|
Some publications of the subproject:
Rank-Deficient and Constrained Least Squares Problems
The listings of publications are in reversed chronological
order.
Refereed journal publications and invited book chapters
- An implicit radial basis function based reconstruction
approach to electromagnetic shape tomography.
N. Naik, R. Beatson, J. Eriksson and E. van Houten. Inverse Problems
25 (2009) (24 pp).
- A nonlinear iterative reconstruction and
analysis approach to shape-based approximate electromagnetic tomography.
N. Naik., J. Eriksson., P. de Groen, H. Sahli., IEEE Transaction
on Geoscience and Remote Sensing. 46 (2008) pp 1558 - 1574.
- Regularization methods for uniformly rank-deficient
nonlinear least-squares problems, J.
Eriksson, M Gulliksson, I. Söderqvist, and P-Å. Wedin.
Journal of Optimization Theory and Applications (JOTA), Vol.
127, No. 1, pp 1-26, October, 2005.
- Local results for the Gauss-Newton method
on constrained rank-deficient nonlinear least squares.
Eriksson J. and Gulliksson M. Math. Comp. 73 (2004), 1865-1883.
Technical reports and other publications
- Algorithms for 3-dimensional Weighted Orthogonal
Procrustes Problems. P. Å. Wedin and T. Viklands. Report
UMINF-06.06, Dept. of Computing Science, Umeå University, Umeå,
S-901 87, Sweden, 2006.
- Algorithms for Linear Least Squares Problems
on the Stiefel manifold. P. Å. Wedin and T. Viklands.
Report UMINF-06.07, Dept. of Computing Science, Umeå University,
Umeå, S-901 87, Sweden, 2006.
- On the Number of Minima to Weighted Orthogonal
Procrustes Problems. T. Viklands. Report UMINF-06.08, Dept.
of Computing Science, Umeå University, S-901 87 Umeå,
Sweden, 2006.
- On Global Minimization of Weighted Orthogonal
Procrustes Problems. T. Viklands. Report
UMINF-06.09, Dept. of Computing Science, Umeå University, S-901
87 Umeå, Sweden, 2006.
Theses
- Algorithms for the Weighted Orthogonal Procrustes
Problem and other Least Squares Problems, Thomas Viklands,
PhD Thesis, UMINF 06.10, Dept. of Computing Science, Umeå
University, Sweden, ISBN 13 978-91-7264-333-8, April 2006.
|