).
                caused hasBanana after graspBanana.
               executable graspBanana if onBox, at(monkey,L), at(banana,L).
               inertial at(0,L).
                inertial onBox.
               inertial hasBanana.
      initially: at(monkey,1).
                  at(box,2).
                 at(banana,3).
```


PLANNING PLATFORMS

1. Monkey banana planning with DLV system + Java wrapper URL: https://github.com/esteban-g/dlvmonkeyexample

REASONING + PLANNING

Modular-based platform/agent

PROJECT MANAGEMENT

PROJECT MANAGEMENT

- Modular
- Use iterations for prototypes (Agile-like software development methodologies)
- Web-oriented:
 - o To work collaboratively
 - o To present demonstration
- Establish good communication and fair task-assignments with your team

Seminar BIO.E.203 - Aula Biologica	19-Nov 13.15-16.00	Seminar and workshop: Kickoff for project work	H, JC, EH, AL
Workshop	14-16	Group work and meeting with stakeholders	
L6 ZOOM ROOM ಆ	23 Nov 13.15-15.00	Q & A - Projects	JC, HL, EG
L7 ZOOM ROOM ಚ	26 Nov 13.15-17.00	DELIVERABLE 1 - Project plan (DEADLINE- 10:00) Project plan template document Seminar: Presentations of Deliverable 1	JC, HL, EG
L8 ZOOM ROOM	03 Dec 13.15-17.00	DELIVERABLE 2 - Data models and reasoning model (DEADLINE- 10:00) Seminar: Presentations of Deliverable 2	JC, HL, EG
L8 ZOOM ROOM	07 Dec 13.15-15.00	Q & A - Projects	JC, HL, EG
	10 Dec	DELIVERABLE 3 - FINAL data models, reasoning model, and architecture of the system (DEADLINE - 23:59)	
Workshop TO BE DEFINED	17 Dec 12.00-18.00	Seminar: PROJECT DEMONSTRATION	JC, HL, EG,AL

INT

