
Hybrid Resource Management for HPC and Data
Intensive Workloads*

Abel Souza1, Mohamad Rezaei2, Erwin Laure2, and Johan Tordsson1

1Department of Computing Science
Umeå University, Sweden
{abel,tordsson}@cs.umu.se

2PDC Center for High Performance Computing
KTH Royal Institute of Technology, Sweden

{mrez,erwinl}@kth.se

Abstract: High Performance Computing (HPC) and Data Intensive (DI) workloads
have been executed on separate clusters using different tools for resource and appli-
cation management. With increasing convergence, where modern applications are
composed of both types of jobs in complex workflows, this separation becomes a grow-
ing overhead and the need for a common platform increases. Executing both workload
classes on the same clusters not only enables hybrid workflows, but can also increase
system efficiency, as available hardware often is not fully utilized by applications.
While HPC systems are typically managed in a coarse grained fashion, with exclusive
resource allocations, DI systems employ a finer grained regime, enabling dynamic
allocation and control based on application needs. On the path to full convergence, a
useful and less intrusive step is a hybrid resource management system allowing the
execution of DI applications on top of standard HPC scheduling systems. In this paper
we present the architecture of a hybrid system enabling dual-level scheduling for DI
jobs in HPC infrastructures. Our system takes advantage of real-time resource profiling
to efficiently co-schedule HPC and DI applications. The architecture is easily extensible
to current and new types of distributed applications, allowing efficient combination of
hybrid workloads on HPC resources with increased job throughput and higher overall
resource utilization. The implementation is based on the Slurm and Mesos resource
managers for HPC and DI jobs. Experimental evaluations in a real cluster based on a
set of representative HPC and DI applications demonstrate that our hybrid architecture
improves resource utilization by 20%, with 12% decrease on queue makespan while
still meeting all deadlines for HPC jobs.

Key words: Resource Management, High Performance Computing, Data Intensive
Computing, Mesos, Slurm, Bootstrapping

*The paper has been re-typeset to match the thesis style. Reproduced with permission of IEEE.

1 Introduction
The increasing convergence of High Performance Computing (HPC) and Data Intensive
(DI) applications calls for using a single infrastructure, not only to better utilize the
ever increasing power of computing hardware but also to enable complex workflows,
combining HPC and DI. While traditionally separate infrastructures have been used
for HPC and DI applications, modern systems not only have tremendous compute
power on a single node (e.g. over 40 TFLOPS on Summit, a recent Oak Ridge
Leadership Computing Facility supercomputer system [Hin18]) but also enormous
memory and storage capabilities provided for instance via high bandwidth memory
and local Non-Volatile Random Access Memory (NVRAM) storage, making them
efficient tools for both types of workloads. Still, the usage models and software stacks
for these applications are very different. While HPC applications are long-running
jobs, parallelized with tools like MPI or OpenMP, with static resource allocations
and an a-priori determined lifespan, DI applications exploit models like MapReduce
[DG08] and make use of frameworks such as Hadoop [Whi12] and Spark [Zah+10],
which require dynamic resource allocations to adapt to changing compute requirements
and also changes in hardware availability, making them adaptive jobs [Pra+15], also
known as reactive applications. However, HPC resource managers like Slurm [YJG03]
or Torque [Sta06] assign resources to jobs based on what has been specified in their
requests. Jobs can typically only change their allocations by cancelling and resubmitting
to the queue and not adjust during runtime [Reu+18]. On the other hand, DI schedulers,
like YARN or Mesos [Vav+13; Hin+11] are designed to provide low-latency, dynamic
allocations [Jha+14]. Hence, there is a need for convergence of these resource allocation
models to fully support hybrid application workflows. This convergence will not only
enable DI applications on HPC systems but is also needed for the evolution of traditional
HPC applications that are increasingly employing complex workflows, in-situ data
processing, and dynamic restructuring, e.g. mesh refinement. These characteristics
make HPC jobs structurally similar to DI jobs [AW17; Tiw+13; Reu+16; Reu+18;
Com+16a; Ber17].

Furthermore, also at runtime much care needs to be taken when co-scheduling
HPC and DI applications [Bre+12]. HPC applications typically do not fully utilize
all the resources allocated to them, and this is likely to get worse with the increased
performance of compute nodes like the ones mentioned above. These characteristics
offer the potential to allocate underutilized resources to other applications, for instance,
DI jobs [Mer+17]. Furthermore, HPC applications are typically very sensitive to
disturbance in resource usage, such as CPU, memory, network bandwidth and/or Disk
Input/Output (I/O) operations [Bha+13]. Hence, naively co-scheduling HPC and DI
applications on shared resources will inevitably reduce the efficiency of HPC jobs.
Fortunately, HPC applications have a repeating nature, where the same application is
typically executed many times with different input data, with predictable resource usage
patterns (e.g., CPU, memory, I/O, network) based on monitoring and profiling. This
information can be analyzed through statistical learning techniques, enabling policies
aimed at improving queue throughput and resource utilization [Eme+13; RS00] with
controlled performance impacts to applications. Figure 1 shows such a typical HPC

Used
Capacity

Free
CapacityAllocated Resource

Free Resource

I
n
f
r
a
s
t
r
u
c
t
u
r
e

Q
u
e
u
e

R
e
s
o
u
r
c
e

M
a
n
a
g
e
r

R
e
s
o
u
r
c
e
s

V
i
e
w

&

A
l
l
o
c
a
t
i
o
n

Profile &
Accounting

[Network]

[Labels]

[Compute Node #1] [Compute Node #N]

[Scheduler]

[
S
t
o
r
a
g
e
]

CPU/Core

+

Figure 1: Typical Resource Management in a HPC cluster. Space sharing: Jobs with
different (resource) characteristics are queued and allocated resources (compute nodes
in the infrastructure) when they become free.

resource manager and monitoring system: (colored) jobs are queued, and requested
resources allocated in the compute nodes by the scheduler (big red and green parallel
rectangles in the infrastructure). During job execution, resources’ capacity utilization
and idleness can be monitored and profiled (white areas within compute nodes).

In this paper we present an architecture for co-scheduling HPC and DI application
based on resource profile and usage predictions for dynamic throttling of DI appli-
cations. Integrating more dynamic features into existing HPC schedulers like Slurm
is however an intrusive task, and experimental schedulers are difficult to deploy on
production HPC systems. We thus adopt a hybrid approach, where HPC applications
are still scheduled using a standard HPC scheduler, but co-scheduling of DI applications
is done through Mesos. DI jobs scheduling is based on resource usage estimates and
DI jobs are dynamically throttled when they interfere with HPC applications. With this,
we increase overall resource usage and efficiency as well as provide a path for building
complex workflows that combines HPC and DI components.

The remainder of this paper is organized as follows. Section 2 discusses notable
past references on scheduling and resource management in HPC infrastructures, and
what changes would be needed to extend them. Section 3 describes our approach in

detail. Results and discussion follow in Sections 4 and 5. Conclusions and future work
go on Section 6.

2 Background & Related Work
HPC clusters are managed by resource managers like Slurm [YJG03] and Torque
[Sta06], which commonly require users to describe jobs by the total run time (also
called deadline) of the allocation and a geometry (i.e., number of CPUs, threads per
core, total memory, specific accelerators and/or network bandwidth/topology). Jobs can
finish sooner than the specified run time limits, but more importantly, can utilize less
than the total resource capacity allocated. The resource allocation to jobs is commonly
at the granularity of a node. Some resource managers allow nodes to be shared between
jobs, although this feature is often not enabled by default. Having resource allocation
granularity set to node level guarantees predictable performance (capacity), which is
needed for various purposes like cache optimization, debugging, and is thus important
during application development and testing. Usually, users cannot request additional
resources other than the ones already allocated at job launch [Amv+17], even though
many libraries vow in this direction [Com+16b]. Job categories describe what can
happen to a job’s resource geometry throughout its life-cycle. Historically, HPC jobs
have been categorized in four types: rigid, moldable, malleable, and evolving [FR96].
With large data processing needs becoming a norm both in industry and in scientific
communities, a fifth class has appeared: adaptive jobs [Pra+15]. These jobs are
characterized by handling large amounts of data, being highly dynamic and adaptable
to resource changes, faults, and by being very data-intensive [Pra+15; Reu+18]. Thus,
they are also referred to as Data Intensive (DI) jobs/applications.

Large parts of HPC datacenters are reserved to rigid and long running workflows
[Amv+17; Reu+18] that require predictable reservations, where users specify resource
constraints in very detailed manner before job submission. HPC jobs come with several
constraints as they are tightly coupled in nature, requiring periodical message passing,
synchronization barriers [Val90], and checkpointing for fault-tolerance [Wan+10].
These datacenters use a centralized scheduling and queueing system (Figure 1), and
jobs do not have the same latency requirements as DI jobs [Pra+15], with longer
waiting-times reported [Amv+17].

2.1 Dynamic Resource Managers
Resource assignment can be a challenging task in clusters with heterogeneous resources,
where compute nodes with different configurations and architectures are used. For
heterogeneous environments, dynamic resource managers are used as they are able
to cope with variations and faults within the infrastructure [Reu+18]. In traditional
HPC resource managers, allocation is the assignment of resources to execute a job.
This means the request description is what the resource manager will allocate to the
job. This is the common Service Level Agreement (SLA) that most HPC clusters
support. Collocation (also known as co-scheduling) is a common technique to increase

resource utilization in clusters, though operators are reluctant to use this due to the
potential performance interference caused by node sharing, known as SLA violations.
For instance, to mediate performance interference Paragon [DK13] uses classification
to weight the impact of different resources for each job, and uses this knowledge to
select candidates for collocating jobs. On-line models are also used to detect and
avoid performance interference [NK10; Yan+13], or to take actions such as throttling
low-priority jobs to mend the interference [Zha+13]. Off-line models can be used
as well [Sha+13], but do not help at runtime. Other resource managers like Mesos
[Hin+11], Torque, Omega and Kubernetes [Sch+13] expect workloads to request
resource reservations. Mesos, for instance, processes resource requests and, based
on availability and fairness, makes resource offers to individual frameworks (e.g.,
Hadoop), which can accept or reject offers depending on application requirements.
Mesos simplifies heterogeneity by behaving like a meta-scheduler, with conceptual
abstractions for CPU, memory and other resources, which are taken away from physical
nodes and managed by Mesos. This enables a set of new capabilities like isolation,
elasticity and fault-tolerance for distributed applications [Reu+18].

With finer granularity in task allocation, one can expect higher resource utilization
[Zha+13; Reu+18], but in large clusters this can have negative impacts due to the
lower resource fragmentation. Thus, a method for enforcing resource isolation among
jobs is essential [Zha+13; Bur+16]. Although HPC resource managers like Slurm
can allocate resources using finer granularities, they do not provide the necessary
application programming interface (API) and capabilities for application elasticity at
runtime, nor mechanisms for controlling and enforcing isolation between jobs and
tasks [Hin+09]. The main difference between dynamic (Mesos or Yarn [Vav+13]) and
static resource managers (Slurm or Torque) is this extra API providing fault-tolerance,
execution and resource control at runtime [Reu+18]. For example, Mesos provides
APIs that use cgroups [Men07] as its underlying resource isolation mechanism. In
Linux, cgroups is one of the most available and robust fine grained operating system
controls that make sure processes, encapsulated as containers (namespaces), do not
consume more of the resource capacity (e.g. CPU, memory, I/O and/or network) than
what has been assigned to them. These capabilities are important for load-balancing
and stream-processing that rely on task migration and/or resource allocation changes
during runtime [Hin+09].

2.2 Hybrid Resource Manager Challenges
In particular for large scale HPC clusters, having a hybrid resource manager combining
static and dynamic management has a number of advantages, as well as challenges.
First, HPC applications tend to have higher resource utilization than cloud computing
applications [Amv+17], which requires any combined management solution to be
scalable in the number of utilized resources. Secondly, as DI applications require
low-latency scheduling, the scheduling needs to be performed quickly and in real-time
to make resources available. Tools presented in [Eva+14] and [Pal+15] allow users
to analyze and optimize their applications, though they do not enable the integration
of collected information for real-time scheduling and resource control. Lastly, the

resource manager should be able to handle various criteria in parallel. For instance,
resource allocation must be performed in a manner that also considers isolation and
interference mitigation. Large scale HPC clusters on their way to Exascale computing
are going to grow in both resource size and heterogeneity. In addition, DI applications
are becoming more recurrent, complex and diverse[Ous+13]. To address these diversity
of requirements, dynamic resource managers provide a number of APIs for elasticity,
migration and fault-tolerance [Reu+18]. However, the common practice in HPC clusters
is to statically allocate resources to jobs, which means that at runtime a job cannot
request for changes in its allocation nor the resource manager can change an allocation
without ending a job’s execution.

Predicting system utilization of parallel jobs have been studied extensively [NK10;
Mar+11; DK14; Yan+13; BTG13], but adding certainty (for example, confidence inter-
vals) to these predictions have not been prevalent. One of the main focuses of our design
is to enable a resource manager to take decisions with confidence. The confidence
can be used to lower occurrences of false positives (incorrect collocations resulting
in notable performance interference) while sharing resources, which is essential as
performance is to be prioritized to HPC applications. Furthermore, any combination of
static and dynamic resource managers must be simple and scalable, and must detect and
gracefully deal with interference. In here, we propose, evaluate and discuss the design
of a non-intrusive hybrid architecture combining traditional HPC scheduling with the
advantages of more dynamic approaches taken by DI schedulers. The goal is to improve
DI application scheduling, overall datacenter resource usage, queue waiting time, and
queue makespan by deriving spare resources from traditional HPC job allocations using
data analytics techniques. In here, resource usage refers to how efficiently the capacity
of the allocated resources are actually used by the application. Queue waiting time and
makespan respectively relate to how long a job waits until it starts executing and how
long the batch processing system (e.g., Slurm) takes to complete a given set of jobs in a
queue instance. Significant amount of research has been done on resource management
in distributed systems with focus on requirements of HPC or DI applications. The
main agenda of this work is to utilize HPC infrastructures for DI applications with their
contradictory SLAs versus the common approach HPC resource managers have toward
running and managing jobs. In the following we structure various main points which
enable us to design our proposed architecture.

3 Architecture
In this section we describe the design of our hybrid architecture. Our aim is to
collocate HPC and DI jobs in order to increase overall cluster utilization, with controlled
performance overheads for HPC jobs. As discussed in previous sections, to achieve
full convergence and considerable performance for HPC and DI jobs, intrusive changes
in current HPC infrastructures would be needed. However, in here we present a
hybrid, non-intrusive approach focused on two resource managers: Slurm and Mesos.
Mesos is chosen as it is non-intrusive and can be set and executed by regular users.
In contrast, incorporating the very popular Kubernetes [Sch+13] resource manager

in a HPC cluster would require administrator privileges. Figure 2 shows the main
components of our hybrid plugin architecture and exemplifies the overall job life-
cycle of a queue managed by Slurm. In the Job Queue, full colored squares represent
traditional HPC jobs and squares with a full triangle inside denote DI jobs. These
jobs could possibly be tagged by users during job submission or submitted to special
queues. The blue arrows, originating from the first job and ordered from top to bottom,
show each step taken throughout a job’s life-cycle, from submission to spare resource
inferring in the Insight Engine (see next sub-section). Unlike in the traditional HPC
scheduling scenario (Figure 1), DI applications are sent to application-dependant queues
managed by specific frameworks inside Mesos. Specific job allocations are coloured
according to the job’s color (Blue and green boxes in the Infrastructure layer). By
default, a Slurm daemon (SLURMD) runs in each node. In addition, our architecture
spawns additional daemons (Mesos agents) on each node for communication with
Mesos. Current resource utilization in each node is exemplified by the arrows in the
squares and rectangles, which represent estimations for CPU core and memory usage,
respectively.

Mesos performs resource management and scheduling across an entire datacenter
and handles all communications with application schedulers through an API. This API
enables scheduling frameworks to monitor and execute tasks spawned by applications.
A framework in Mesos is the implementation of a scheduler tailored specifically to an
application-type (e.g. Spark or Storm). In Figure 2, frameworks are represented by
rectangles on top of the Mesos Master (MapReduce and DataFlow schedulers). Mesos
monitors task states (RUN, COMPLETE, FAIL, etc.) to handle problems such as
application crashes, misbehaviours, or unresponsiveness. For each case the frameworks
can trigger specific actions, e.g., restarting or migrating a failed task to another node
by communicating with the master. This model and the associated runtime system
enable applications with enhancements such as fault-tolerance, resource isolation, and
performance control.

3.1 Insight Engine
The overall application performance profile is bootstrapped by the Insight Engine (IE,
far left box inside the Hybrid Plugin in Figure 2). The IE infers spare resources through
statistical analysis and its internal process is depicted in Figure 3 and Algorithm 1 (see
next subsection). The IE calculates and generates a cluster-wide resource capacity
view, with a database (not shown) from where jobs’ resource utilization is shared with
Mesos through its Allocator Module. Spare resources are periodically calculated by
the IE and registered with the Allocator Module. Such resources can be offered to the
frameworks via the Master to allow applications to start execution. The default way for
Mesos to allocate resources to frameworks is based on the Dominant Resource Fairness
(DRF) algorithm [Gho+11; Hin+11]. In essence, Mesos frameworks receive offers
from the scheduler and then decide if they suit their specific applications resource needs.
This model has been shown to cause starvation, but Mesos mitigates this problem by
supporting weighted DRF among frameworks [PPS15].

Running
Pending

SLURM

Adaptive
Job

HPC
Job

Job
Queue

Hybrid Plugin

Insight
Engine

Allocator Module

Master

Mesos

Default
Scheduler

Job Throttler

SLURMD

SLURMD

SLURMD

SLURMD Mesos Agent

IN
FR

A
ST

R
U
C
TU

R
E

MapReduce
Scheduler

DataFlow
Scheduler

0%

100%

Mesos Agent

Figure 2: Hybrid Architecture with job queue and outline of the job submission
life-cycle. Blue arrows show job allocation and profile, with the Insight Engine
inferring spare resources that later that can be offered to application-specific schedulers
(MapReduce/DataFlow) sitting on top of the Master. Spare resources (in the green
allocation) are pending.

The profiling process starts after a set of nodes are allocated to a HPC job submitted
through Slurm (”Job Queue” in Figure 2). The moment the job tasks start execution, a
profiler starts collecting the selected performance counters (performed through Slurm
Prolog scripts). Performance counters are CPU hardware registers that count events
such as CPU utilization, CPI (cycles per instruction), cache-misses, or branch miss-
predictions. These metrics form a basis for profiling applications to trace dynamic
control flow and identify any hot spots. The metrics are sent from allocated nodes to
the IE, which then estimates resource utilization within the corresponding (tunable)
confidence intervals. Extensive collection of performance counters can negatively
impact a job’s performance. We thus choose to use per f [Mel09] for instrumenting
CPU performance counters as it has a very lightweight profile footprint [Wea13]. Perf
is also included in the Linux kernel and is frequently updated and enhanced.

In order to infer free resources and potential task interference, the IE needs to ana-
lyze data from all running tasks and cluster nodes, potentially a very large dataset. The
IE deals with the volume of data by using the Bags of Little Bootstraps method[Kle+12]
which provides the results in a limited time. Using BLB, the IE can look into signif-
icantly smaller portion of performance data while providing results within a preset
time constraint. BLB also provides a simple and robust method of assessing the quality
of estimations during operations. We thus use a scalable version of bootstrapping
for time series to enable the resource manager’s scheduler to create resource usage
estimations in a scalable and robust manner. BLB works by averaging the results of

Data: Performance Counter Traces
Result: Node i’s Utilization Estimates with Confidence
Ri← per f ; . data stream from node i
while triggered do

k← 1
while ξ ∗i < ξ i

con f idence do
S∗← s disjoint samples from Ri of size b
for each j← 1 to s do

for l← 1 to k do
N j

b ← Resample S∗, n times (= |Ri|)
P∗l ← n−1

∑
b
a=1 N j

aδRi,a ; . Empirical distribution
for each N j

θ ∗l ← θ(P∗l) ; . Mean of P∗l
end
Q∗k, j← k−1

∑
k
l=1 δθ∗l

; . Empirical mean

ξ ∗i ← ξ (Q∗k, j) ; . Empirical confidence

end
k← k+1

end
Qi← s−1

∑
s
j=1 Q∗k, j

ξ i← s−1
∑

s
j=1 ξ ∗j

return(Qi,ξ i)
end

Algorithm 1: Upon invocation, the IE runs BLB for each node i to create the
needed resource estimates for the selected job and returns the results: Qi, for mean
resource usage, and ξ i, for the confidence interval. These values are used for
the job’s soft (Qi) and hard limits (Qi + ξ i) for each collected (resource) metric,
respectively.

bootstrapping multiple disjoint subsets of a large dataset of size n. Broadly speaking,
BLB uniformly samples s considerable small (of size b; such that b < n) subsets from
the dataset. BLB creates an empirical (δR) distribution for each subset s, and a mean
and confidence are estimated in the manner of classic bootstraping: BLB repeatedly

resamples (k times) n points (independent and identically distributed, i.i.d.) and creates
a distribution associated to each subset term (j), averaging their mean values. From
each associated empirical distribution, it computes the mean, and approximates the
confidence by averaging all confidences from every Q∗j . Algorithm 1 basically looks
into a data stream of performance counters for the selected node i, and then creates
its samples with replacement by sampling a growing dataset of 1 minute intervals in
a time series. This method is repeated until node i’s mean confidence (ξ ∗i) is below
a preset threshold (ξ i

con f idence), associated with node i. Perfect time estimates are not
required, but reasonable approximations are valuable for resource managers as one
of their aim is to improve overall (datacenter) utilization. With the goal of having
minimal computational overhead on the local machine, performance counters are sent
to the Mesos Master, located outside the scope of the job’s resource allocation, and the
statistics calculated are limited to the mean and standard deviation for each metric. For
the purpose of simplicity, in this paper we only focus on CPU utilization, represented
as the cpu-clock counter in perf. As shown in Algorithm 1, we calculate the uncertainty
of these measurements for window size W until we reach a confidence of ξcon f idence, j,
empirically chosen as 80% for all nodes, based on our HPC use-cases (see Section 4).
Note that ξ i

con f idence confidence could be set on a per node basis as well, although we
do not analyze this feature in here.

Note that the gathered data from each node could be combined with a Gaussian
distribution, which would enable the IE to estimate utilization’s mean and standard
deviation (confidence) for the whole job. This latter information can be used for
planning job co-scheduling. The balance between the sample rate, the number of
re-sampling, and the predefined confidence target can define the latency with which
BLB provides the new estimates in each job. In the end we get the estimations from
only small portion of the whole node’s dataset [Kle+12], which saves computations,
storage, network communication, and reaction time (when a job changes resource
usage behaviour). More importantly, the whole pipeline of creating the insight (both
estimation and confidence) are scalable by design. We should also consider that for the
performance data we can set a retention time in which samples will be taken from. Any
job running in the cluster can change its behavior during execution and the retention
time can be used to reduce false assumptions about the current state of the job. In this
work we empirically set the best confidence that works for all the test applications (0.8
in Algorithm 1), and keep that as a constant value for each job’s node j. For future work
we consider using other means to set the best confidence, ideally in a per application
basis. This confidence can have direct impacts on false positives (interference).

Advantages of this design include that the central IE is lightweight as the main
part of decision process is distributed. More importantly, even though HPC jobs are
expected to be load-balanced across nodes, some jobs may not or different tasks of the
same job can have different resource usage patterns. In this case, Algorithm 1 reports
different resource utilization (as mean and confidence) for each node. The confidence
is used to show when the measures are going to be useful for the resource manager to
collocate and control DI jobs resource shares. In essence, when Algorithm 1 reaches
80 percent confidence it updates the values to Mesos master with one caveat - each

Figure 3: From model’s estimation to cgroup limits: For each node of a job we use the
confidence set as the standard deviation added to the mean utilization. Statistically this
number defines the expected range for the node utilization.

local node defines hard and soft resource limits for DI jobs based on the the mean and
confidence interval. These limits are enforced using cgroups (see Subsection 3.B).

3.1.1 Confidence

The Hybrid Resource Manager needs to have confident knowledge of its long running
jobs resource utilization. By using BLB, the IE creates a distribution for the job’s
various metrics (performance counters) with the added benefit of a confidence score
for this estimate (we assume the distribution to be Gaussian). We use the confidence
to determine if the expectation of a job’s behavior (e.g. in form of an estimation) is
stable enough to be usable, but also to reduce occurrences of false positives. As our
hybrid approach targets the HPC domain, the resource manager has a priority of not
disturbing the execution of HPC jobs. Here, the confidence helps in cases where HPC
jobs’ resource utilization sporadically changes. Another usage for the confidence is to
identify when the classification of a job (e.g. CPU, memory, I/O, or network bounded)
changes, or put it another way, to analyze when the spectrum of job’s utilization as we
expect it to be, changes (Figure 3).

3.1.2 Scalability

Another important aspect of HPC management relates to how scalable the IE model is.
In large HPC clusters, massive amounts of data can by produced by a single job, by for
instance, increasing or decreasing the frequency of gathered performance counters. A
HPC job generally produces a correlated stream of data between its allocated nodes
due to load-balacing, a desired quality that reduces time to complete, although due to
sharing this not always hold. BLB helps with reducing the amount of data that needs
to be read by the IE model. In here we do not assume that HPC applications have
correlated resource utilization among allocated nodes.Another source of scalability is
in the variations in expectations. We expect models to become more stable (higher

confidence) over a period of time. In case of false positives which can be a result
of interference, or just an interval model update, the IE can be updated based on the
current performance data. But unless the job erratically changes its behavior we would
not expect these updates to happen very often, and even they do occur, they only make
the model’s expectation less confident. This in term leads to the IE not collocating any
other jobs in the affected nodes.

3.1.3 Real-Time Decisions

As shown in Algorithm 1, the first sampling without replacement is being done based
on number of tasks of a job (Commonly, number of allocated nodes to the job). The
algorithm performs the next step of iterative estimations until a certain confidence is
reached. This method can be altered by setting a time limit to terminate the iteration.
This approach is normally robust and could be run periodically, but at times outliers
may occur as the job changes its behavior sporadically. More importantly, DI jobs can
be reactive and Algorithm 1 may be restarted reactively (on-demand). The key point
is that Algorithm 1 is bounded by either confidence or time limits, while still being
scalable.

3.2 Sharing & Isolation: Job Throttler
There are various ways to enforce isolation between collocated jobs in the same node.
One is through the operating system’s (OS) scheduler, which may not provide enough
guarantees for memory operations due to the impacts of context switches in the Last
Level Cache (LLC) [Zha+13]. Another way is by using a monitoring agent on the
nodes where jobs are running, which is a very promising approach [Sch+13; Zha+13],
however it works only on specific architectures and the resource manager would need
to be aware of different hardware. Linux Cgroups [Men07] isolation is one of the
most robust ways to ensure that processes do not consume more resources than what
has been assigned to them. The LLC problem can be addressed by cgroups in some
processors, a solution already deployed in some datacenters [Her+16]. The main issue
with cgroups is that within the context of a container the task might not use all the
resources. We address this by use of both hard and soft limits in cgroup, which to date
is not yet a well-established feature.

Job throttling aims at reducing CPU access to applications at the cost of com-
putational performance. Mesos uses cgroups to provide resource isolation for CPU,
memory, I/O and network bandwidth. Resources received by Mesos frameworks to
execute applications are controlled by the Allocator Module through Mesos APIs.
Although all isolation mechanisms are provided by Mesos, performance interference
due to hardware space-sharing among different applications can still occur and impact
collocated jobs negatively. It is well know that frequently collecting hardware metrics
can have negative impacts on the workload. For the purpose of our approach, we
use CPU utilization (cpu-clock in perf metrics) together with our algorithm to detect
variations in higher priority, HPC workloads. Other ways to achieve this is to collect
information directly from within the application (e.g. throughput or latency overtime),

but this would require changes to runtime systems and libraries, which reduces the
potential for adoption of the solution.

4 Evaluation
In this section, we evaluate our proposed architecture with respect to performance,
resource utilization, and queue throughput for different applications with different
resource usage profiles and scenarios. In order to demonstrate the feasibility of our
hybrid approach, we first run two HPC applications and compare isolated runs with
statically and dynamically controlled scenarios. We then use a workload model to
generate a job trace derived from the Argonne National Laboratory supercomputer.
The generator was taken from the Parallel Archive Workload [FTK14]. This is a
comprehensive and realistic model for generating streams of rigid jobs with variable
geometries following a given cluster’s size [CB01]. The same model is used for
three different cluster sizes, measured in number of cores: 128, 256, and 512 cores.
Time allocations were granted for the hour/half-hour depending on the applications’
execution times when running in isolation (no node sharing). For instance, if an
HPC job takes 39 minutes to complete, the job is submitted as if the user requested
1 hour. We evaluated the impact of our approach in a private and dedicated cluster,
hosted at RISE SICS North Infrastructure and Cloud datacenter research Environment
(ICE)1. The cluster is composed of 16 Open Compute Windmill compute nodes, each
containing two 16 Intel Xeon E5-2660 CPU-cores (2.2 GHz), with 144 GB DDR4
memory (2133 MHz). All nodes are connected with a 10 Gb/s Ethernet network.
The shared filesystem used during workload executions is a NFS v4.2, connected
through Remote Direct Access Memory over Converged Network (RoCE), with peak
performance of approximately 10 Gb/s. The cluster runs Ubuntu Bionic Beaver (18.04),
and is managed by Slurm (17.02).

4.1 Applications
We selected five workflows as use-cases, four real ones (NEK5000, Montage, BLAST
and Statistics), and one synthetic. For our evaluation, NEK5000, Montage, and BLAST
are examples of HPC jobs (scientific workflows), and Statistics and Synthetic are
examples of DI jobs. Scientific workflows describe applications’ resource requirements
in each part of the execution (called stage). Stages can be parallel or sequential. In
parallel stages, all available cores are used, not necessarily in its maximum capacity.
In sequential stages, only one of available cores are used, often at maximum capacity,
whereas all other available cores idle. This property makes workflows a suitable candi-
date for collocation with DI jobs.

NEK5000 [Fis+08] is a fluid dynamics application. It solves the unsteady incom-
pressible two-dimensional, asymmetric, or three-dimensional Stokes or Navier-Stokes

1https://ice.sics.se/

[Pat84] equations with forced or natural convection heat transfer in both station-
ary (fixed) or time-dependent geometry. NEK5000 is memory and cache-optimized
and thus very CPU, as well as network intensive when scaling it (i.e., adding more
nodes/resources). All runs use workloads from the standard examples that come with
NEK5000.

Montage [18] is an I/O intensive workload that constructs a JPEG image from sky
survey data formatted as Flexible Image Transport System (FITS) files. Montage is
composed of nine stages logically grouped into parallel and sequential stages. All
experimental runs of Montage construct the image for survey M17 on band j and
degree 8.0 from 2mass Atlas images.

BLAST [Alt+97] is a CPU-intensive workflow that matches DNA sequences against a
large sequence database (> 6 GB). The workflow splits an input file (of few KBs) into
several small files and then uses parallel tasks to compare the input against the large
sequence database. The database is loaded in-memory on all compute nodes during the
parallel stage. Finally, all the outputs from the parallel stage are merged into a single
file. BLAST is composed of two main stages: one parallel and one sequential.

Statistics is an I/O intensive application that calculates various statistical metrics
(mean, median, average, standard deviation, variance, etc.) from a big dataset with
measurements of electric power consumption in one household with a one-minute
sampling rate over a period of almost 4 years. Different electrical quantities and some
sub-metering values are available in a public dataset [KJ11]. The statistics workflow is
composed mainly of a small sequential stage and a big parallel stage, consuming most
of the processing due to communication among the parallel tasks.

Synthetic workflow is composed of basic sequence and a parallel stages, written
in Python. This is memory and CPU intensive application, where the memory intensive
part consists of tasks that perform a large number of memory allocations for over one
billion integers, prior to a CPU intensive part that calculates the values of their sum
and multiplication. The first stage contains one billion tasks, calculating the sum in
sequence, whereas the second parallel stage contains five million tasks, calculating the
multiplication in parallel.

The workload model is used to generate 16, 28 and 41 job arrivals respectively for
each cluster size: 128, 256 and 512 cores. From these, 52% of the jobs (52) are set as
HPC jobs and 33 as DI jobs. HPC jobs run Montage and NEK5000 with 32, 64 and
128 cores (maximum scale), as well as BLAST with 32, 64, 128, 256, and 512 cores.
The core allocation for DI jobs varies as 32 to 128 cores for Statistics and 32 to 512
cores for Synthetic.

4.2 Scenarios
We first describe an isolated experiment illustrating the performance isolation and
enforcement capabilities of our approach. This experiment was performed on a single

node with only two applications, Montage and BLAST, where Montage was given
higher priority than BLAST. The number of cores used by each application was either
8, 16, or 32 each (three scenarios in total). We begin by running each application
in isolation to establish a baseline, and later collocate the two applications, either
with no resource sharing control, a static sharing by cgroups (different percentages of
cgroup.cpu quota allocated to Montage and BLAST), or an active sharing approach.
For the latter, we compare our BLB method (Algorithm 1) with two simple methods, a
parallel freezer that halts the lower priority application as long as the high priority one
is using all its cores, and a random freezer that halts the lower priority application for a
random amount of time whenever the high priority application is using all its cores.

We later validate our results against running the same workload generated by the
model in three different scenarios: (i) vanilla Slurm, (ii) collocated Slurm, and (iii)
with our hybrid architecture. In (i), applications are submitted as separated jobs, with
default backfilling scheduling algorithm used by Slurm, where the granularity is at
the node level. In scenario (ii), jobs are submitted as separated jobs just as in the
previous case, with a virtual cluster composed of the physical nodes. This virtual
cluster is managed by an additional DI queue, and its resource granularity/affinity is
set at the core level (CR Core Slurm setting), so nodes can be shared among jobs, with
a maximum of two jobs per consumable resource (node). In scenario (ii), no two HPC
jobs are collocated. In scenario (iii), our hybrid approach, a similar resource sharing
occurs, but our plugin controls how resources are shared among HPC and DI jobs. As
explained in the previous section (Section 3), DI jobs do not go into the normal Slurm
priority queue. Instead, they are sent to Mesos queue and the application scheduler
(Mesos framework) takes care of allocating and monitoring resources given to the tasks.
In order to avoid DI job starvation, a minimum of 5% of every resource in the cluster is
given to Mesos. This means that if collocated with a HPC job, DI jobs will be able to
use at least 5% of the processing power available in the node. After collocation, the
IE estimates and updates resource limits (using Algorithm 1), which keeps running
in real-time during all experiments. These estimations are then used to control and
enforce the resource shares for each job, where the priority are the HPC applications.

For each scenario, we collect the following metrics:

1. total queue latency, which is the time taken to complete the execution of all
queued jobs;

2. CPU utilization over time for each node managed by the job queue;

3. total execution time (wall clock) for each submitted job.

These metrics can be collected from Slurm logs, and/or obtained using the perf
tool. Notably, the use of perf does not seem to cause any impact on the workload, as it
is already loaded directly into the Linux kernel.

4.3 Results
Starting with our isolated experiment, Figure 4 shows a heatmap with execution times
for each application, normalized against the scenario where the applications execute

1.0
(1204s) 1.10 1.06 1.05 1.42 1.13 1.01

1.0
(1110s) 1.23 1.15 1.16 1.53 1.27 1.10

1.0
(1182s) 1.43 1.39 1.31 1.82 1.25 1.10

1.0
(1380s) 1.28 1.30 1.27 1.30 1.45 1.52

1.0
(706s) 1.22 1.22 1.22 1.27 1.98 1.98

1.0
(365s) 1.26 1.30 1.22 1.13 1.97 1.91

Isolated No-Control 95-05 80-20 05-95
Random
Freezer

Parallel
Freezer

M
O
N
T
A
G
E

8

16

32

#	Cores

B
L
A
S
T

8

16

32

1.29

1.22

1.20

1.08

1.15

1.29

BLB

0%

Runtime
Interference

100%

Controller

Figure 4: (Normalized, 1st column) Heatmap showing how different resource con-
trollers (Cgroups 95-05 80-20 and 05-95, random and parallel freezer, and BLB) affect
total run times for Montage and BLAST as scale increases (# allocated cores). Each
column represents how resource shares (in terms of execution time normalized against
the isolated case) were distributed among higher (Montage) priority and lower (BLAST)
priority jobs. The last three columns represent specific controllers where application
structure is taken into consideration. The larger the numerical value, the longer the
application takes to complete.

in isolation. As shown in this figure, the no-control policy gives good performance,
but does not preserve application priorities. The static policies (95-5, 80-20, and 5-95)
give good results for the prioritized application (Montage), but are inflexible and add
overhead to the lower priority jobs (BLAST) or vice versa for 5-95, in particular when
more cores are used. The parallel and random freezers protect the performance of
the high priority application (Montage) well, but yield very poor performance for the
low priority one (BLAST). Our BLB method achieves good performance for Montage,
reasonable good for BLAST, and achieves stable results for varying number of cores.
Based on these observations, we next study the performance of our proposed method
for larger cluster sizes. Henceforth, Slurm (vanilla) corresponds to the isolated case,
Slurm (collocated) to the no-control scenario, and Hybrid to our BLB method.

Tables 1 and 2 summarize the results for the generated workload model. In the
cluster experiments, Slurm’s default queue (Vanilla) is used as a baseline for the other
queues, as jobs do not share the node and are submitted and scheduled as done by
default in Slurm. In Table 1 the average waiting time is reduced with 42% for our
hybrid approach compared to vanilla Slurm, and the average walltime increased by
9%, both due to the resource sharing. In comparison, collocated slurm reduces average
waiting time with 52%, but suffers an 162% increase in average walltime that leads to
many jobs being killed as the overrun their allocations, which is further explained in
Table 2. This table shows the queues makespan, job throughput, CPU utilization, and

Table 1: Summary for five different workloads (a mix of BLAST, Montage, NEK5000,
Statistics, and Synthetic)

Application Number
of Cores

Average
Waiting Time

Slurm (Vanilla)

Average
Waiting Time

Slurm (Collocated)

Average
Waiting Time

Hybrid Architecture

Average
Walltime

Slurm (Vanilla)

Average
Walltime

Slurm (Collocated)

Average
Walltime

Hybrid Architecture

Montage [32 - 128] 3569 s 1850 s 2011 s 1331 s 3783 s 1560 s
BLAST [32 - 512] 3985 s 1075 s 2321 s 2833 s 3683 s 3400 s

NEK5000 [32 - 128] 4235 s 3081 s 3387 s 2877 s 13005 s 3061 s
Statistics [32 - 128] 2441 s 1092 s 1011 s 1539 s 1711 s 1623 s
Synthetic [32 - 512] 3382 s 1396 s 1450 s 723 s 955 s 893 s

Average 250 3522 s 1699 s 2036 s 1861 s 4627 s 2107 s

Table 2: Average queues makespan, throughput (# jobs/total makespan(s)) and missed
deadlines for each allocation approach.

Queue
Total Workload

Makespan
(s)

Job Throughput
(#Jobs/time[s])

CPU
Utilization

(%)

Missed
Deadlines

(%)

Slurm
(Vanilla) 12972 4.2∗10−4 69 0

Slurm
(Collocated) 21652 4.5∗10−4 90 43

Hybrid
Architecture 11380 1.2∗10−3 84 0

missed deadlines, with the best result(s) for each category highlighted in bold text. Here
it can be seen that compared to vanilla Slurm, our approach reduces the makespan with
12% and improves utilization from 69% to 84%, while still meeting all job deadlines.
In contrast, the collocated Slurm achieves an impressive resource utilization of 90%,
but at the expense of a very long makespan (67% longer than vanilla) and thus poor
application performance with 43% of jobs missing deadlines. This illustrates how our
approach provides a controlled way to increase datacenter utilization without affecting
job performance.

Figure 5 illustrate that that these performance numbers are stable also for different
cluster sizes. When we increase the total number of cores in the cluster from 128 to 256
and later to 512, with the number of jobs and/or cores per job increasing accordingly,
we observe only minor variations in the makespan and resource utilization for all
methods. Most importantly, the observation that our hybrid approach achieves a shorter
makespan than vanilla Slurm, with much higher resource utilization, holds for all
studied cluster sizes. The cost for guaranteeing the best performance possible can be
seen in the average (queue) waiting time for Slurm: one either sacrifices utilization for
performance (Vanilla in Table 1), or performance for utilization (Collocated in Table 1).
As Slurm does not come with an user-level scheduler for controlling how processes
can be scheduled by the OS, datacenter operators often go for a common denominator
for what satisfies most users. In contrast, our approach provides a trade-off between
utilization and performance, where we actively profile and control resource usage
according to the variations in workload.

Figure 5: Total (average) queue makespan (left) and average cluster utilization (right)
for each cluster size, approach, and workload mix.

5 Discussion
The experimental results highlight the advantages of the proposed hybrid architecture.
By constantly adapting to current workload resource utilization (CPU), the proposed
approach improves resource utilization over other configurations (Vanilla and Collo-
cated) by at least 15% (from 69% to 84%), with negligible performance overheads
in terms of longer wall clock times, and no missed deadlines. Integrating two dif-
ferent resource managers in the same cluster, with different objectives and isolation
guarantees is a difficult problem. From an administrator’s perspective, the idea of
allowing multiple distributed applications independently developed and having their
own scheduling policies and requirements to share resources is very challenging. The
datacenter operator must enforce isolation among different applications, which can be
the limiting factor as HPC clusters usually have more restrictions and are less scalable

than cloud clusters and normal distributed and cloud-aware platforms and applications.
In addition, the rate of additional failures that a DI scheduler may experience should be
studied, as interference may happen more frequently as HPC jobs are more sensitive to
disturbances. An additional problem may rise while sampling resource usage metrics:
performance degradation. Depending on the frequency of sampling application perfor-
mance could degrade, though Perf is very lightweight: all of our experiments generated
ten’s of megabytes of data. To protect the performance of HPC jobs, the amount of
data gathered should be reduced by finding an optimal rate of sampling over time, or
by controlling it in order to not hurt HPC jobs Service Level Objectives (SLOs) and
constraints.

As shown in the evaluation, our approach is most beneficial for scientific workflows.
These jobs are composed of sets of different jobs with different patterns of resource
requirements and utilization per job submission. However, workflows require domain
knowledge and good understanding of hardware optimization to run efficiently in
various HPC clusters, since it is the common scenario among research centers. We
believe these kinds of jobs are interesting targets for hybrid resource managers in
future developments, in particular when it comes to leveraging the characteristics of
workflows and adaptive jobs to improve scheduler and cluster utilization. From the
application users’ point of view, our architecture can be run as normal user. The
authors have actually set the architecture up in two large-scale HPC centers, but
restrictions to enabling cgroup controls do not allow key architectural features to be
evaluated. On this point, once users has access to cgroup namespace control, they can
run multiple workflows over the resource she owns, controlling them as needed.This
has the advantage of reducing operator burden for supporting a higher number of job
queues, as it is the case in the cluster-wide scenario. Although the proposed architecture
is being used to improve overall cluster utilization and unlike more robust and industry
deployed resource managers such as Kubernetes, these characteristics show that the
hybrid architecture can be deployed in the userspace. As such, its advantages and
flexibility can also be validated from different user perspectives. Finally, we focused
on implementing the architecture components by using a simple and scalable statistical
model for the IE. However, as future work we propose to infer more sophisticated
probability distributions by monitoring each job performance overtime, which would
help with performance variability. This can be important for scientific experiments
that rely on predictable hardware performance. Thus, future studies should analyze the
impact our solution would have on such (performance wise) sensitive workloads.

6 Conclusions
The fast growing interest on datacenter management from both public and industry
together with the rapid expansion in scale and complexity of infrastructure and the
services being provided on them have made monitoring, profiling, controlling, and
provisioning compute resources dynamically at runtime into a challenging task. As
Data Intensive applications resource needs grows, HPC’s optimized premises offer
promising and powerful capabilities. In this paper we have proposed a way to enable

DI jobs to not only share the same resources with HPC jobs, but to efficiently identify
spare resources and throttle their availability. Our work enables running jobs with
completely different performance requirements in the same cluster while not disturbing
higher priority jobs, in this case HPC jobs that require predictable allocations and are
not fault tolerant in general. We believe further studies are required in this area, for
instance to understand how long the IE model needs to keep historical data in order
to address jobs with highly dynamic changing behaviors. Even though our current
BLB model is scalable, another future direction would be to try to run it completely
distributed in local nodes of the cluster without a need for a central IE. This way we can
detect outliers such as interference faster and with much lower overhead. Additionally,
we have chosen some constants in our model, e.g., the confidence. Another area of
future work is a more general approach where an estimation of the best confidence that
works per job is estimated and used for cluster scheduling.

References
[18] Montage - An astronomical image mosaic engine. 2018. URL: http:

//montage.ipac.caltech.edu/.

[Alt+97] Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui
Zhang, Zheng Zhang, Webb Miller, and David J Lipman. “Gapped
BLAST and PSI-BLAST: a new generation of protein database search
programs”. In: Nucleic acids research (1997).

[Amv+17] George Amvrosiadis, Jun Woo Park, Gregory R Ganger, Garth A Gibson,
Elisabeth Baseman, and Nathan DeBardeleben. “Bigger, Longer, Fewer:
what do cluster jobs look like outside Google?” In: (2017).

[AW17] Haripriya Ayyalasomayajula and Karlon West. “Experiences running
different work load managers across Cray Platforms”. In: Cray User
Group Conference (CUG’17). 2017.

[Ber17] Evan Berkowitz. “METAQ: Bundle Supercomputing Tasks”. In: arXiv
preprint arXiv:1702.06122 (2017).

[Bha+13] Abhinav Bhatele, Kathryn Mohror, Steven H. Langer, and Katherine E.
Isaacs. “There Goes the Neighborhood: Performance Degradation Due to
Nearby Jobs”. In: International Conference on High Performance Com-
puting, Networking, Storage and Analysis. SC ’13. Denver, Colorado:
ACM, 2013. ISBN: 978-1-4503-2378-9. DOI: 10.1145/2503210.
2503247.

[Bre+12] Alex D Breslow, Leo Porter, Ananta Tiwari, Michael Laurenzano, Laura
Carrington, Dean M Tullsen, and Allan E Snavely. “The case for colo-
cation of hpc workloads”. In: Concurrency and Computation: Practice
and Experience Preprint (2012).

http://montage.ipac.caltech.edu/
http://montage.ipac.caltech.edu/
https://doi.org/10.1145/2503210.2503247
https://doi.org/10.1145/2503210.2503247

[BTG13] James M Brandt, Thomas Tucker, and Ann C Gentile. Lightweight Dis-
tributed Metric Service (LDMS): Run-time Resource Utilization Mon-
itoring. Tech. rep. https://www.osti.gov/servlets/purl/1106397. Sandia
National Lab.(SNL-CA), Livermore, CA (United States); Sandia Na-
tional Lab.(SNL-NM), Albuquerque, NM (United States), 2013.

[Bur+16] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John
Wilkes. “Borg, omega, and kubernetes”. In: Queue 14.1 (2016), p. 10.

[CB01] Walfredo Cirne and Francine Berman. “A model for moldable super-
computer jobs”. In: Proceedings of the 15th International Parallel and
Distributed Processing Symposium. IEEE. 2001.

[Com+16a] Isaıas Comprés, Ao Mo-Hellenbrand, Michael Gerndt, and Hans-Joachim
Bungartz. “Infrastructure and API Extensions for Elastic Execution of
MPI Applications”. In: 23rd European MPI Users’ Group Meeting.
EuroMPI 2016. Edinburgh, United Kingdom: ACM, 2016. ISBN: 978-1-
4503-4234-6. DOI: 10.1145/2966884.2966917.

[Com+16b] Isaıas Comprés, Ao Mo-Hellenbrand, Michael Gerndt, and Hans-Joachim
Bungartz. “Infrastructure and api extensions for elastic execution of mpi
applications”. In: 23rd European MPI Users’ Group Meeting. ACM.
2016.

[DG08] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data pro-
cessing on large clusters”. In: Communications of the ACM (2008).

[DK13] Christina Delimitrou and Christos Kozyrakis. “Paragon: QoS-aware
scheduling for heterogeneous datacenters”. In: ACM SIGARCH Com-
puter Architecture News (2013).

[DK14] Christina Delimitrou and Christos Kozyrakis. “Quasar: resource-efficient
and QoS-aware cluster management”. In: ACM SIGARCH Computer Ar-
chitecture News (2014). ISSN: 0163-5964. DOI: 10.1145/2654822.
2541941.

[Eme+13] Joseph Emeras, Cristian Ruiz, Jean-Marc Vincent, and Olivier Richard.
“Analysis of the jobs resource utilization on a production system”. In:
Workshop on Job Scheduling Strategies for Parallel Processing. Springer.
2013.

[Eva+14] Todd Evans, William L Barth, James C Browne, Robert L DeLeon,
Thomas R Furlani, Steven M Gallo, Matthew D Jones, and Abani K
Patra. “Comprehensive resource use monitoring for hpc systems with
tacc stats”. In: Proceedings of the First International Workshop on HPC
User Support Tools. IEEE Press. 2014, pp. 13–21.

[Fis+08] P Fischer, J Kruse, J Mullen, H Tufo, J Lottes, and S Kerkemeier.
“Nek5000: Open source spectral element CFD solver”. In: Argonne
National Laboratory, Mathematics and Computer Science Division, Ar-
gonne, IL, see https://nek5000.mcs.anl.gov (2008).

https://doi.org/10.1145/2966884.2966917
https://doi.org/10.1145/2654822.2541941
https://doi.org/10.1145/2654822.2541941

[FR96] Dror G Feitelson and Larry Rudolph. “Toward convergence in job sched-
ulers for parallel supercomputers”. In: Workshop on Job Scheduling
Strategies for Parallel Processing. Springer. 1996.

[FTK14] Dror G Feitelson, Dan Tsafrir, and David Krakov. “Experience with
using the parallel workloads archive”. In: Journal of Parallel and Dis-
tributed Computing 74.10 (2014), pp. 2967–2982.

[Gho+11] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott
Shenker, and Ion Stoica. “Dominant Resource Fairness: Fair Allocation
of Multiple Resource Types.” In: Nsdi. Vol. 11. 2011. 2011, pp. 24–24.

[Her+16] Andrew Herdrich, Edwin Verplanke, Priya Autee, Ramesh Illikkal, Chris
Gianos, Ronak Singhal, and Ravi Iyer. “Cache QoS: From concept to
reality in the Intel® Xeon® processor E5-2600 v3 product family”. In:
2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE. 2016, pp. 657–668.

[Hin+09] Benjamin Hindman, Andrew Konwinski, Matei Zaharia, Ali Ghodsi,
Anthony D Joseph, Scott Shenker, and Ion Stoica. “Nexus: A common
substrate for cluster computing”. In: Workshop on Hot Topics in Cloud
Computing. 2009.

[Hin+11] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. “Mesos:
A platform for fine-grained resource sharing in the data center.” In:
USENIX Symposium on Networked Systems Design and Implementation
(NSDI). 2011.

[Hin18] Jonathan Hines. “Stepping up to Summit”. In: Computing in Science &
Engineering 20.2 (2018), pp. 78–82.

[Jha+14] Somesh Jha, Jian Qiu, Andre Luckow, Pradeep Mantha, and Geoffrey C
Fox. “A tale of two data-intensive paradigms: Applications, abstractions,
and architectures”. In: IEEE BigData Congress, 2014. 2014.

[KJ11] J Zico Kolter and Matthew J Johnson. “REDD: A public data set for
energy disaggregation research”. In: Workshop on Data Mining Applica-
tions in Sustainability (SIGKDD), San Diego, CA. Citeseer. 2011.

[Kle+12] Ariel Kleiner, Ameet Talwalkar, Purnamrita Sarkar, and Michael Jordan.
“The big data bootstrap”. In: arXiv preprint arXiv:1206.6415 (2012).

[Mar+11] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary
Lou Soffa. “Bubble-Up: Increasing Utilization in Modern Warehouse
Scale Computers via Sensible Co-locations”. In: 44th Annual IEEE/ACM
International Symposium on Microarchitecture - MICRO-44 ’11 (2011),
p. 248. ISSN: 10724451. DOI: 10.1145/2155620.2155650.

[Mel09] Arnaldo Carvalho de Melo. “Performance counters on Linux”. In: Linux
Plumbers Conference. Vol. 118. 2009.

[Men07] Paul B Menage. “Adding generic process containers to the linux kernel”.
In: Linux Symposium. Vol. 2. Citeseer. 2007, pp. 45–57.

https://doi.org/10.1145/2155620.2155650

[Mer+17] Michael Mercier, David Glesser, Yiannis Georgiou, and Olivier Richard.
“Big Data and HPC collocation: Using HPC idle resources for Big Data
Analytics”. In: IEEE BigData 2017. 2017.

[NK10] Ripal Nathuji and Aman Kansal. “Q-Clouds : Managing Performance In-
terference Effects for QoS-Aware Clouds”. In: 5th European conference
on Computer systems (2010), pp. 237–250. DOI: 10.1145/1755913.
1755938.

[Ous+13] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. “Spar-
row: distributed, low latency scheduling”. In: Twenty-Fourth ACM Sym-
posium on Operating Systems Principles. ACM. 2013, pp. 69–84.

[Pal+15] Jeffrey T Palmer, Steven M Gallo, Thomas R Furlani, Matthew D Jones,
Robert L DeLeon, Joseph P White, Nikolay Simakov, Abani K Patra,
Jeanette Sperhac, Thomas Yearke, et al. “Open XDMoD: A tool for the
comprehensive management of high-performance computing resources”.
In: Computing in Science & Engineering (2015).

[Pat84] Anthony T Patera. “A spectral element method for fluid dynamics: lami-
nar flow in a channel expansion”. In: Journal of computational Physics
(1984).

[PPS15] David C Parkes, Ariel D Procaccia, and Nisarg Shah. “Beyond dominant
resource fairness: Extensions, limitations, and indivisibilities”. In: ACM
Transactions on Economics and Computation (TEAC) 3.1 (2015), p. 3.

[Pra+15] Suraj Prabhakaran, Marcel Neumann, Sebastian Rinke, Felix Wolf, Ab-
hishek Gupta, and Laxmikant V Kale. “A batch system with efficient
adaptive scheduling for malleable and evolving applications”. In: IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE. 2015.

[Reu+16] Albert Reuther, Chansup Byun, William Arcand, David Bestor, Bill
Bergeron, Matthew Hubbell, Michael Jones, Peter Michaleas, Andrew
Prout, Antonio Rosa, et al. “Scheduler technologies in support of high
performance data analysis”. In: High Performance Extreme Computing
Conference (HPEC), 2016 IEEE. IEEE. 2016.

[Reu+18] Albert Reuther, Chansup Byun, William Arcand, David Bestor, Bill
Bergeron, Matthew Hubbell, Michael Jones, Peter Michaleas, Andrew
Prout, Antonio Rosa, et al. “Scalable system scheduling for HPC and
big data”. In: Journal of Parallel and Distributed Computing 111 (2018),
pp. 76–92.

[RS00] Larry Rudolph and Paul H Smith. “Valuation of ultra-scale computing
systems”. In: JSSPP. Springer. 2000, pp. 39–55.

[Sch+13] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John
Wilkes. “Omega: flexible, scalable schedulers for large compute clusters”.
In: 8th ACM European Conference on Computer Systems. ACM. 2013,
pp. 351–364.

https://doi.org/10.1145/1755913.1755938
https://doi.org/10.1145/1755913.1755938

[Sha+13] Aamer Shah, Felix Wolf, Sergey Zhumatiy, and Vladimir Voevodin.
“Capturing inter-application interference on clusters”. In: Cluster Com-
puting (CLUSTER), 2013 IEEE International Conference on. IEEE.
2013, pp. 1–5.

[Sta06] Garrick Staples. “TORQUE Resource Manager”. In: 2006 ACM/IEEE
Conference on Supercomputing. SC ’06. Tampa, Florida: ACM, 2006.
ISBN: 0-7695-2700-0. DOI: 10.1145/1188455.1188464.

[Tiw+13] A Tiwari, M Schulz, L Carrington, L Tang, and J Mars. Enabling Fair
Pricing on HPC Systems with Node Sharing. Tech. rep. Lawrence Liver-
more National Laboratory (LLNL), Livermore, CA, 2013.

[Val90] Leslie G Valiant. “A bridging model for parallel computation”. In: Com-
munications of the ACM (1990).

[Vav+13] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agar-
wal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh
Shah, Siddharth Seth, et al. “Apache Hadoop Yarn: Yet another resource
negotiator”. In: 4th annual Symposium on Cloud Computing. ACM. 2013,
p. 5.

[Wan+10] Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L Scott.
“Hybrid checkpointing for MPI jobs in HPC environments”. In: IEEE
16th International Conference on Parallel and Distributed Systems (IC-
PADS). IEEE. 2010.

[Wea13] Vincent M Weaver. “Linux perf event features and overhead”. In: The
2nd International Workshop on Performance Analysis of Workload Opti-
mized Systems, FastPath. Vol. 13. 2013.

[Whi12] Tom White. Hadoop: The definitive guide. ”O’Reilly Media, Inc.”, 2012.

[Yan+13] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. “Bubble-
flux: Precise online qos management for increased utilization in ware-
house scale computers”. In: ACM SIGARCH Computer Architecture
News. Vol. 41. 3. ACM. 2013, pp. 607–618.

[YJG03] Andy B Yoo, Morris A Jette, and Mark Grondona. “Slurm: Simple
linux utility for resource management”. In: Workshop on Job Scheduling
Strategies for Parallel Processing. Springer. 2003, pp. 44–60.

[Zah+10] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,
and Ion Stoica. “Spark: Cluster computing with working sets.” In: Hot-
Cloud (2010).

[Zha+13] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale,
and John Wilkes. “CPI 2: CPU performance isolation for shared compute
clusters”. In: 8th ACM European Conference on Computer Systems.
ACM. 2013.

https://doi.org/10.1145/1188455.1188464

	Introduction
	Background & Related Work
	Dynamic Resource Managers
	Hybrid Resource Manager Challenges

	Architecture
	Insight Engine
	Confidence
	Scalability
	Real-Time Decisions

	Sharing & Isolation: Job Throttler

	Evaluation
	Applications
	Scenarios
	Results

	Discussion
	Conclusions

