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Abstract

Knowledge bases are useful in the validation of automatically ex-
tracted information, and for hypothesis selection during the ex-
traction process. Building knowledge bases is a difficult task and
the process is bound to miss facts. Therefore, the existence of
facts can be estimated using link prediction, i.e., by solving the
structured prediction problem.

It has been shown that combining directly observable features
with latent features increases performance. Observable features
include, e.g., the presence of another chain of facts leading to
the same endpoint. Latent features include, e.g, properties that
are not modelled by facts on the form subject-predicate-object,
such as being a good actor. Observable graph features are mod-
elled using the Path Ranking Algorithm, and latent features using
the bilinear RESCAL model. Voted Conditional Random Fields
can be used to combine feature families while taking into account
their complexity to minimize the risk of training a poor predictor.
We propose a combined model fusing these theories together with
a complexity analysis of the feature families used. In addition,
two simple feature families are constructed to model neighborhood
properties.

The model we propose captures useful features for link predic-
tion, but needs further evaluation to guarantee efficient learning.
Finally, suggestions for experiments and other feature families are
given.
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1 Introduction

The Web has grown to an almost incomprehensable size, with 2.5 quintillion bytes
of data created every day [1]. In 2015, 100 hours of video were uploaded to Youtube
every minute [2]. Large parts of this data is unstructured, such as video or plain text.
An effort towards structurizing this is the semantic web, where technologies such
as RDF extends the linking structure of the Web as a triple connecting two things
via a relationship [3, 4]. There is data which is published in a structured format,
for example infoboxes on Wikipedia. These can be used as a basis for building
an RDF database [5], commonly referred to as a knowledge base. A knowledge
base is a structured knowledge representation where relationships between objects
represent facts. This is usually ternary relations between entities and predicates [6],
e.g. the SPO (subject, predicate, object) triple (Spock, characterIn, Star Trek)
denoting that Spock is a character in Star Trek. However, the vast majority of data
is unstructured and therefore the need to extract information from, e.g., video and
text becomes important. This is one of the challenges in, e.g., Big Data – the task of
mining information from multiple (large) data sets. One problem of such information
extraction from Web sources is noisy data of poor quality, where missspelled words
or missing parts of audio can confuse extractors. This can introduce errors not
only for the misspelled word but for the whole sentence. Therefore, it is meaningful
to complement natural language processing and other media analysis tools with
structural and contextual information, as outlined in [7]. Googles Knowledge Vault
is one such example, where information extractors are combined with structural
information of known facts to achieve almost a tripling of high confidence facts
compared to only relying on the information extractors [8]. Systems that utilize
knowledge bases are commonly referred to as knowledge-based systems.

In order to attain structural or contextual information, it is necessary to repre-
sent previous knowledge. An example of this kind is the above-mentioned knowledge
bases, where previously known facts are stored in RDF. Examples of this include
YAGO [9], Freebase [10], DBpedia [5] and Google Knowledge Graph [11]. To eval-
uate extracted information based on the structural information, it is necessary to
perform a link prediction. A link prediction in this context is expressing the like-
lihood of the relationship between two entities, or calculating the probability that
such a relationship exists [6]. The distinction between these two tasks is made since
the probability is not always given directly by a model. However, it can usually be
calculated as a separate step.

The problem of link prediction belongs to the family of supervised learning prob-
lems called structured prediction [12]. Structured prediction overlaps with the prob-
lems solved by Relational Machine Learning [13]. Relational Machine Learning, or
Statistical Relational Learning, studies the statistical modeling and analysis of ob-
jects and their relation to each other. Some of the main tasks of RML include
relationship and property predictions, and object clustering based on relationships.
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One common critisism of machine learning algorithms is that they usually have
a low transparancy as to their inner workings. One goal of this thesis is to give an
insight into how these algorithms can be formally analysed to counter this notion.

1.1 Goals and Related Work

The aim of this thesis is to model link prediction in knowledge bases as a VCRF
problem. This is summarized in the following goals

Goals

Goal 1 Provide insight into the theoretical aspects of link prediction.

Goal 2 Evaluate different categories of models used for link prediction.

Goal 3 Model link prediction as a problem solvable with VCRF.

The motivation behind Goal 3 is to investigate whether the results of Cortes
et al.[14] can give similar improvements for other problems. It is important to note
that empirical experiments are outside the scope of this study, so Goal 3 consists in
assessing the feasibility of modeling link prediction for VCRF. The proposed model
can then be evaluated as future work.

The other two goals are motivated by the results of Cortes et al. in combination
with those of Nickel et al. [15] where mixing models with different strengths improve
classifier performance. This aligns well with VCRF, as their main result is theoretical
tools for mixing different models with regards to their relative complexity.

The reason to study knowledge bases has been thoroughly motivated by semantic
web and big data. The focus in this thesis therefore lies on giving a walkthrough
of some concrete examples of how knowledge bases can be utilized. Here Google’s
Knowledge Vault is considered related work as parts of the proposed model is based
on their findings.

1.2 Outline

This thesis is outlined as follows:

Chapter 1 introduces the topic of this thesis, motivates why this is interesting
and summarizes the goals and related work. Chapter 2 provides preliminary theo-
retical background necessary to understand structured prediction in general and the
VCRF algorithm in particular. Chapter 3 gives a description of how link prediction
is performed in knowledge bases, specifically diving into latent and graph features,
together with a walkthrough of the VCRF algorithm. Chapter 4 proposes a struc-
tured prediction model for link prediction in knowledge bases that is adapted to the
VCRF problem formulation. Chapter 4 also gives a brief analysis of the suggested
feature family complexity. Chapter 5 discusses problems with the proposed model
and the relation between the feature families the model is based on. Chapter 6
concludes briefly and propose topics for further investigation, such as other feature
models of interesting.
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2 Theory

This chapter contains an overview of some of the theoretical basis for this thesis.
It is divided into three main blocks; General structured prediction, learning theory
and Conditional Random Fields. The first section gives an introduction to the
general formulation of structured prediction problems and how these can be reasoned
about. The section on learning theory provides much of the theoretical background
necessary to approach the Voted Conditional Random Fields algorithm. The final
section on Conditional Random Fields gives an overview of CRF as a concept and
how they can be used to perform structured prediction. This will be used as a basis
for understanding the VCRF algorithm and how it can be used to perform link
prediction.

2.1 Structured Prediction

Structured prediction is a collection of supervised learning techniques dealing with
problems where the output contains structure, not only the input. The primary
example of structured prediction is that of part-of-speech tagging - the task of anno-
tating words in a sentence with their function (name, verb et c.). A short example
of POS tagging is shown in Figure 1.

Figure 1: An example of POS tagging as a structured prediction problem. Given
a sentence, each word is tagged with its role in a sentence.

Supervised learning in general can be formulated for an input space X and output
space Y as

Definition 1 (Supervised learning)
Given a sample S =

{
(x1, y1), . . . , (xN , yN )

}
, where |S| = N , a hypothesis function

h : X → Y can be trained on S to label input xi with output yi. Often h can be
formulated using a scoring function f : X × Y → R. A label y∗ given input x can
now be computed with the hypothesis function defined as

y∗ = h(x) = arg max
y∈Y

f(x, y) (2.1)

The function h is commonly referred to as a classifier.
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The training points in sample S are drawn i.i.d. from some probability distribu-
tion D. It is assumed that when the hypothesis h is used on new data, for example
during evaluation, that this data is chosen according to the same distribution D
independently from the other input samples.

The aim of supervised learning is to solve the problem presented in Equation 2.1.
Given an input from the input space X and an output space Y, the task is to find the
most compatible y based on some scoring or feature function f . The generalization of
structured prediction is that the outputspace can be decomposed into substructures
as Y = Y1 × · · · × Yl, where Yk is the set of possible lables for the substructure
k. Other supervised learning problems such as linear or logistic regression and
Support Vector Machines outputs scalar values where only the structure of the input
is considered.

The input x could be a sentence or an image and the output a part-of-speech
tagging or image segmentation. The common denominator is that the input and
output space can be arbitrarily complex. Such a multidimensional dataset calls for
sophisticated algorithmic approaches. As a result, many approaches for structured
prediction algorithms rely heavily on learning theory results.

Performing supervised learning also entails encoding features of x that can be
used for learning relations between x and y. In structured prediction, these features
are also based on y. These features are encoded in a feature vector. In the case
of most learning algorithms presented in this thesis, learning then becomes finding
optimal weights in a feature weight vector. The feature weight vector encodes the
importance of each individual feature.

There are many things apart from the intrinsic structures of X and Y to consider
in order to get a high quality classifier. Many of these are studied in learning theory,
such as the distribution from which the sample is chosen contra the true distribution
over the space X × Y.

Structured prediction in knowledge bases

In the context of knowledge bases, structured prediction can be categorized into
three common tasks; Link prediction, entity resolution and link-based clustering [6].
Entity resolution is the problem of determine whether two entities refer to the same
real world object. In Figure 2, this problem could manifest as an additional fact
(Harrison Ford, starredIn, Star Wars) where the entity resolution would identify
Ford and Harrison Ford as the same person. Link-based clustering is known as
community detection in social network sciences. This entails grouping entities based
not only on entity features but also their link similarity.

Focus in this thesis lies on the link prediction problem, as this is the most
prominent task in aiding, e.g., information extraction. The example in Figure 2
shows why link prediction is important in the context of information extraction. Say
that the sentence Leonard Nimoy, one of the stars in the old Star Trek-series, [...]
is extracted from a web source. Given the knowledge base in Figure 2, it is possible
to check the semantic correctness directly against the edge (Nimoy, starredIn, Star
Trek). However, the sentence Harrison Ford, who starred in many of the Star Wars
movies, [...], cannot be checked without a link prediction being performed to classify
the relationship between Ford and Star Wars.
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Figure 2: Directed labeled graph constructed from a simple knowledge base with
facts on the form (ea, r, eb), tuples describing relationships between two
entities, in this case about two actors of popular SciFi-movies. This
example shows the tuple (Ford, starredIn, Star Wars) missing, illus-
trating the problem of link prediction based on structural similarities.

There are different approaches on how to interpret a missing fact. The open
world assumption (OWA) is done by the Semantic Web (and by extension, RDF).
The OWA interprets a missing triple as the truthness of its existence as unknown.
The closed world assumption simple assumes that the missing triple indicates that
the fact is false. For training purposes, it is usually assumed that a knowledge base
is locally complete. This local closed world assumption (LCWA) allows a training
algorithm to assume that any triples not seen are false. Otherwise, when predicting
a relationship would involve predicting every other possible relationship around as
well, which quickly becomes intractable.

Inference

Link prediction belongs to what is known as knowledge inference, i.e., deducing
new facts from previous knowledge. Knowledge inference can often be computa-
tionally difficult, e.g., NP-hard for general graph structures [16]. Inference usually
involve some form of parameter estimation, e.g., feature weights. Equation 2.1 can
be viewed as an inference procedure.

2.2 Learning Theory

The research field of learning theory studies the design and analysis of machine
learning algorithms. The field can be divided into two subfields; computational and
statistical learning theory. Computational learning theory provides mathematical
models of learning to study the predictive power and computational efficiency of
learning algorithms over a hypothesis space. Statistical learning theory is concerned
with finding bounds on how well learning algorithms can perform given a hypoth-
esis space. These fields give a theoretical basis for better understanding the inner
workings of machine learning algorithms and problems. Central to the theoretical
foundation of machine learning is PAC learning, or probably approximately correct
learning, a result from learning theory. For an problem to be PAC learnable by an
algorithm, it must be true that a hypothesis can be found that has a high probability
to have a low error in classifying unseen data.
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Hypothesis space

The concept of hypothesis spaces was briefly mentioned in Section 2.1. A hy-
pothesis function h ∈ H is a mapping from X to Y. Intuitively, the goal of learning
is to find a h that gives the approximation of the true relationship between X and
Y. In the case of linear regression, a hypothesis space is defined when modelling a
specific problem and could for example be the set of all linear functions on the form
y = k11 + k2x1 + · · ·+ kmxm + c for some m given by the model.

Learning a hypothesis function usually entails some form of optimization prob-
lem. In order to formulate an objective function, it is necessary to define some way to
measure the cost of an erroneous classification. Now, the task becomes minimizing
such a loss function.

Definition 2 (Loss function)
Given an output space Y, a loss function L : Y×Y → R+ measures the dissimilarity
of two elements in Y. L is commonly assumed to be definite, i.e., that L(y, y′) = 0
iff. y = y′.

The loss function is problem specific, but there are a couple of common classes of
loss functions, including the 0-1, Hamming, square, hinge and logistic loss function.
Some of these are shown in Figure 3. They all distinguish elements in Y with different
range and properties. The 0-1 loss function is an indicator function, defined as:

L(y, y′) =

{
0, if y = y′

1, if y 6= y′
(2.2)

The Hamming loss function calculates the Hamming distance by L(y, y′) =
1
l

∑l
k=1 1yk 6=y′k , i.e., a measurement of how many substructures y and y′ differ by.

This decompositional property is important in structured prediction when choosing
a loss function[17]. Usually, there is a natural candidate for such a loss function,
e.g., such as the edit-distance for natural language applications.

Only knowing the amount of loss a classifier has on given training data does not
necessarly give much information on the quality of the classifier. When formulating
a classification problem, it is necessary to define some other measurement of the
classifier performance. One way is to train classifiers and evaluate their performance
experimentally, but this is a cumbersome task as it is generally resource intense and
hard to do if a new algorithm is deviced.

Therefore, when a classifier is trained, we introduce the notions of generalization
error and empirical error. During the training phase, the empirical error captures
how well the classifier fits the training data. It is necessary for this error to be
sufficiently small to allow convergence but large enough to not overfit the classifier.
The generalization error denotes how well the classifier adapts to data not part
of the training set. The goal is to minimize the generalization error. However,
the relationship between these errors and classifier over-/underfitting leads to the
complex task of finding a balance between the two.

Figure 4 shows how a larger empirical error of a linear classifier can give a smaller
generalization error than a high-degree polynomial classifier with perfect fit to the
training data. This is a good example of how overfitting a classifier during training
can yield poor classifiers. Similarly, if the data set in Figure 4 was generated from
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Figure 3: Examples of loss functions commonly used in learning scenarios. Blue
is a 0-1 indicator function. Green is a square loss function. Purple is a
hinge loss function. Yellow is a logistic loss function. Image distributed
under GNU FDL Version 1.2 [18].

a more complex function family, the linear classifier would most likely suffer from
underfitting. Both the empirical and generalization error would be much higher
and the linear classifier would not even be able to approximate the training data.
Extending on this idea, it is clear that the relationship between the function class-
complexity and the empirical and generalization error could give insights into how
to train a classifier. To do this, we introduce the concept of risk minimization.

Risk minimization

The concept of risk is tightly connected to reasoning about classifier performance.
Risk can be measured at different stages of a learning scenario, but the true risk
is what is important. The true risk denotes the risk of missclassification over the
whole X × Y.

Definition 3 (Risk)
Given a loss function L and a classifier function f : X → Y, the risk of f is defined
as the expected loss of f over all points x ∈ X

R(f) := E(x,y)∼D(L(y, f(x))) (2.3)

where D is some fixed probability distribution.

In statistical learning theory two assumptions are made on D[19], which has been
touched upon earlier but summarized by the following:
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Figure 4: An example of how larger empirical error can be acceptable in favor of a
lower generalization error. The linear classifier does not fit the test data
perfectly, a high-degree polynomial would give a much smaller training
error. However, when unseen data points are introduced, the linear
classifier outperforms the more complex classifier by far.

Assumption 1 There exists a fixed probability distribution D on X × Y,
i.e., the underlying structure of X × Y does not change.

Assumption 2 Training data is sampled independently from D (i.i.d.
sampling).

No assumptions are made on the form of the probability distribution D, and
D is unknown at the time of learning. Making a useful estimate of D based on
data is seldom realistic. This means that computing the true risk of a function f
is not possible. However, an upper bound can be found based on the empirical risk
combined with an analysis of the complexity of a classifier function. Intuitively, the
empirical risk counts the ratio of training points missclassified by a classifier [20].
For a 0-1 loss function, this is the number of missclassifications over the number of
classifications.

Definition 4 (Empirical risk)
Given some training data S = (x1, y1), ..., (xm, ym) and a loss function L, the em-
pirical risk of classifier f is defined as

Remp(f) :=
1

m

m∑
i=1

L(yi, f(xi)). (2.4)

This is sometimes written as R̂(f).

Figure 5 shows the impact the complexity of the function class to classify af-
fects the relationship between the empirical error and the generalization error of a
classifier.
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Considering a function space F of classifiers, it is possible to choose the most
promising classifier according to some training data. In an ideal situation where the
true risk is known, a perfect classifier f could be computed as

f = arg min
f∈F

R(f) (2.5)

The optimization problem in Equation 2.5 is known as risk minimization. A
näıve approximation of such a solution during the training of a classifier is using the
empirical risk. Choosing a classifier using this procedure is commonly refered to as
empirical risk minimization. This is equivalent to, e.g., the least-squares method but
defined as a general concept. It is generally a bad idea to just choose the hypothesis
that minimizes the empirical error [13], as was shown in Figure 4.

Complexity of the function class

Risk

Generalization error

Empirical error

Underfitting Overfitting

Figure 5: The relationship between the complexity of a classifier function and the
estimation and generalization errors [19].

Studying the empirical error in itself does not necessarily give much information
on the generalization error, which is what really matters when building a good
classifier. Therefore, Vapnik and Chervonenkis introduced the principle of structural
risk minimization. Structural risk minimization uses the empirical risk Remp(f)
together with a measurement of the complexity of the classifier function family to
provide an upper bound on the true risk of f . In their work they introduced the
Vapnik-Chervonenkis (VC) dimension as a complexity measurement to capture this.
This thesis will not use VC dimension, but it gives a nice introduction to the concept
of measures used in structural risk minimization.

The VC dimension is an integer denoting the capability of a family of functions to
separate labeled data. If 2D points with binary labels are to be classified by a linear
classifier, the capability of such a classifier translates to the minimum number of
data points that it always can separate properly. Figure 6 shows a simple example
where three non-collinear points always are separable regardless of their labeling,
whereas four points can be labeled such that a plane classifier is needed. A set that
is always separable is called a shattering set and the VC dimension of a function
class F is the largest integer such that there exists a subset of the input space which
is shattered by F . We denote this by V C(F).

Definition 5 now gives an upper bound on the true risk of F .
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Figure 6: Example to illustrate VC dimension. A linear classifier is used to sepa-
rate two types of data, red and blue points. The VC dimension of this
example is 3 since the classifier can always separate three points regard-
less of the label ordering, but four points have configurations which can
not be separated properly.

Definition 5 (VC dimension generalization bound)
For all f ∈ F , with probability at least 1− δ:

R(f) ≤ Remp(f) +

√
h(log (2n/h) + 1)− log (δ/4)

n
. (2.6)

where h = V C(F) and n is the sample size.

The bound given by Equation 2.7 only depends on the structure of the function
class, i.e., the underlying probability distribution is not taken into account. Another
measurement that depend on this distribution is the Rademacher complexity, which
as a result usually gives a better generalization bound [20].

Rademacher Complexity

It is not guaranteed that a problem with an infinite hypothesis set allows for
efficient learning. Therefore, it is necessary to define a complexity notion to reason
about this. One such tool is Rademacher complexity, which looks at the richness of
a family of functions and to which degree a hypothesis set can fit random noise [21].

Similarly to the generalization bound defined using VC dimensions in Equation
2.7, a generalization bound using Rademacher complexity can be constructed.

Definition 6 (Rademacher complexity generalization bound)
For all f ∈ F , with probability at least 1− δ:

R(f) ≤ Remp(f) + 2R(F) +

√
log (1/δ)

2n
(2.7)

where n is the sample size and R(F) the Rademacher complexity of the function
class F .
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Since the Rademacher complexity of a function class depends on the underlying
distribution, it is also dependent on samples to be computable. As a result, the
first step is to compute the empirical Rademacher complexity. This is done using
Rademacher variables, essentially independent uniform random variables that take
the values in −1,+1 with equal probability to simulate how well the function class
fits a random labelling of data.

Definition 7 (Empirical Rademacher complexity)
Let G be a family of functions mapping from Z to [a, b] and S = (z1, ..., zm) a fixed
sample of size m with elements in Z. Then, the empirical Rademacher complexity
of G with respect to the sample S is defined as:

R̂S(G) = E
σ

[
sup
g∈G

1

m

m∑
i=1

σig(zi)

]
, (2.8)

where σ = (σ1, ..., σm)>, with σis independent uniform random variables taking
values in {−1,+1}. The random variables σi are called Rademacher variables.

Using this definition it is now possible to define the Rademacher complexity
using all possible samples of a given size drawn with a given distribution D. This
translates into for each sample choosing a function f ∈ F that fits best to the random
labelings of the sample. Now, taking the expectation over both the data and the
random labels, high Rademacher complexity denotes that the function family can
fit random labeling well [20]. Definition 8 formalizes the relationship between the
empirical and true Rademacher complexity [21].

Definition 8 (Rademacher complexity)
Let D denote the distribution according to which samples are drawn. For any in-
teger m ≥ 1, the Rademacher complexity of G is the expectation of the empirical
Rademacher complexity over all samples of size m drawn according to D:

Rm(G) = E
S∼Dm

[R̂S(G)]. (2.9)

A pattern shared by the VC dimension and Rademacher complexity is that the
upper bound on R(F) depends on the empirical risk, some capacity of F and a
confidence term [20]. This is summarized in Equation 2.10.

R(F ) ≤ Remp(f) + capacity(F) + confidence(δ) (2.10)

An alternative approach to formulating an upper bound as in Equation 2.10, is
by calculating the regularized risk

Rreg(f) = Remp(f) + λΩ(f). (2.11)

The function Ω(f) is called the regularizer, used to penalize classifier functions
with high complexity. In order to balance the empirical risk and the regularization
term, a weight parameter λ is used to be able to tweak this balance [20].
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2.3 Conditional Random Fields

Conditional random fields were presented by Lafferty et al. in 2001 [22]. They
presented an alternative to Hidden Markov Models (HMMs) for segmenting and
labeling of sequence data. One of the advantages over HMMs is the relaxation of
independence assumptions necessary for HMMs to allow tractable inference [22, 23].
Conditional Random Fields essentially associates an undirected graphical structure
with a conditional distribution P (y|x), with X being a random variable over data
to be labeled and Y being a random variable over the label sequences [22].

Definition 9 (Conditional Random Field)
Let G = (V,E, F ) be a factor graph with V = X ∪ Y denoting the set of variable
vertices, F = {ΨA} the set of factor vertices and E = {〈v, f〉|v ∈ V, f ∈ F} the set
of edges between variable and factor vertices. Then the conditional distribution can
be defined as

p(y|x) =
1

Z

∏
ΨA∈F

ΨA(xA,ya). (2.12)

where Z denotes the normalization factor such that p sums to 1,

Z =
∑
x,y

∏
ΨA∈F

ΨA(xA,ya). (2.13)

A factor here can intuitively be thought as capturing the relation between all
variables in a clique in the underlying model ??.

In Definition 9, the factors ΨA measures how well the subsets xA ⊆ X and
yA ⊆ Y fit together. The sets xA and yA are containing the variable nodes that
are conditionally dependent according to some distribution. In Figure 7, Ψ3 would
have as input x3 = {x2, x3} and y3 = {y3}. This means that the computation of the
probability p(x|y) can be computed efficiently with a factorization if the factor func-
tions are efficiently computable. The probability p(y|x) would then be factorized as
p(y1, y2, y3|x1, x2, x3) = Ψ1(x1, x2, x3)Ψ2(x1, y1)Ψ3(x2, x3, y3)Ψ4(x3, y1, y2) and thus
encode the conditional probabilities between all variables according to the structure
of the graph. One common approach is to model ΨA using feature functions f ∈ F ,

x1

x2

x3

y1 y2 y3

x1

Ψ2

Ψ1
x2

x3

y1 y2 y3

Ψ3

Ψ4

Independency
to factor graph

conversion

Figure 7: Example CRF given the underlying undirected graphical model. Repre-
sents a factorization of the probability p(y|x).

where F is some family of functions [24]. The factors can now be written as
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ΨA(xA,yA) =
∏

ΨA∈F
exp

{∑
k

λAkfAk(yA,xA)

}
. (2.14)

where the exponential function ensures a non-negative value.

Equation 2.14 introduces two new concepts; feature functions and feature weights.
Feature functions captures the domain features mapping them to real values. One
common way to model features is to use indicator functions, i.e., binary-valued
functions fi(x, y) ∈ {0, 1}. An example of this would be that of feature functions
in Part-Of-Speech tagging, the problem of annotating the words in a sentence with
their gramatical function. In POS tagging, such a feature function could be,

fi(xk, yk) =

{
1 if yk = name and xk = Musk

0 otherwise
(2.15)

Equation 2.15 shows a feature function that is active if the the kth word is the
name Musk.

Feature weights are introduced as a parameter vector λ of scalars λi used as
weight for the feature function fi. Whenever feature fi is active, the feature weight λi
is used to increase or decrease the impact this fi will have on the whole classification.

Parameter Estimation and Inference in CRFs

The parameters λ can either be engineered using domain knowledge or learned
from training data [25]. Learning these parameters is called parameter estimation
and is a core concept in making CRFs effective. Given a estimated parameters
λ, the probability function will now depend on the parameter vector; p(y|x;λ).
Estimating these parameters can be done by, e.g., using maximum likelihood (ML)
or maximum a posteriori probability (MAP) estimation using standard numerical
optimization methods such as gradient descent or Newton’s method[22]. ML and
MAP both use observed facts to derive what stochastic process could generate them.
Observe that this parameter vector can be extended to include other parameters for
different models as well. Usually, the notation separates between the feature weight
vector and all parameters, using θ to denote the latter with λ ∈ θ.

Parameter estimation is one part of the larger task of inference, i.e., predicting
the output, e.g., as formulated in Equation 2.1. However, such inference is usually
intractable for general graphs. In order to compute this efficiently either the CRF
must possess nice structural properties or an approximative algorithm must be used.
CRFs with a tree structure are typical examples of the former, while particle-based
methods can be used as a basis for approximative algorithms [26, 16].



14(42)



15(42)

3 Background

A knowledge base can contain millions of facts on the form (Obama, presidentOf,
USA). The Semantic Web introduced the Resource Description Framework (RDF),
which is usually used to encode such knowledge [4]. RDF allows for type hierar-
chies and data linkage, e.g. by defining entity classes and relationship types [3].
Recent efforts towards storing such factual information have resulted in a number of
publically available knowledge bases. Table 1 shows some of them, including their
sizes. Many of these are built upon semi-structured information extracted from e.g.
Wikipedia (such as DBpedia and Freebase). Google provides their own knowledge
base partially built on Freebase, Google Knowledge Graph [11]. Google’s Knowledge
Graph is central in many of the company’s applications. Its most prominent usage
is the addition of semantic information to the Google search engine, but Knowledge
Graph also helps with automatic query completion and allows virtual assistants to
answer natural-language questions [11].

Table 1 Examples of existing knowledge bases and their size. Data from [6].

Nr. of entities Nr. of Relation Types Nr. of Facts

Freebase 40 M 35000 637 M
Wikidata 18 M 1632 66 M
DBpedia (en) 4.6 M 1367 538 M
YAGO2 9.8 M 114 447 M

Knowledge Vault

A good example of how a knowledge base can improve extractions is Knowledge
Vault. Knowledge Vault is a Google research project where structured prediction
is used to automatically construct probabilistic knowledge bases. Predicted prob-
abilities were used in combination with extractor confidence to improve NLP fact
extraction. Their approach increased the number of high confidence facts from
100 million to 271 million, of which 33 percent were new facts not present in Free-
base [8]. An example of their results is shown below, where two pieces of text are
analysed to produce a new fact denoting that Barry Ritcher attended University

of Wisconsin-Madison.

<Barry Ritcher (/m/02ql38b),

/people/person/edu./edu/edu/institution,

University of Wisconsin-Madison (/m/01yx1b)>

This triple was extracted with a confidence of 0.14, based on the two following
sources of information:
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In the fall of 1989, Ritcher accepted a scholarship to the

university of Wisconsin, where he played for four years and

earned numerous individual accolades...

The Polar Caps’ cause has been helped by the impact of

knowledgable coaches such as Andringa, Byce and former

UW temmates Chris Tancill and Barry Ritcher.

Knowledge Vault computes a prior belief based on its knowledge base by using
structured prediction techniques. This knowledge base contains the fact that Barry
Ritcher was born and raised in Madison, which increases the prior belief that he
also went to school there. Together with the rather low confidence on the extraction
(0.14), the final confidence in the extracted triple is 0.61 which is a rather large
improvement. They call this knowledge fusion.

IBM’s Watson

Other applications of knowledge bases include IBM’s work on question answer-
ing computer system Watson, used to beat human experts in Jeopardy!. In the
underlying machinery, Watson used a knowledge base as a part of scoring compet-
ing alternatives with a confidence using previous knowledge from e.g. Freebase.
Together with other components, this information was used to decide alternative
seemed most resonable[27]. Today, Watson is accessible for developers to assist in,
e.g., education, IoT, and health. An example of an application in the last area is
cancer treatment assistance [28].

3.1 Link Prediction in Knowledge Bases

Building a knowledge base manually is a difficult task, only feasible for small expert
systems with very specific use cases, such as in-house company FAQs. Therefore it is
necessary to automate the process of both extraction and extension of a knowledge
base.

In a recent paper written in collaboration between Google and MIT researchers,
Nickel et al. provide a review over the state-of-the-art of relational machine learning
for knowledge graphs [6]. Their focus lies on Statistical Relational Learning, which
roughly is a structured prediction with a probabilistic annotation, i.e., the confi-
dence in the existence of a relationship between two entities. A knowledge graph
is essentially a knowledge base with a graph structure, sometimes also referred to
as a heterogeneous information network. Most knowledge bases described in this
thesis can be considered knowledge graphs. The authors describe three different
approaches to modelling knowledge graphs for relational learning; Latent features,
graph features and Markov Random Field models.

Markov Random Field Models

The authors note that this is technically a Conditional Random Field model,
and the theory of Section 2.3 can therefore be used as a basis. A MRF just models
a probability distribution over random variables, whereas CRF introduces a condi-
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tioning on some features x given output y. As shown in Section 2.3, in order to
formulate a predictive model, it is necessary to define a set of feature functions.
Connected to the concept of MRFs is Markov Logic Networks[29]. A MLN is based
on a set of logical formulae such that an edge between nodes in the MLN corresponds
to the facts occuring in at least one grounded formula Fi. Returning to the actor
example in Figure 2 of Section 2.1, one such formula could be

F1 : (p, played, c) ∧ (c, charIn,m)⇒ (p, starredIn,m). (3.1)

Using such a formulae set F = {Fi}Li=1, by counting the number of true ground-
ings xc of Fc in Y , the first equation defining CRFs in Definition 9 in Section 2.3
can be written as

P (Y |θ) =
1

Z

∑
c

exp(θcxc). (3.2)

with the definition of Z written analogously. Here θc denotes the weight of a formula
Fc. An example of a grounding of Equation 3.1 could be p = Ford, c = Han Solo,m =
Star Wars.

Latent Feature Models

Latent feature models assume that all facts can be explained using latent features,
i.e., features that cannot be observed directly. The authors present an example where
a latent feature is an entity being a good actor that explains the actor recieving an
Oscar, a fact observable in the knowledge graph. Latent features can be modelled
using RESCAL, a bilinear relational latent feature model. RESCAL[15] uses pair-
wise interactions between latent features to explain triples, and can be formulated
for a triple yijk as

fRESCALijk := e>i Wkej =

He∑
a=1

He∑
b=1

wabkeiaejb (3.3)

where He denotes the number of latent features for entities and Wk ∈ RHe×He .
Each weight wabk ∈ Wk describes the strength of the interaction between latent
features a and b in the k-th relation (i.e. starredIn). An example of this interaction
is shown in Figure 8.

Equation 3.3 can be formulated using the Kronecker product to achieve a feature
vector φRESCALij ,

fRESCALijk := Wkei ⊗ ej = Wkφ
RESCAL
ij . (3.4)

The formulation in Equation 3.4 can be benificial for certain problems, depending
on requirements on the model.

One approach to solving the RESCAL problem is by tensor factorization [30].
Tensor factorization is a generalization of matrix factorization to higher-order data,
as tensors essentially are multidimensional arrays with some formal requirements [31].
In this setting, a tensor represents a higher-order relationship between latent vari-
ables. RESCAL has been shown to outperform other latent feature model ap-
proaches, such as neural networks, for link prediction tasks [32].
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Nimoy Star Trek

e12

e11

e13

e22
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fijk

starredIn

Figure 8: Showing how latent variables of two entities interact for He = 3 via the
weight matrix.

The weights Wk and the latent features ei are trained simultanously by the
RESCAL-ALS algorithm, an alternating least-squares approach. RESCAL-ALS is
practically viable as 30-50 iterated updates is usually enough to reach a stable solu-
tion [33].

Graph Feature Models

Contrary to latent feature models, a graph feature model extracts features that
are directly observable as facts in the graph. This could, e.g., be using the facts
(Ford, played, Han Solo) and (Han Solo, charIn, Star Wars) to predict the fact
(Ford, starredIn, Star Wars). Graph feature models are used extensively in link
prediction for single relation graphs, such as social networks where a relationship
between two people indicates friendship [6, 34]. There are several approaches where
the idea is that similarity between entities can be derived from paths and random
walks of a bounded length. This means that examining what can be reached from
an entity given a length parameter, should be enough to measure similarity between
two entities. One such approach is the local random walk -method [35]. As most
knowledge bases are multi-relational, the random walk approach must be extended
upon. This is done by the Path Ranking Algorithm, which also uses a bounding
length but generalizes to paths on arbitary relations [36].

Path Ranking Algorithm

To extend the random walk idea to multi-relational knowledge graphs, πL(i, j, k, t)
denotes a path of length L over a sequence t of relationship between entities τ =
ei

r1→ e2
r2→ · · · rL→ ej . As the goal is to use the intermediate path τ to predict the

relation k between ei and ej , the edge ei
rk→ ej is also required to exist for πL(i, j, k, t)

to be valid. The set ΠL(i, j, k) denoting all such paths can then be found by enu-
merating all paths from ei to ej . Such an enumeration is only practical when the
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number of relation types is small, for knowledge bases a more efficient approach is
necessary. Lao et al. suggests a random sampling approach where not every relation
type is used in generating paths according to a usefulness measure learned during
training. Since the generations of such paths now depends on a random sampling,
it is possible to compute the probability of following that path. Assuming that an
outgoing link is picked uniformly at random, the probability P (πL(i, j, k, t)) of a
path can be computed recursively using an efficient procedure [36]. Now, using this
probability as features, a feature vector can be defined as

φPRAijk = [P (π) : π ∈ ΠL(i, j, k)] (3.5)

The feature vector φPRAijk can be used directly for each pair of entities to predict
the probabilities of each relation k between them using a feature vector wk

fPRAijk := w>k φ
PRA
ijk (3.6)

Using PRA to model features is beneficial since the features correspond directly
to Horn clauses, with the addition that a weight (or probability) specifies how pre-
dictive the corresponding clause is. The example Horn clause in Equation 3.7 cor-
responds to the edge prediction problem shown in Figure 2 in Section 2.1.

(p, starredIn,m)← (p, played, c) ∧ (c, charIn,m). (3.7)

Returning to the example of Google’s Knowledge Vault previously presented, this
is how they calculate their predicted probabilities. Table 2 shows three examples of
Horn clauses used to predict which college a person attends.

Table 2 PRA Freebase Knowledge Vault college attendee F1 Precision Recall
Weight

Relation Path F1 Prec Rec Weight
(draftedBy, school) 0.03 1.0 0.01 2.62
(sibling(s), sibling, education, institution) 0.05 0.55 0.02 1.88
(spouse(s), spouse, education, institution) 0.06 0.41 0.02 1.87
(parents, education, institution) 0.04 0.29 0.02 1.37
(children, education, institution) 0.05 0.21 0.02 1.85
(placeOfBirth, peopleBornHere, education) 0.13 0.1 0.38 6.4
(type, instance, education, institution) 0.05 0.04 0.34 1.74
(profession, peopleWithProf., education, institution) 0.04 0.03 0.33 2.19

According to their model, Table 2 shows, e.g., that a person drafted by a uni-
versity can accuratly be predicted to also study there but not all students will be
found using this path. Their results also suggests that the place of birth is useful
information, as the both the F1-score and weight are the highest amongst the given
paths. The F1-score gives the relationship between precision and recall, where a
high F1-score suggests a better prediction.

The PRA algorithm has been shown to give good prediction performance even
for binary features [37]. Since working with floating point numbers usually entails
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heavier computations, reducing the probabilities to binary values can greatly im-
prove the efficiency of the algorithm. The authors also provide an open source
implementation of PRA [38].

Combining RESCAL and PRA

Although the PRA algorithm can be used to achieve good results on link predic-
tion for Freebase in Knowledge Vault (with a 0.884 area under the receiver operating
characteristic (ROC) curve)[8], it has been shown that latent and graph-based mod-
els have different strengths [39]. The ROC curve plots the true positive rate against
the false positive rate, area (AUC) under measures the ranking quality. Therefore,
a natural step forward would be to combine these two approaches. In [30] Nickel et
al. show that the RESCAL computation can be sped up significantly if observable
features are included. This is achieved as the rank of the tensor factorization can be
lowered allowing a lower latent dimensionality. Essentially, RESCAL now only needs
to fill in where a graph feature model misses out. Not only does the computational
complexity decrease, but this combination allows for higher predictive performance
as well.

Based on these findings, a combination [6] of RESCAL and PRA can be formu-
lated as

fRESCAL+PRA
ijk = w

(1)>
k φRESCALij +w

(2)>
k φPRAijk . (3.8)

3.2 Voted Conditional Random Fields

In their paper Structured Prediction Theory Based on Factor Graph Complexity [14],
Cortes et al. presents new data-dependent learning guarantees based on theoreti-
cal analysis of structured prediction using factor graph complexity. They combine
these learning bounds with the principle of Voted Risk Minimization [17] in their de-
sign of two new algorithms, Voted Conditional Random Fields and Voted Structured
Boosting.

Factor graph complexity

Cortes et al. define the empirical factor graph Rademacher complexity R̂G
S (H),

where H is a hypothesis set for a sample S = (x1, ..., xm) and a factor graph G:

R̂G
S (H) =

1

m
E
ε

[
sup
h∈H

m∑
i=1

∑
f∈Fi

∑
y∈Yf

√
|Fi|εi,f,yhf (xi, y)

]
(3.9)

This denotes the expectation over the set of independent Rademacher variables
ε = (εi,f,y)i∈[m],f∈Fi,y∈Yf . This is an extension of the theory in Section 2.2 and
in particular Definition 7. The factor graph Rademacher complexity is defined as
the standard Rademacher complexity, Rm(G) = E

S∼Dm
[R̂S(G)], see Definition 8 in

Section 2.2.

With a definition of the Rademacher complexity, it is possible to find a bound
on the generalization error. First, it is necessary to define a couple of building
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blocks. In order to measure the confidence of a hypothesis, the concept of margin
is introduced for an input/output pair (x, y). This will be helpful in proving the
generalization bound as shown in Theorem 1.

Definition 10 (Margin)
The margin of a hypothesis h at a labeled point (x, y) ∈ (X × Y) is defined as

ρh(x, y, y′) = min
y′ 6=y

h(x, y)− h(x, y′). (3.10)

Figure 9 illustrates the margin in the case of binary labeling of data points in
two dimensions.

Figure 9: Example of how Support Vector Machines maximizes the margin be-
tween labels. Here the margin is the distance from the separating line
to the closest data points.

The margin should be interpreted as the distance between a classifications, given
input x. In other words, ρh measures how distinct classifications h gives. A low
margin ρh(x, y) signals a low confidence as there are other candidates y′ close at
hand.The margin is not used explicitly in the remainder of this thesis, however, the
generalization bounds provided by Cortes et al. rely on the relationship between
the loss function and the margin of h as well as the empirical margin losses defined
below:

R̂addS,ρ (h) = E
(x,y)∼S

[
Φ∗
(

max
y′ 6=y

L(y′, y)− 1

ρ

[
h(x, y)− h(x, y′)

])]
(3.11)

R̂multS,ρ (h) = E
(x,y)∼S

[
Φ∗
(

max
y′ 6=y

L(y′, y)
(
1− 1

ρ

[
h(x, y)− h(x, y′)

]))]
(3.12)

where Φ∗(r) = min(M,max(0, r)) for all r, with M = maxy,y′ L(y, y′).
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The empirical margin loss is defined both for multiplicative and additive margins,
as choosing a hypothesis from a convex combination of hypothesis families can be
expressed in both multiplicative and additive terms [40]. This is a necessary step in
defining tightening the generalization bounds, which will be shown later. Theorem
1 is the shows how the empirical margin loss can be used together with the factor
graph Rademacher complexity to an upper bound on the generalization error R(H).

Theorem 1
Fix ρ > 0. For any δ > 0, with probability at least 1− δ over the draw of a sample
S of size m, the following holds for all h ∈ H,

R(H) ≤ Raddρ (h) ≤ R̂addS,ρ (h) +
4
√

2

ρ
RG
m(H) +M

√
log 1

δ

2m
,

R(H) ≤ Rmultρ (h) ≤ R̂multS,ρ (h) +
4
√

2M

ρ
RG
m(H) +M

√
log 1

δ

2m
,

Making predictions

Using a factor graph G, Definition 11 formulates a scoring function based on the
factor nodes of G.

Definition 11 (Scoring function)
Given an input space X and an output space Y, a scoring function h : X × Y → R
gives a single value measuring how well x ∈ X and y ∈ Y fit together. For the
purpose of this thesis, the standard assumption that h ∈ H can be decomposed as a
sum is made. This decomposition can be based on the factor graph G = (V, F,E),
giving

h(x, y) =
∑
f∈F

hf (x, yf ). (3.13)

,i.e., a summation of scoring each yf local to some factor node f .

In order to construct such a scoring function it is necessary to define a scoring
function family H from which h should be chosen, from here on called the hypothesis
set. Such a scoring function should also be based on some features extracted from
the input-output-space X × Y. Therefore, it is necessary to define some way of
mapping those features. These features are then the basis for scoring a prediction.

Definition 12 (Feature mapping)
A feature mapping Ψ is a function from (X ×Y) to RN such that Ψ is decomposable
over all factors of F , i.e., Ψ(x, y) =

∑
f∈F Ψf (x, yf ).

The feature mapping function Ψ can now be used to define the hypothesis set,
where a hypothesis is equivalent to the classifier function given by Definition 1
in Section 2.1. In a part-of-speech tagging, one such feature element could be the
number of times the word the appears labeled as a determiner next to a word labeled
as a noun [41]. The dimension N is therefore problem specific and could, e.g., be
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defined as the number of input features times the number of classes to allow a direct
mapping between features and labels [42].

Now, using the feature vector computed by Ψ it is possible to define a hypothesis
set from which a classifier can be chosen. Such a classifier is essentially a parame-
terized version of the feature mapping, weighted to choose how much each feature
should influence the classification.

Definition 13 (Hypothesis set)
Given a feature mapping Ψ : (X × Y) → RN . For any p, the hypothesis set Hp is
defined as:

Hp = {x 7→ w ·Ψ(x, y) : w ∈ RN , ‖w‖p ≤ Λp}. (3.14)

The number N denotes the number of possible features and Λp an upper bound on
the weight vector, given as a parameter. Such a hypothesis set is labeled linear since
it is a linear combination of feature functions Ψf .

The hypothesis set defined by Definition 3.14 is used by convex structured pre-
diction algorithms such as structured support vector machines [43], Max-Margin
Markov Networks [12] or Conditional Random Fields [22], as outlined by Cortes et
al. in [14].

Given a hypothesis set, i.e., a family of scoring functions, a predictor h can be
constructed for any h ∈ H by for any x ∈ X choosing h(x) = arg maxy∈Y h(x, y). The
predictor h is essentially the classifier function defined by Definition 2.1 in Section
2.1, i.e., a function returning the y ∈ Y that gives the largest weighted feature vector
output. Table 3 shows a summary of the notation used in this section.

The value p used in Definition 3.14 denotes the vector norm used to bound the
feature weights. The results extend to arbitrary p’s, but focus in this thesis lies on
p = 1. Theorem 2 gives an upper bound on R̂G

m for p=1, 2, i.e., for bound using the
Manhattan and Euclidian norms. This is achieved by using the sparsity of a feature
mapping, i.e., how many features are active. Intuitively, the empirical Rademacher
complexity should increase if the feature mapping increases the maximum number
of active features. Feature mappings using binary indicator functions should be less
complex than assigning floating point numbers to many features.

Theorem 2

R̂G
S (H1) ≤ Λ1r∞

m

√
s log(2N), R̂G

S (H2) ≤ Λ2r2

m

√∑m

i=1

∑
f∈Fi

∑
y∈Yf

|Fi|

(3.15)

where r∞ = maxi,f,y ‖Ψf (xi, y)‖∞ , r2 = maxi,f,y ‖Fi‖2 and the sparsity factor
s = maxj∈[i,N ]

∑m
i=1

∑
f∈Fi

∑
y∈Yf |Fi|1Ψf,j(xi,y)6=0.

The intuitive description of the variable r∞ is the maximum value of any feature.

Theorem 2 will later be used to formulate a complexity penalty. The factor
graph-based Rademacher complexity can now be used to reason about the capacity
of hypothesis families. In particular, the combination of families.
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Table 3 Explaination of VCRF notation

X Input space
Y Output space
N The length of the joint feature vector given by Ψ(x, y).
Ψ(x, y) Feature mapping from X × Y to RN , measuring compatibility of x

and y. For a simple model, the joint feature(x, y) is a vector of
size n features× n classes, which corresponds to one copy of the
input features for each possibly class.

Hp Hypothesis class
w Weight vector

R̂G
S (H) Empirical factor graph Rademacher complexity of hypothesis class

H given a sample S on factor graph G
RG
m(H) Rademacher complexity of hypothesis class H over samples of size

m on factor graph G.
Λp An upper bound on the weight vector. Usually found via cross-

validation.
p The number of function families Hi.
rk Complexity penalty of function family Hk.
Fi Factor graph for element i of sample S
F (k) The factor graph of feature family k.
di The largest number of active features for variables connected to any

factor node f ∈ Fi.
H1, . . . ,Hp p families of functions mapping X × Y to R
L(y, y′) Loss function measuring the dissimilarity of two elements in the

output space.
Φu Surrogate loss function.
λ, β Parameters to the VCRF problem.
ρh(x, y) Margin function, measuring the distance between a classification y

and the second best output y′.

Voted risk minimization

The principle of voted risk minimization[17] is that a predictor family h can be
decomposed into sub-families H1, . . . ,Hp, as illustrated by Figure 10. These subfam-
ilies could, e.g., correspond to different types of features that H is concerned with.
In such a case, one subfamily could be representing the part of the feature vector
encoding structure in the input with another subfamily encoding structure in the
output. The main idea is that using families with rich features (such as is common
in, e.g., NLP and computer vision) can increases the risk of overfitting. Voted risk
minimization uses mixture weights to balance complex against simple feature fam-
ilies. These weights are adjusted so that more weight is given to simpler families if
complex hypotheses are used. This idea is used to derive a Rademacher complexity
which explicitly depends on the difference in complexity between subfamilies. The
intuition is that an empirical risk minimizing algorithm could distribute its votes
amongst the given subfamilies using the complexity penalty to make sure no family
gets to much say in the prediction, i.e., leading to overfitting.

The decomposition of H can be formulated as the convex hull over the union
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Figure 10: Example of how a hypothesis family can be divided into subfamilies.

of all p families H1, . . . ,Hp, i.e., F = conv(∪pk=1Hk). With the ensemble family F ,

predictor functions f ∈ F can be formed as f =
∑T

t=1 αtht, where α = (α1, . . . , αT )
is in the simplex ∆ of the convex hull, and ht is in Hkt for some kt ∈ [1, p], where t ∈
[1, T ], for some T . T gives room for flexibility when composing f . For convenience,
the assumption that RG

m(H1) ≤ RG
m ≤ · · · ≤ RG

m(Hp) is made.

Now that the predictor family H can be decomposed, it is also possible to de-
compose the feature function Ψ(x, y), giving

Ψ =

Ψ1
...

Ψp


The decomposition of Ψ also means that the feature vector and inherently the

feature weight vector w can be decomposed, where

w =


w1
...
wk
...
wp


Here wk is the feature weight vector associated with the subfamily Hk. Depend-

ing on interpretation, w can be a matrix or the concatinated vectors wk.

Generalization bound on decomposed predictor

In order to generalize the voted risk minimization theory, the empirical margin
losses are redefined to include a margin term τ ≤ 0, giving:

R̂addS,ρ,τ (h) = E
(x,y)∼S

[
Φ∗
(

max
y′ 6=y

L(y′, y) + τ − 1

ρ

[
h(x, y)− h(x, y′)

])]
(3.16)
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R̂multS,ρ,τ (h) = E
(x,y)∼S

[
Φ∗
(

max
y′ 6=y

L(y′, y)
(
1 + τ − 1

ρ

[
h(x, y)− h(x, y′)

]))]
(3.17)

With these generalized empirical margin losses, it is now possible to provide a
bound on the generalization error based on the ensemble family F .

Theorem 3
Fix ρ > 0. For any δ > 0, with probability at least 1− δ over the draw of a sample
S of size m, each of the following inequalities holds for all f ∈ F :

R(f)− R̂addS,ρ,1(f) ≤ 4
√

2

ρ

T∑
t=1

αtR
G
m(Hkt) + C(ρ,M, c,m, p),

R(f)− R̂multS,ρ,1(f) ≤ 4
√

2M

ρ

T∑
t=1

αtR
G
m(Hkt) + C(ρ,M, c,m, p),

where C(ρ,M, c,m, p) = 2M
ρ

√
log p
m + 3M

√⌈
log( c

2ρ2m
4 log p )

⌉
log p
m +

log 2
δ

2m . and |Y| =

c < +∞.

Theorem 3 shows that it is possible to bound the generalization error using the
empirical margin losses together with a mixture of the factor graph Rademacher
complexities of each subfamily in a decomposition and a factor based on the loss
function and size of the output space.

The results up until now all provide a basis for an algorithm that utilizes the
key ideas of voted risk minimization in a structured prediction setting. However, as
the results hold for arbitrary hypothesis families and loss functions, it is necessary
to introduce surrogate loss functions before formulating this algorithm.

Surrogate loss function

Since the functions h and L(h(x), y) are arbitrary on their domains, it is not
guaranteed that the mapping h 7→ L(h(x), y) is a convex function (this is typically
not the case). If the mapping is not a convex function, optimizing using gradient-
descent, or other optimization algorithms, leads to computationally hard problems.
Therefore, it is possible to formulate a surrogate loss function which establishes
computational tractability by being convex.

Lemma 1 (General surrogate loss function)
For any u ∈ R+, let Φu : R → R be an upper bound on v 7→ u1v≤0. Then, the
following upper bound holds for any h ∈ H and (x, y, ) ∈ X ,Y,

L(h(x), y) ≤ max
y 6=y′

ΦL(y′,y)(h(x, y)− h(x, y′)). (3.18)

In other words, a convex function Φ can be constructed such that it provides an
upper bound on the loss function that is usable for optimization.
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Choosing the surrogate loss function can now be used to define many of the
common structured prediction algorithms, as listed in Table 4. As noted by Cortes et
al., investigating other choices of surrogate loss functions can lead to new structured
prediction algorithms, some of which they also discuss.

Table 4 Example of surrogate loss functions that define common state-of-the-art
structured prediction algorithms.

Φu(v) = max(0, u(1− v)) StructSVM
Φu(v) = max(0, u− v) Max-Margin Markov Networks
Φu(v) = log(1 + eu−v) Conditional Random Fields

VCRF optimization problem

Now all pieces are in place to define a structured prediction algorithm based
on the findings presented in this chapter. As with many other machine learning
problems, it is possible to encapsule the theory presented in an optimization prob-
lem, shown in Equation 3.19. This is achieved by using the surrogate loss function
Φu(v) = log(1 + eu−v) used to define CRF models and combining this formula-
tion with the voted risk minimization theory. The learning algorithm based on the
optimization problem presented in Equation 3.19 is referred to as VCRF.

Given an input space X , output space Y, a sample S of size m, a loss function
L, predictor families H1, . . . ,Hp and parameters λ, β, the VCRF algorithm is for-
mulated as the learning algorithm based on the optimization problem 3.19. The
goal is to minimize the feature weight vector w over the samples (xi, yi) whilst keep-
ing a penality on families Hk based on their factor graph complexity captured and
influence of features connected to family p.

Definition 14 (Voted Conditional Random Field)
The Voted Conditional Random Field algorithm is the procedure which solves the
optimization problem

min
w

1

m

m∑
i=1

log

(∑
y∈Y

eL(y,yi)−w·(Ψ(xi,yi)−Ψ(xi,y))

)
+

p∑
k=1

(λrk + β)‖wk‖1, (3.19)

with rk = r∞|F (k)|
√

logN . The function F (k) here denotes the factor graph con-
nected to family Hk and r∞ = max

i,f,y
‖Ψf (xi, y)‖∞.

The first term tries to find a vector w that maximizes the predictability of classes
given all features, essentially the empirical loss term. The second term tries to
compensate by weighting size of the feature vector wk and complexity penalty rk
associated with each family Hk against each other. In other words, a high complexity
penalty gives little penalty if few features are considered useful. If a high complexity
family Hk has high weights associated with its features, those features will either be
toned down or replaced by a family Hj with rj < rk. Worth noting here is that each
rk can be precomputed as it only depends on the factor graph and size of the feature
vector. The form of Equation 3.19 can be compared to that of the risk regularization
from Section 2.2 in Equation 2.11.
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This optimization problem can be solved using the standard gradient-descent
algorithm. As a result, it is necessary to be able to formulate a gradient of Equation
3.19 that can be efficiently computed. Cortes et al. show a general formulation
of this gradient, noting that it is exponential in the size of the ensemble family
simplex. However, they provide, amongst others, a formulation of the gradient that
is computationally efficient given that the loss function is Markovian. A Markovian
loss function is defined as

L(y, y′) =

l∑
t=1

Lt(y
t
t−p+1, y

′t
t−p+1).

This property shows a decomposition similar to the features, and essentially
limits the loss function L to local interactions for each label in the output given
some boundary. In other words, the loss of a label cannot depend on an arbitrary
subset of the output. The authors also provide a gradient which is completely
agnostic of the loss function, by constructing a weighted finite automaton where
states are output labels.

Complexity penalty

Cortes et al. presents an upper bound on the complexity term rk for linear
hypotheses in H1, bound by O(

√
log(N) maxi |Fi|2di/m), where di = maxf∈Fi |Yf |,

i.e., the maximum number of labels associated with the neighbourhood of a factor
node f . This bound can be improved upon, e.g., when binary indicator functions
are used. Worth noting is that this bound is dependent on the given sample S as
well as the feature modelling.

VCRF results on part-of-speech tagging

Cortes et al. also present experimental results on using the VCRF algorithm
to perform part-of-speech tagging. They compare VCRF against L1-regularized
CRF on 10 datasets over 8 languages, including English, Chinese, Finnish and a
Twitter dataset. Their results show that the VCRF outperforms CRF on 7 out of
10 datasets on both single labels (or tokens) and sentences, with a 5% confidence
level using 20% random noise added to the training set. These improvements are
of varying sizes, from 22.50 ± 1.57 to 19.82 ± 0.69 for the Tamil sentence error
compared with 5.51 ± 0.06 to 5.51 ± 0.04 for English tokens. However, the most
interesting result is the average number of features used by VCRF compared to that
of CRF. The largest difference is seen in the Basque dataset where VCRF uses 7028
features against CRFs 94712653, a ratio of 0.00007. A sparse feature vector with
few active features opens up for optimization in terms of both memory utilization
and computational efficiency. As the length of a feature vector can be enormous for
certain applications, this is a promising result.
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4 Modelling Link Prediction in Knowl-
edge Bases using VCRF

This chapter proposes a model for link prediction in knowledge bases. This includes
modelling a structured prediction problem in general and accompanying this with a
couple of feature families. A complexity analysis of these feature families presented
according to the VCRF theory presented in Section 3.2. The proposed model is an
attempt to combine the idea of balancing hypothesis classes of different complexity
with the idea that latent feature and graph feature models complement each other.

4.1 Prediction Problem

There are several ways to model link prediction, but in this thesis the focus lies
on the prediction off a single triple yijk = (ei, rk, ej). The much larger task of
extending a knowledge base with missing facts can be done by performing single
link predictions for all pairs (ei, ej). Now, since the goal is to predict yijk given a
set of such triples, the first observation is that the structural information provided
by the input and output should be equal. However, giving a whole knowledge base
as input x and expecting a triple yijk back as output seems rather artificial. It is
necessary for the input to specify exactly which entities that are of interest, i.e., the
tuple (ei, ej). However, there is little structure in these input and output spaces
to base a prediction on. In order to include the structural information available in
the given knowledge base, this information is utilized implicitly is made available to
the feature families to utilize instead. An alternative definition would be that the
input would be x = ((ei, ej), NKB,L(ei, ej)), where NKB,L is defined as the subset of
triples reachable from ei and ej given a length L. Here L would be determined by
the parameters used by the feature families, demarcating subset of the knowledge
base they need access to in order to identify features. As will be seen below, this
could, e.g., be determined by the length of the paths used by the PRA algorithm.

In this chapter, a simple 0-1 loss function comparing triples will be used. There
are more complex loss functions to consider, either by looking at pure graph features
such as the degrees of entity nodes or by including knowledge about the hierarchical
structure within entities.

4.2 Feature Families

There are five feature families presented here; Two based on previous work, PRA
and RESCAL, and two simple families based on neighbourhoods. These are built
on the feature families HPRA

L ,HRESCAL, HENT
k1

and HREL
k2

. Following are the descriptions
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and complexity analysis of each family. The complexity analysis is based on the
complexity bound given in Section 3.2 as O

(√
log(N) maxi |Fi|2 maxf∈Fi |Yf |/m

)
.

PRA features

The PRA family is based on the PRA algorithm presented in Section 3.1. Given
x = (ei, ej), this family parameterized on the path length L. The features are
binary indicators of sequences of relationships, but can easily be extended to the
original probabilistic floating point values (See Section 3.1 for discussion). Equation
4.1 defines this family using PL, a procedure to enumerate all paths between two
entities.

HPRA
L =

{
x→ 1p′∈PL(ei,ej) : p′ ∈ RL

}
(4.1)

Given x = (Ford,Star Wars) and y = (Ford, starredIn,Star Wars), the following
feature h1 ∈ HPRA

2 will be active

h1(x) = 1p′=(Ford,Star Wars,starredIn)(x)

where p′ encodes the relationships on the path via Han-Solo, i.e., (played, charIn),
as given in Figure ??. HPRA

L can be defined to include all paths of length l ≤ L, but
here it is defined to use paths of l = L. This is similar to how n-grams are defined
by Cortes et al.

The factor graph will contain one factor for each path in PL, since calculating a
feature will depend on all ri of a path. The factors will therefore connect to each
ri. One example would be an actor playing two roles in a movie, e.g., John Cleese
playing both the character Sir Lancelot the Brave and the Black Knight in Monty
Python and the Holy Grail. This example is shown in Figure 11. Here there will be
two paths from Cleese to the movie, resulting in one factor connected to each path.

Cleese

Sir Lancelot

Black Knight

Holy Grail

pl
ay

ed
charIn

played ch
ar

In

starredIn?
Cleese

Sir Lancelot

Black Knight

Holy Graily

Φ1

Φ2

pl
ay

ed
charIn

played ch
ar

In

Knowledge
base to factor

graph conversion

Figure 11: An example of what the PRA feature family factor graph looks like.
Here the variable y is used to denote the link prediction between Cleese
and Holy Grail.

Since there can be more than one intermediate path between two entities, as
with the example of Cleese, there can be more than one feature active. This gives
max
f∈Fi
|Yf | = |PL(ei, ej)|. PL can be computed using the standard breadth-first-search

algorithm with goal state ej , or using the random sampling method suggested by
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PRA [15]. The number of paths will also give the number of factor nodes, as |Fi| =
|PL(ei, ej)|, of the factor graph. The feature vector will contain one entry for each
possible path, i.e., one entry for each righthand side of the Horn clauses described
in Section 3.1 by, e.g., Equation 3.7. This gives |R|L number of features.

RESCAL latent features

In order to include latent features, a family based on the RESCAL model is
proposed. This is formulated as exactly the feature function of RESCAL:

HRESCAL = φRESCALij (4.2)

where the latent features of ei and ej are given as parameters to, e.g., the feature
function Ψ during evaluation. These parameters are trained in parallel with the
weights. Since it is possible to formulate RESCAL training as a stochastic gradient
descent problem, this extension to the VCRF problem is possible.

The RESCAL factor graph will only depend on the entities ei and ej given by the
input x, since the features are calculated using the latent variables ei and ej . This
gives a factor graph size of |Fi| = 1. Since the features are all pairwise interactions
between the latent variables of ei and ej , the maximum number of active features
|Yf | is going to be all H2

e pairwise interactions eixejy.

The RESCAL features φRESCALij should be evaluated for each rk, but this is not
encoded by Equation 4.2. Instead, this behaviour will be a result of the interaction
between HRESCALand HENT

k1
. This gives the feature vector length H2

e . As will be shown
later, the interaction with HENT

k1
will effectively set all features not associated with the

rk given by y to 0. In other words, giving only the equation fRESCALijk = W>k φ
RESCAL
ij

influence in scoring the pair (x, y). Each weight matrix Wk is then vectorized to
provide a feature weight vector of the same size.

Entity adjacency

The third family is based on the idea that relationships can be predicted by
looking at what type of entities surrounds a relationship. Looking at the example
in Figure 12 , the starredIn-relationship is surrounded by an actor and a movie.

Nimoy

actor

Spock

character

Star Trek
movie

pl
ay

ed
charIn

starredIn

Figure 12: Illustration of entity types that can be used as features. For k1 = 1,
HENT

k1
activate the features corresponding to character, actor and movie.

For example, connecting a beverage with a movie via starredIn could be ruled
less likely than via seenIn, soley using the types of the entities. This information
can be encoded as features, as shown in Equation 4.3.
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HENT
k1

=
{
x→ 1t′∈Ne(x,k1) : t′ ∈ Te

}
(4.3)

Allowing a neighbourhood including entities not directly connected by the rela-
tionship could be considered a semi-latent modelling, which is why a parameter k1 is
introduced. Equation 4.3 defines this family using a procedure Nt(x, k1). Nt(x, k1)
computes all entity types reachable from ei, ej of x by at most k1 steps. For k1 = 0,
this gives the types of ei, ej . Te denotes the set of all possible entity types, which is
also the number of features needed.

The maximum number of active features depend on the number of entities reach-
able from ei, ej . These entities can be computed using a graph exploration algorithm
REACHt(k1), returning all types found within k1 steps. One such algorithm is a
modified version of the depth-limited depth-first-search algorithm, remembering all
types traversed. The number of factor nodes for HENT

k1
also depends on the size of

REACHt(k1).

Relationship adjacency

The idea of entity type neighbourhoods can also be applied to relationship types.
The definition of the family HREL

k2
is analogue to that of HENT

k1
, where Nr(y, k2) denotes

the set of all relationship types reachable from y in k2 steps. Here k2 = 0 gives the
type of the relationship in y.

HREL
k2

=
{
y → 1r′∈Nr(y,k2) : r′ ∈ R

}
(4.4)

The number of active features is bound by REACHr(k2), i.e., the set of all ri’s
reachable from y. The number of factor nodes is also |REACHr(k2)|. Since there is
one feature per relationship type, the number of total features is |R|.

4.3 Combined Family

This section contains a proposed joint feature family based on the families given in
Section 4.2, as well as an analysis of the complexity factors rk used in the optimiza-
tion problem of VCRF (see Equation 3.19).

Table 5 summarizes all terms used to compute the complexity penalty for the
proposed feature families. All terms are presented in the description of each feature
family, albeit not always with formal notation.

Table 5 Factor graph and feature vector complexity components summarized for
all families.

Max. active features Factor nodes Feature vector length

HPRA
L |PL| |PL| |R|L

HRESCAL H2
e 1 H2

e

HENT
k1

|REACHt(k1)| |REACHt(k1)| |Te|
HREL
k2

|REACHr(k2)| |REACHr(k2)| |R|

The complexity penalties for each feature family is formulated in Table 6. The
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complexities are given as the boundary presented in Section 3.2,
O
(√

log(N) maxi |Fi|2 maxf∈Fi |Yf |/m
)
.

The parameterization of REACH and PL means that the largest factor graph out
of the samples is chosen to contribute towards the family complexity penalty.

Table 6 Complexity penalties for each feature family. The functions REACH and PL
are parameterized on training samples.

Feature family Complexity penality

HPRA
L O(

√
L log(|R|) maxi(|PL,i|2|PL,i|)/m)

HRESCAL O(
√

2 log(He)He/m)

HENT
k1

O(
√

log(|Te|) maxi(|REACHt,i(k1)|2|REACHt,i(k1)|)/m)

HREL
k2

O(
√

log(|R|) maxi(|REACHr,i(k2)|2|REACHr,i(k2)|)/m)

The complexities presented in Table 6 all depend on the parameters of each
feature family. The complexities ofHENT

k1
andHREL

k2
differ on the number of features but

otherwise exert the same form. The HRESCALfamily competes with HENT
k1

for the lowest
complexity, however the HRESCALcomplexity only depends on the formulation of the
latent variables whereas HENT

k1
depends on the connectivity of the given knowledge

base. The complexity of HPRA
L also depends on the connectivity of the knowledge

base. The terms maxi(|PL,i|2|PL,i|) of HPRA
L and maxi(|REACHr,i(k2)|2|REACHr,i(k2)|)

of HREL
k2

will most likely be the determining factors in determining which family has
the highest complexity. As REACHr,i(k2)) depends on |R|, the penality is bound by
O(
√

log(|R|)|R|2)/m). Since |PL| depends on R,the maximum degree of an entity
in the knowledge base and the length L, this term will grow more rapidly for dense
knowledge bases than the complexity of HENT

k1
.

The joint feature vector will be all possible combinations of the features from
each family Hk. The length of this vector can therefore be written as

N = NPRANRESCALNENTNREL (4.5)

Using the sizes outlined in Table 5, Equation 4.5 can be rewritten as

N = |R|(L+1)|Te|H2
e (4.6)

The English part of DBPedia contains 6 million entities from 754 classes with
1379 relationship types [44]. Using the L = 4 and 10 latent features, this translate
into a vector of size N ≈ 1020.
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5 Discussion

The proposed model for link prediction in knowledge bases shows some interesting
properties. This chapter contains a short discussion of these.

5.1 Goals

All goals presented in Section 1.1 of Chapter 1 have been achieved. Introducing
of the regularization of feature family based on the family complexity to the link
prediction problem is to the best of the authors knowledge a theoretical advance-
ment. The previous approach where latent and graph features where combined to
achieve stronger predictions fit nicely into this theoretical framework. This provides
insight into the effects of how and why such combinations can improve the quality
of the predictions. To some extent the combination of PRA and RESCAL described
in Section 3.1 implicitly exploits the difference in feature family complexity. It is
however beneficial to model this relationship explicitly, as outlined in this thesis,
in order to achieve higher transparancy of the inner workings of machine learning
algorithms. This is one step closer to reducing the notion of black box algorithms.

The third goal of modelling link prediction for VCRF is achieved in Chapter 4,
and the practicality of the proposed model is discussed in Section 5.2 below.

5.2 Feature Families

The simple models proposed in addition to the established formulations show some
promise. However, it is clear that there are issues with the multiplicative combi-
nation of feature families. Even if the idea is that VCRF will lower the amount of
features active on average to achieve sparsity, the length of the feature vector be-
comes alarmingly large for general knowledge bases. The dominating component is
the number of relationship types. This suggests that the approach taken here is less
favorable in the general case but can be advantageous in use case-specific problems
where |R| can be limited.

One problem with how the model is formulated is that the RDF type hierarchies
seldom provide a straight answer to, e.g., the number of existing entity types. This
opens up for both problems and opportunities. It gives room for use case-specific
model training with a narrow scope. However, it is problematic since a demarcation
of the type hierarch might not be straightforward and does not fully utilize the
strengths of linked data and RDF.

The reformulation of RESCAL in Section 4.2 downplays the strength of the
RESCAL algorithm. It is unclear how it will perform when the RESCAL-ALS
optimization is affected by the regularization of wk.
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Over all, the features families formulated in Section 4.2 are rather näıve, resulting
in the large feature vectors. However, clever implementations can perhaps overcome
some of these issues by, e.g., not storing the whole vector but using a hashtable for
each active feature. It is also possible to use less expressive features. Instead of
having one feature for each possible path between two entities, the PRA features
family could be restricted to one feature for each relationship type found on any such
path. This would alleviate the exponential size |R|L, giving a much more resonable
size |R|. Exploring the effect of such simplifications is something that needs to be
expolored with experiments.

Another reason that the feature vector becomes large is that the feature fami-
lies suffer from a multiplicative combination. It should be investigated whether an
additive combination could be possible.

Finally, it is not necessary to include all feature families in the combined family.
There is some overlap in what information the feature families encode such as, e.g.,
the family HREL

k2
having active features corresponding to paths given by HPRA

L for some
values of L and k2. Therefore, it is necessary to investigate, both experimentally
and theoretically, how this overlap can be (1) modelled and (2) utilized.
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6 Conclusions and Future Work

This thesis outlines a combination of highly theoretical and practical results as an
approach to model machine learning problems. The research into the dynamics of
link prediction in multirelational data sets provides a good introduction to the field.
The proposed model captures features relevant to performing predictions. However,
there is no guarantee that all of the proposed feature families allows VCRF to
training efficiently.

The most important extension to the work presented here is an implementation of
the proposed model. This model should be tested on knowledge bases with different
properties in order to evaluate the strengths and weaknesses. In order to compare
the results with existing solutions, testing on Freebase and YAGO are two options
high on the list. The model should also be tested on mono-relational data, to further
evaluate the weaknesses described in Chapter 5.

The largest flaw of the work of this thesis is that the formulation and analysis of
the model gradient has been left out. The gradient used in gradient descent to solve
the VCRF problem has a couple of critera that must be fulfilled to allow efficient
optimization. Here a deeper analysis of the feature families is necessary.

The factor graph Rademacher complexity is a powerful tool to analyse structured
prediction problems and algorithms. However, as the theory is state-of-the-art, the
application of it is not straightforward. Continued work should make an effort to-
wards aligning notation and theory with common formulations and algorithms in
structured prediction. Also, continued work should conform more existing struc-
tured prediction problems with the VCRF problem formulation. More practical
evaluations could provide more insight into many other machine learning problems.

Finally, a more comprehensive investigation into feature families should be per-
formed. There are many other existing feature families for, e.g., latent features that
should be evaluated. Looking at the formulation of the templated Markov Logic
CRF approach described in Section 3.1, such templating mechanisms can be applied
to other formal systems. Especially interesting are formal semantics.
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