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Abstract. A well-studied trait of human reasoning and decision-making is the
ability to not only make decisions in the presence of contradictions, but also to
explain why a decision was made, in particular if a decision deviates from what is
expected by an inquirer who requests the explanation. In this paper, we examine
this phenomenon, which has been extensively explored by behavioral economics
research, from the perspective of symbolic artificial intelligence. In particular,
we introduce four levels of intelligent reasoning in face of contradictions, which
we motivate from a microeconomics and behavioral economics perspective. We
relate these principles to symbolic reasoning approaches, using abstract argumen-
tation as an exemplary method. This allows us to ground the four levels in a body
of related previous and ongoing research, which we use as a point of departure
for outlining future research directions.

Keywords: Symbolic Artificial Intelligence · Explainable Artificial Intelligence
· Non-monotonic Reasoning.

1 Introduction

Over the last decades, the public perception of what artificial intelligence is (and is
not) has dramatically shifted. For example, in 1996 and 1997, when the reigning chess
champion Gary Kasparov played against IBM’s chess computer Deep Blue, the ability
of playing chess well was considered a key characteristic of human intelligence. Today,
as technically literate consumers can easily install a world champion-beating program
on their mobile phones, the focus has shifted to other problems, which range from dif-
ferent games like Starcraft and Go to real-world challenges like fully autonomous driv-
ing in inner cities. Even the Turing test [31], which roughly speaking requires a machine
to be able to deceive a human into thinking it is human, seems to fail the test of time;
given current socio-technical information systems, distinguishing men from machines
is increasingly challenging, even in contexts where the machine behavior is determined
by simple scripts, for example when social media bots spread misinformation [28].

Hence, to define characteristics of intelligent behavior, more abstract approaches
are required. Such approaches have, indeed, been introduced as principles of non-
monotonic reasoning; most notably are relaxed forms of monotony, such as restricted
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monotony [15] (also known as cautious monotony) and rational monotony [24]5. From
a symbolic artificial intelligence perspective, these properties are very useful because
they can be formally verified. Still, the properties have some obvious limitations:

– The properties are merely indicators of intelligence; certainly, fairly “unintelli-
gent agents” can also satisfy restricted monotony and rational monotony, simply
by never inferring anything from any knowledge base.

– It is not clear how these properties relate to human intuitions of intelligence.

In this paper, we explore ways to address these limitations by i) building a conceptual
bridge between formal principles of non-monotonic reasoning and empirical, as well
as formal perspectives on human reasoning and decision-making and ii) illustrating
how different formal approaches to non-monotonic reasoning reflect different levels of
sophistication of human reasoning.

2 Human Intelligence: Bounded Rationality and Reasoning
Backwards

As a preliminary for a bridge between human reasoning and formal methods of au-
tomated reasoning, let us provide a brief overview of the development of models of
human reasoning and decision-making at the intersection of microeconomic theory and
behavioral psychology. At least since the middle of the 20th century, studies in the fields
of micro-economic theory and behavioral psychology attempt to identify patterns and
formal models of human decision-making and reasoning, both for descriptive (“How do
humans reason and make decisions?”) and prescriptive (“How should humans reason
and make decisions?”) purposes6. An early theory that is still very influential is the for-
mal model of rational economic man. According to the model (in its simplest variant),
when faced with a choice, which is modeled as the selection from a set of items S, a
rational decision-maker acts according to clear preferences, which are modeled as a par-
tial order � on S. The partial order is established such that ∃a∗ ∈ S, ∀a ∈ S, a∗ � a,
i.e., a∗ is preferred over all other elements in S. a∗ is the decision-maker’s choice.
Given another set S′, such that S ⊆ S′, for the decision-maker’s choice a′∗ ∈ S′ it
must hold true that a′∗ 6∈ S or a′∗ = a∗; i.e., the preference relation on S must be
consistent with the preference relation on S′ (see, e.g., Osbourne and Rubinstein [25]).
Consequently, a rational economic decision-maker can make a decision in any situation
and the preferences this decision implies are consistent with the preferences implied by
all previous decisions.

5 Let us highlight that we do not introduce the so-called AGM postulates [3] here, because the
success postulate stipulates (colloquially speaking) that “new” logical formulas are always
added to the belief base and never rejected; however, we assume that, intuitively, an intelligent
agent should be able to reject new beliefs under some circumstances.

6 Less formal models of human decision-making and reasoning have been, of course, subject of
in-depth study for much longer. Indeed, the management of contradictions that is at the center
of this paper is also the subject of the Shev Shema’tata, a book on the treatment of doubt in
Rabbinic law, written at the turn from the 18th to the 19th century [18].
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While the model of rational economic man remains influential and is a common
foundation of micro-economic curricula, its shortcomings have been criticized in high-
profile scientific venues since the 1950s, notably in Herbert Simon’s seminal paper A
Behavioral Model of Rational Choice [29]. A key argument made by Simon is that
the model is too simplistic in that it does not account for the information an agent has
(from our perspective: the agent’s beliefs) and hence the model can neither describe nor
prescribe the real-life decision-making processes of agents or organizations. A simple
example of economically irrational behavior is as follows: an agent chooses b from a set
{b, c} which implies b � c, but chooses c from a set {b, c, d}, which implies c � b. For
instance, let us assume a choice from a set of beverages: b := coffee, c := tea, d :=
juice. After choosing coffee from the set of “tea and coffee”, a rational decision-maker
must not choose tea from the set of “tea, coffee, and juice”, given all other things remain
the same. From a knowledge representation perspective, one can of course argue that
the presence of d allows us to infer something about b and/or c that makes us reverse
b � c to c � b7.

Building on top of these initial insights, Tversky and Kahneman conducted a series
of behavioral psychology experiments to systematically identify shortcomings of mod-
els of economic rationality that led to refined models of rational decision-making, like
prospect theory [20], eventually winning Kahneman the Nobel Memorial Prize in Eco-
nomic Sciences [19]. While a broad range of other formal models has been developed
to address the aforementioned and similar shortcomings [27], further ground-breaking
empirical research has emerged about other aspects of human reasoning. Most notably
in the context of this paper is a line of research conducted by Jonathan Haidt (and oth-
ers), showing that humans are prone to first make an intuition-based decision and, if
required, then search for a “rational” (colloquially speaking) explanation [17].

To summarize, this brief overview of selected microeconomic and behavioral eco-
nomics research history gives us the following insights on perspectives on human rea-
soning and decision-making:

1. Traditionally, humans are considered intelligent, rational decision-makers that act,
at least roughly, according to formal model of clear and consistent preferences.

2. Empirical research about human behavior has systematically debunked assump-
tions about economic rationality in human decision-making, leading to a refinement
of formal models of decision-making to models of bounded rationality.

3. More recently, additional empirical research has provided evidence for the hypoth-
esis that humans are prone to make intuition-based decisions and then reason back-
wards to generate convincing, “rational” explanations if required.

3 Levels of Intelligent Reasoning in Face of Contradictions

From the overview of perspectives on human decision-making, we can generate three
levels of intelligent reasoning in face of contradictions, which we outline in this sec-
tion. In addition, we describe a fourth level that prescribes desirable behavior that – by

7 Indeed, empirical studies (conducted decades after the publication of Simon’s paper) show that
humans sometimes do exactly this [7].
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combining principle-based reasoning and learning perspectives – goes beyond existing
perspectives on human decision-making and reasoning.

3.1 Clear Preferences

At the most primitive level, the only property one expects from a decision-maker is
to be decisive. In microeconomic theory, this intuition is ingrained in the assumption
that when observing a decision-maker who chooses one option from a set of options
A, a partial order � on A that describes the decision-maker’s preferences can be in-
ferred, such that given the choice a∗ ∈ A, it holds true that ∀a ∈ A, a∗ � a, i.e.,
the decision-maker strictly prefers the choice over all other possible alternatives that
could have been chosen. In its most primitive form, this model can be considered to
merely cover a one-shot observation: as long as an agent is decisive, clear preferences
can be inferred from a single decision and no consistency check with regard to previ-
ous decisions is performed. From a reasoning perspective, this means that an inference
method must always come to a conclusion when drawing inferences from a belief base;
no further conditions need to be satisfied. This one-shot approach can be compared to
the behavior of a populist politician, who makes his decisions based on gut-feeling,
notwithstanding that he is aware of contradicting evidence, and does not care about the
long-term consistency of his actions (and speech acts).

3.2 Consistent Preferences

As an obvious next step, economists assess whether a decision-maker’s preferences are
consistent over a sequence of decisions; i.e., given a new choice a′∗ ∈ A′, such that
A ⊆ A′, if a′∗ ∈ A then a′∗ = a∗; this property follows from the model of clear
preferences as introduced in the previous subsection (see, e.g., Rubinstein [27, p. 11]
for a proof). Again, from a reasoning perspective, the analogy is obvious: when drawing
inferences concl(A) from a belief base A, for the inferences concl(A′) that are drawn
from a belief base A′, such that A ⊆ A′, it must hold true that concl(A) = concl(A′)
unless a belief in A′ \ A is accepted as an element of concl(A′). Consequently, we
can see that the consistent preference principle is in its motivation similar to notions of
“relaxed” monotony, in particular to cautious monotony [15], which can semi-formally
be described as if C ⊆ concl(A) and B ⊆ concl(A) then C ⊆ concl(A ∪B).

3.3 Explainable “Backwards Reasoning”

As summarized in the previous section, behavioral psychology research suggests that
humans typically make intuition-based decisions and then find a “rational” explanation
if necessary. This reasoning backwards approach has traditionally been favored by neo-
classical economics, to the extent that the economist Steven Landsburg colloquializes it
as follows in his best-selling popular science book The Armchair Economist:

“[We] stubbornly maintain the fiction that all people are rational at all times, and [...]
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insist on finding rational explanations, no matter how outlandish, for all of this appar-
ently irrational behavior8. ” [23]

Landsburg does not describe observations of common human decision-making falla-
cies, but instead refers to – albeit with some overstatement to underline his point – a
key aspect of the approach that he and some other economists use to build their mod-
els. However, in the real-world, reasoning backwards is not considered a “reasonable”
approach to explain a decision or line of reasoning, which the following anecdote illus-
trates.

Example 1. In 2019, world-renowned association football coach José Mourinho, who
at that time recently had joined Tottenham Hotspur F.C. (“the Spurs”), had the following
exchange with a journalist during a press conference 9:

– Journalist: “When you were at Chelsea, you were asked whether you would ever
come to the Spurs and you said: ‘Never, I love the Chelsea fans too much.’ What
has changed?”

– Mourinho: “[That was] before I was sacked [at Chelsea].”

From a reasoning perspective, one can say that when asked about the inconsistency
between two conclusions, Mourinho produces a new belief that explains why the lat-
ter conclusion does not entail the initial conclusion. Technically, one could argue that
Mourinho has successfully assured that his decision to join Tottenham is indeed consis-
tent, because he has provided a new belief (i.e., an argument) that supports his change
of mind, and when considering the adoption of a belief as a part of a choice process, his
preferences are consistent (i.e., economically rational). From a logics perspective, the
existence of a conflict between the new belief and the previous beliefs can explain why
monotony of entailment is violated. However practically, it is obvious that his stated
commitment to Chelsea was implied to last beyond his tenure as a coach at the club.
Indeed, both Mourinho and the journalists that are present laugh about the answer; they
are aware of how ridiculous the explanation that Mourinho has provided must look
from the perspective of a Chelsea fan (in particular when considering that Chelsea and
Tottenham are London city rivals).

3.4 Evidence-Based Principle Revision

Similarly to Tversky and Kahneman, who started off by taking formal models of eco-
nomic rationality and then systematically refined them as they observed diverging hu-
man behavior in the real world, an intelligent agent should be able to start off with an
explainable model of reasoning and decision-making and then refine it based on the
observations it makes; i.e., the agent should make decisions/draw inferences as follows:

1. It should employ an explainable formal model that prescribes and describes its
behavior and satisfies some formal principles.

8 Note that this statement precedes a defense of the approach it describes.
9 See: http://s.cs.umu.se/hlzdqf

http://s.cs.umu.se/hlzdqf
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2. It should be able to refine the model and adjust its principles if it observes that
changes are beneficial (based on feedback from its environment).

This hybrid approach requires a combination of symbolic and sub-symbolic (machine
learning) approaches to artificial intelligence. Considering the example in the previous
subsection, Mourinho could, for example, revise his reasoning principles after being
subjected to the scorn of the Chelsea fans, and in the future be more conservative when
discarding previously drawn conclusions, at least the ones he has publicly announced
to be committed to.

4 Examples: Abstract Argumentation

Let us further illustrate the intuitions we have introduced in the previous section by
providing precise formal examples. As our reasoning method, we employ abstract ar-
gumentation because it a) is a simple model that can be introduced without a lot of
formal preliminaries and b) has a clear focus on managing conflicts/contradictions.

Definition 1 (Argumentation Framework [14]).
An abstract argumentation framework is a tuple AF = (AR,AT ), where AR is a set
of arguments (propositional atoms) and AT ⊆ AR × AR is a set of attacks between
arguments in AR.

Given an argumentation framework AF = (AR,AT ) and two arguments a, b ∈ AR,
we say that “a attacks b” iff (a, b) ∈ AT . An argument a ∈ AR is acceptable with
regard to a set S ⊆ AR iff for each b ∈ AR it holds true that if b attacks a, then b is
attacked by S. In abstract argumentation, key concepts are the notions of conflict-free
and admissible sets.

Definition 2 (Conflict-free and Admissible Sets [14]).
Let AF = (AR,AT ) be an argumentation framework. A set S ⊆ AR is:

– conflict-free iff @a, b ∈ S, such that a attacks b;
– admissible iff S is conflict-free and each argument in S is acceptable with regard

to S.

Given an argumentation framework AF = (AR,AT ) and a set S ⊆ AR, we define
S+ = {a ∈ AR|∃b ∈ S, such that b attacks a}. Argumentation semantics determine
which sets of arguments in an argumentation framework can be considered valid con-
clusions. A set of such valid conclusions is called an extension. All argumentation se-
mantics that have been introduced by Dung in the initial paper are based on the notion
of an admissible set.

Definition 3 (Admissible Set-based Argumentation Semantics [14]).
Given an argumentation framework AF = (AR,AT ), an admissible set S ⊆ AR is:

– a complete extension iff each argument that is acceptable w.r.t. S belongs to S.
σcomplete(AF ) returns all complete extensions of AF .

– a preferred extension of AF iff S is a maximal (w.r.t. set inclusion) admissible
subset of AR. σpreferred(AF ) returns all preferred extensions of AF ;
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– a grounded extension of AF iff S is the minimal (w.r.t. set inclusion) complete
extension of AF . σgrounded(AF ) returns all grounded extensions of AF .

Given an argumentation framework AF = (AR,AT ) and an argumentation semantics
σ, a set S ⊆ AR is called a σ-extension of AF iff S ∈ σ(AF ). Other semantics have
been defined that start of with the assumption of a maximal conflict-free (naive) set10.

Definition 4 (Naive Set-based Argumentation Semantics [32]).
A conflict-free set S ⊆ AR is a:

– naive extension iff S is maximal w.r.t. set inclusion among all conflict-free sets.
σnaive(AF ) returns all naive extensions of AF .

– stage extension, iff S ∪ S+ is maximal w.r.t. set inclusion among all conflict-free
sets, i.e., there is no conflict-free set S′ ⊆ AR, such that (S′ ∪ S′+) ⊃ (S ∪ S+).
σstage(AF ) returns all stage extensions of AF .

In the context of this paper, we are interested in how agents draw inferences from a
belief base to which new beliefs are added over time. For this, we depend on the notion
of argumentation framework expansion, and in particular on normal expansions.

Definition 5 (Argumentation Framework Expansions [8]).
An argumentation framework AF ′ = (AR′, AT ′) is:

– an expansion of another argumentation framework AF = (AR,AT ) (denoted by
AF �E AF ′) iff AR ⊆ AR′ and AT ⊆ AT ′.

– a normal expansion of an argumentation framework AF = (AR,AT ) (denoted
byAF �N AF ′) iffAF �E AF ′ and @(a, b) ∈ AT ′\AT , such that a ∈ AR∧b ∈
AR.

Colloquially speaking, a normal expansion of an argumentation framework adds new
arguments to the argumentation framework, but neither removes arguments nor changes
attacks between existing arguments. To support the design and analysis of argumenta-
tion semantics, formal argumentation principles have been defined [30,5]. For example,
the uniqueness principle stipulates that an argumentation semantics must return exactly
one extension, given any argumentation framework.

4.1 Clear Preferences

From an argumentation perspective, an agent has clear preferences iff it can reach an
unambiguous conclusion, given any argumentation framework and the argumentation
semantics it employs. We can illustrate perspectives on this property given a particular
argumentation framework, e.g., AF = (AR,AT ) = ({a, b, c}, {(a, a), (b, c), (c, b)}).
Figure 1 depicts the argumentation framework. Below are some examples of how dif-
ferent argumentation semantics resolve AF :

– Stable semantics: σstable(AF ) = {};
10 More semantics exist, some of which address well-known issues with the semantics whose

definitions we provide in this paper. However, we consider an in-depth overview of argumen-
tation semantics out-of-scope.
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a

b c

Fig. 1: Given stable semantics, self-contradicting arguments may lead to the inability to
reach any conclusion, e.g., σstable({a, b, c}, {(a, a), (b, c), (c, b)}) = {}.

– Grounded semantics: σgrounded(AF ) = {{}};
– Preferred semantics: σpreferred(AF ) = {{b}, {c}}.

It is obvious that stable semantics does not satisfy the notion of clear preferences: it
does not return any extension for our argumentation framework. Conversely, preferred
semantics returns the extensions {a} and {b}. This does not reflect the clear preferences
principle, either, because several extensions are returned. However, an intelligent agent
that employs the semantics can certainly come to a decisive conclusion, for example
by considering use case-specific meta-data (like a time-stamp or the source of an argu-
ment), or by simply breaking the tie with an arbitrary method that considers language-
specific properties, like identifiers of the arguments11. Consequently, we argue that it
depends on the exact application scenario whether one wants an argumentation seman-
tics to be uniquely defined or not. For example, in one legal reasoning scenario, it can
make sense to dismiss conflicting statements of two witnesses as mutually inconsistent,
while in another scenario, it can be better to consider both statements and then select
a preferred statement based on situational context or meta-data (which is aligned with
the concept of burden of persuasion, see Prakken and Sartor [26]).

4.2 Consistent Preferences

To align with the consistent preferences property of economic rationality, we can create
a straight-forward argumentation principle (see our ongoing line of work [22,21]12): we
assume that an agent, given an argumentation semantics σ, resolves an argumentation
framework AF = (AR,AT ) by selecting any σ-extension E of AF (E ∈ σ(AF )).
This selection implies the preferences ∀S ∈ 2AR, E � S. When continuing the in-
teraction with its environment, the agent adopts new, and potentially conflicting be-
liefs, i.e., it normally expands AF and creates AF ′ = (AR′, AT ′), AF �N AF ′.
When determining the σ-extensions of AF ′, the agent must find at least on extension
(∃E′ ∈ σ(AF )), such that the preferences implied by E′ and AF ′ (∀S′ ⊆ 2AR′

, E′ �
S) are consistent with the preferences implied by E and AF . Figure 2 illustrates the
concept of consistent preferences in abstract argumentation. For example, let us as-
sume argument a denotes that a new business strategy should be executed, to which
11 Note that this would be a violation of the language independence principle.
12 In these works, we name the principle weak reference independence.
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a

(a) AF = (AR,AT ) =
({a}, {}).

a

b c

d

(b) AF ′ = (AR′, AT ′) =
({a, b, c, d}, {(b, a), (c, b), (d, c), (b, d)}).

Fig. 2: Consistent preferences. Assuming stage semantics, we have σstage(AF ) =
{{a}} and σstage(AF

′) = {{a, c}, {a, d}, {b}}. All σstage-extensions of AF ′ im-
ply consistent preferences with regard to the only σstage-extension of AF . In
contrast, assuming preferred semantics, we have σpreferred(AF ) = {{a}} and
σpreferred(AF

′) = {{}}; the only σpreferred-extension ofAF implies the preferences
∀S ∈ 2AR, {a} � S, which is inconsistent with the preferences implied by the only
σpreferred-extension of AF : ∀S′ ∈ 2AR′

, {} � S′.

an agent first commits: AF = (AR,AT ) = ({a}, {}), from which we obviously con-
clude {a}. However, by consulting multiple stakeholders, the agent collects the addi-
tional arguments b, c, and d that directly or indirectly argue for or against the strategy:
AF ′ = (AR′, AT ′) = ({a, b, c, d}, {(b, a), (c, b), (d, c), (b, d)}). Now, considering
some argumentation semantics, for example preferred semantics, the only conclusion
we can draw from AF ′ is {} (the only extension/valid conclusion does not contain any
arguments); this implies the preference {} � {a}, which is inconsistent with the pref-
erence {a} � {} as implied by the previous decision. In contrast, some other seman-
tics, such as stage semantics, do not imply inconsistent preferences in this scenario13.
σstage(AF ) = {{a}} and σstage(AF ′) = σstage(AF

′) = {{a, c}, {a, d}, {b}}: be-
cause all σstage-extensions of AF ′ include an argument that is not in AR, the pref-
erences implied by selecting any of the extensions are obviously consistent with the
preferences implied by inferring {a} from AF .

Let us note that an open question, which we touch upon in Section 5, is how to
adjust the consistent preferences principle to account for “undecided” arguments, i.e.,
arguments that are, given an extension, neither part of the extension nor attacked by
any argument in the extension. Also, similar argumentation principles that are based on
other well-known properties can be and have been introduced, for example an abstract
argumentation equivalent of restricted (cautious) monotony [21,22].

4.3 Explainable “Backwards Reasoning”

An important feature of an intelligent agent is the ability to explain its inferences and
the resulting actions. Indeed, economists who build formal models of human decision-
13 Let us note that stage semantics does not generally imply consistent preferences, given any

argumentation framework and any of its normal expansions, see [22].
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making typically do not claim that their models are accurate representations of what
goes on in a human’s mind, but instead argue that when observing a human decision-
maker, their models are sufficiently precise to describe the decision-maker’s behavior in
a explainable (that is: formally analyzable) manner. In the artificial intelligence commu-
nity, the design and analysis of explainable agents is a research direction that has gained
tremendous traction over the past years [4]. Agents that employ symbolic approaches to
automated reasoning, such as abstract argumentation, are typically considered explain-
able, because each inference and action can be linked to the formal model that generated
it (see, e.g., Zhong et al. [33]). However, when considering the iterative argumentation
approach we take in the context of this paper, it is clear that merely pointing out general
semantics behavior is not always sufficient to explain why exactly the inferences drawn
from an argumentation framework are fundamentally different than the inferences that
are subsequently drawn from one of its (normal) expansions. To some extent, merely
explaining an inference process by pointing to the entire formal model that has been
used to infer it resembles the reasoning backwards approach as introduced as a descrip-
tion of human reasoning in behavioral economics. From an argumentation perspective,
we argue that an agent can take two approaches to reasoning backwards:

1. It can take a principle that happens to be satisfied to explain the result of its infer-
ence process.

2. If asked why a specific principle is violated, it can generate arguments and add
them to the argumentation framework, so that the principle is no longer violated.

As mentioned above, the first approach is obvious, and reflected in the way explainable
argumentation is typically presented. The second approach reflects the Mourinho ex-
ample (Example 1), which is illustrated as a sequence of argumentation frameworks by
Figure 3:

1. We start with an initial argumentation framework AF = ({a, b}, {(a, b), (b, a)}).
a denotes the obligation of maintaining the respect of the Chelsea fans while b
denotes taking a job at Tottenham; a and b attack each other. Our agent (Mourinho)
infers a, deciding to stay committed to Chelsea.

2. Later, our agent has a change of mind, and instead infers {b} from AF ′ = AF and
takes a job at Tottenham.

3. Another agent (the journalist) scrutinizes the Mourinho agent by highlighting that
the inference process implies inconsistent preferences.

4. The Mourinho agent responds to the scrutiny by producing an argument c (the re-
lief of the loyalty obligation because Chelsea has sacked him), which is in mutual
conflict with argument a. Note that inferring {b, c} from AF ′′ does not imply pref-
erences that are inconsistent with the preferences implied by inferring {a} from
AF .

4.4 Evidence-Based Principle Revision

Let us go back to the previous example (Figure 3). However, we now assume the
Mourinho agent is using the relational principle we have semi-formally introduced
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a

b

(a) AF .

a

b

(b) AF ′.

a

b

c

(c) AF ′′.

Fig. 3: Reasoning backwards. Given the argumentation framework ({a, b}, {(a, b),
(b, a)}), an agent first concludes {a}and at a later stage concludes {b}. When asked
about the reason for the inconsistency (preference reversal), the agent produces argu-
ment c (generating AF ′′) that restores consistent preferences.

in Subsection 4.2 to ensure consistent preferences. In the example, this means that
the agent must not infer {b} from AF ′ after having inferred {a} from AF ; the ex-
pansion to AF ′′ is required to then infer {b, c}, which is a principle-compliant con-
clusion. Let us assume that after drawing this inference (and joining Tottenham), our
agent’s reputation is severely damaged, which makes the agent reflect about its infer-
ence process. Satisfying the consistent preferences principle may have been a reason-
able starting point, but we want to be able to further evolve from there. Ideally, the
agent analyzes its own inference process and searches for principle-based improve-
ments it can make. In our example, the agent can, for instance assuming that it is using
stage semantics, observe that the semantics also supports inferring {a} from AF ′′: i.e.,
σstage(AF

′′) = {{a}, {b, c}}. Consequently, the agent can “learn” a new principle that
stipulates the following: given two argumentation frameworks AF ∗ and AF ∗∗ and a
conclusion E∗ of AF ∗ (E∗ ∈ σstage(AF ∗)), iff inferring a conclusion E′ from AF ∗∗

(E∗∗ ∈ σstage(AF ∗∗)) is possible such that E∗ ⊆ E∗∗, do not infer a conclusion D∗∗

fromAF ∗∗ such thatE∗ 6⊆ D∗∗. The agent can apply this principle and draw inferences
in future scenarios accordingly (depicted by Figure 4). However, first the agent would
need to (formally) verify whether enforcing this new principle implies a violation of
any other principle that the agent has already adopted (in our example, the agent may
still want to satisfy the consistent preferences principle), and if so, whether previously
adopted principles should be relaxed or entirely discarded.

5 Research Directions

Based on the position we establish in the previous sections, we provide an overview
of relevant ongoing research directions and highlight open challenges. Again, our fo-
cus is on formal argumentation as an exemplary method for automated non-monotonic
reasoning.
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a

b

(a) AF ∗.

a

b

c

(b) AF ∗∗.

Fig. 4: Evidence-based principle revision. Let us assume our agent has received negative
feedback from its actions that were based on the inferences drawn in Figure 3. To learn
from this experience, the agent adjusts its reasoning principles and now always keeps
previously inferred conclusions (arguments) to the extent its semantics supports this.

5.1 Consistent Preference and Undecided Beliefs

Some of the argumentation examples we present in this paper draw from ongoing re-
search on economic rationality and formal argumentation [22,21]. An open question in
this line of research is how to adjust the model of consistent preference in abstract ar-
gumentation to support the notion of undecided arguments14. Let us highlight that this
question cannot be addressed by straight-forward tweaks of the economic rationality-
based argumentation principle, in particular because an agent must eventually commit
to a course of action; i.e., some arguments must not remain undecided. This can be il-
lustrated with the help of a simple example. We have two weather report sources: one
reports that it will rain (argument r) and the other reports it will not rain (argument ¬r).
Obviously, r and ¬r attack each other. We want to decide whether to take an umbrella
with us (argument u). If we think it does not rain, we do not take an umbrella with us
(¬r attacks u). Figure 5 depicts the corresponding argumentation framework.

r

¬ r u

Fig. 5: AF = ({r,¬r, u}, {(r,¬r), (¬r, r), (¬r, u)}). How can we manage undecided
arguments if we cannot be undecided about actions?

14 Given an argumentation framework and a semantics’ extension of this framework, the unde-
cided arguments are all arguments that are neither in the extension, nor attacked by any of the
arguments in the extension.
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Given, for example, grounded semantics σgrounded, all arguments in the argumen-
tation framework are undecided. However, we must eventually make a decision on
whether or not to take the umbrella with us; i.e., to support undecided arguments, we
need to define two argument types: belief arguments that may be undecided and action
arguments that must never be undecided.

5.2 Burdens of Persuasion

When analyzing consistency and monotony properties of inference methods like for-
mal argumentation approaches, it can be useful to apply intuitions that are provided
by well-established practical research domains. In this regard, a particularly interest-
ing concept is the notion of the burden of persuasion in legal research and practice.
In case of two conflicting statements, the burden of persuasion can be placed on one
of the statements, which implies that this statement requires additional justification;
otherwise, it will be automatically defeated. For example, given two contradicting wit-
ness statements, of which one provides an alibi of the defendant, whereas the other one
claims the defendant was at the crime scene at the time of the crime, the burden of per-
suasion could be laid on the latter argument to reflect the notion of in dubio pro reo15.
Models of burdens of persuasion have already been introduced to formal argumenta-
tion approaches [26,10]. In these approaches, the burden of persuasion is explicitly
modeled. In contrast, from the perspective of consistent inference, the burden of per-
suasion can automatically be placed on new arguments when expanding an argumenta-
tion framework; i.e., if considering a new argument as part of the conclusion violates a
consistency/monotony property (because the new argument is, directly or indirectly, in
conflict with an argument that is part of a previous conclusion), the burden of persua-
sion is placed on this argument; additional conditions must be satisfied to allow for this
argument to “kick out” the previously inferred argument16. Formally integrating this
intuition with models of burdens of persuasion and consistency/monotony properties of
formal argumentation can be considered promising future research.

5.3 Intuitive Rationality

Independently of the research on formal models of economic rationality and formal ar-
gumentation, recent research has started to shed light on what humans intuitively think
are “reasonable” conclusions that can be drawn from argumentation frameworks [11,12].
The results suggest that while there is not necessarily one semantics whose behavior
is more intuitive to most humans than all other semantics, some semantics (notably
grounded and CF2 semantics17) seem to exhibit particularly intuitive behavior. As a
result of these studies, SCF2 semantics has been introduced, which addresses some is-
sues CF2 semantics has with regard to the handling of self-attacking arguments and

15 This is a constructed example that does not fully reflect real-world legal reasoning.
16 This notion is reflected by loop-busting approaches that have been proposed in the context of

formal argumentation and that are based on Talmudic logic [2].
17 For the sake of conciseness we do not introduce CF2 semantics in this paper; the semantics is

introduced by Baroni et al. in [6].
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even cycles that exceed a certain length [13]. The studies shed some light on human
evaluations of argumentation principles, which can, however, be investigated more com-
prehensively. In particular, it is worth examining how well intuitive human assessments
align with the consistent preference argumentation principle that is based on economic
rationality (see Subsection 4.2), as well as with other principles that can emerge from
cross-disciplinary perspectives on “rational” and “consistent” reasoning and decision-
making.

5.4 Neuro-Symbolic Artificial Intelligence

Recently, combining machine learning and symbolic reasoning approaches has re-emerged
as a hot topic in artificial intelligence research [16]. This trend is possibly accelerated
because the machine learning break-throughs of the last decade have created the initial
expectation of rapid and continuous progress, which machine learning alone cannot live
up to. However, the integration of machine learning approaches and symbolic methods
(which is sometimes referred to as neural-symbolic AI) has been a well-established
research direction since several decades [1]. In Subsection 4.4, we illustrate by ex-
ample that a neuro-symbolic AI approach can be considered promising to allow for
the evidence-based revision of reasoning (argumentation) principles. While formal ar-
gumentation has been integrated with machine learning methods, in particular in the
context of argument mining [9], to our knowledge no research combines these hybrid
approaches with a principle-based perspective.

To realize our proposal of an agent that can learn reasoning principles as it observes
and interacts with its environment, we need create formal models and implementations
at the intersection of non-monotonic symbolic reasoning and reinforcement learning,
to find answers to the following questions. i) Which principles should an agent inhibit
statically by design and which principles should be learnable? ii) How can we design
principles that allow for a parameterization that facilitates learning? iii) To what ex-
tent is principle revision use-case agnostic, to what extent is it use-case-dependent? iv)
When an agent learns new principles and hence updates its inference method, how does
it trade-off consistency with regard to previously drawn inferences and compliance with
the newly learned principles?

6 Conclusion

In this paper, we have introduced a formal perspective that takes inspirations from mod-
els of human models of decision-making reasoning to define levels of intelligent rea-
soning, i.e., the ability of an agent to:

1. reason in face of contradictions;
2. reason according to well-established principles, like the clear and consistent pref-

erences principle that follows from economic rationality;
3. explain the resolution of contradictions according to whatever reasoning principles

that are satisfied in a given scenario;
4. dynamically revise a principle-based inference process based on feedback the agent

perceives as the result of interactions with its environment.
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This perspective integrates well with a long-running line of research on non-monotonic
reasoning approaches, which we have illustrated for formal (abstract) argumentation.
In particular, dynamic models of formal argumentation that cover the expansion and
iterative resolution of argumentation frameworks, considering fundamental properties
of non-monotonic reasoning. However, as outlined in this paper, these models need fur-
ther refinement to fully reflect the idea of explainable intelligent reasoning in face of
contradictions.
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