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Abstract

This thesis deals with the well-known problem of prediction of stock prices. The
discussion is almost entirely confined to technical analysis, i.e. predictions are based
on past price data only.

The material is divided into four parts. The first part is an introduction, where
the near-random-walk behavior of the processes is illustrated. In the second part the
prediction task is formalized. Existing benchmarks and testing metrics are surveyed,
and some new measures are introduced.

The third part presents statistical investigations into the predictability of stock
returns. The relevance of trends are tested, and a new rank measure is statistically
examined for predictability.

Part four contains a survey of common techniques used for stock predictions,
and also a discussion of general learning issues relevant to the prediction task. Some
new tools are also presented. The stock trends are used as input variables in a k-
nearest neighbor analysis, to find patterns of trend values that result in non-random
future returns. The algorithm is extended with a selection procedure to find regions
in the input space, where the future returns are asymmetrically distributed. The
suggested algorithm is naturally applicable in areas other than stock prediction as
well. It addresses situations, in which the overall predictability is low and can only
be expected to apply in indeterminate regions of the input space.

The last Chapter of the thesis describes the principles behind, and the imple-
mentation of ASTA, an Artificial Stock Trading Agent written in the MATLAB
language. The primary purpose of the project is to provide an easy-to-use environ-
ment for evaluation and development of multi-stock trading algorithms. The ASTA
system has been applied successfully to historical stock data, and results covering
11 years of the Swedish stock market are presented.
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Preface

In recent years the application of techniques, such as machine learning, data mining,
knowledge discovery, and nonlinear optimization to financial prediction problems,
has seen exciting results. Several conferences are totally devoted to the subject,
including CF (Computational Finance) since 1993, CIFEr (Computational Intelli-
gence in Financial Engineering) since 1995. Furthermore, most major conferences
in the various fields of machine learning, and also in fields such as mathematical
programming, have workshops and sessions dealing with methodologies for financial
predictions.

This thesis investigates the special case of price forecasting for stocks. The
discussion is almost entirely confined to technical analysis, i.e. predictions are based
on past price data only.

The thesis is divided into four parts dealing with various aspects of the stock
prediction problem. In the first part, problems of performance evaluation of near-
random-walk processes are illustrated with examples, along with guidelines for avoid-
ing the risk of data-snooping.

The second part describes the various approaches of technical and fundamen-
tal analysis and the prediction problem is formulated as a special case of inductive
learning. The connections to concepts like the bias/variance dilemma, overtraining,
and model complexity are further covered. Existing benchmarks and testing metrics
are surveyed and some new measures are introduced. The third part presents sta-
tistical investigations regarding the predictability of stock returns. The examined
data covers more than 200 stocks on the Swedish stock market for the time period
1987-1996. The results show a weak trend behavior and autocorrelation values that
are stable even when the entire time interval is broken down to yearly intervals.
A proposed concept of daily returns Rp and a comparison with the ordinary step
returns Rg, show a significant difference in the data, caused by the holiday effect. It
is also shown that seasonal variables, such as the month of the year, affect the stock
returns more than the average daily changes. This is consequential for all methods,
where the seasonal variables are not taken into account in predicting daily stock
returns.

The fourth part surveys some of the standard methods used for predictions of
stock prices, and also general learning issues, such as overfitting, bias/variance and
generalization ability. Some new methods and tools are also presented. The stock
trends are used as input variables in a k-nearest neighbor analysis, to find patterns
of trend values that result in non-random future returns. The k-nearest neighbor
algorithm is extended with a selection procedure to find regions in the input space
where the future returns are asymmetrically distributed. The new algorithm is suc-
cessfully tested on artificial stock data, and with trending patterns are introduced.
The algorithm is applied to a number of national stock indexes as well: the American

xi
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Dow Jones, the German DAX, the British FTSE, and the Swedish Generalindex.
The results are positive for some of the tested indexes and negative for others. The
suggested algorithm is naturally applicable to areas other than stock prediction as
well. It addresses situations, in which the overall predictability is low and can only
be expected to apply in indeterminate regions of the input space.

The last Chapter of the thesis describes the principles behind and the imple-
mentation of ASTA, an Artificial Stock Trading Agent written in the MATLAB
language. The primary purpose of the project is to provide an easy-to-use environ-
ment for developing multi-stock trading algorithms. A key ingredient in the system
is a stable and realistic test bench, highlighting and helping to avoid the huge risks
of data snooping involved in this kind of financial prediction. The behavior of the
agent is controlled by buy and sell rules, which can be composed interactively or
written as user-defined functions. Various types of combinations of rules and data
screening can be easily performed, all within the MATLAB language syntax.

In addition to being a Windows-based development tool and test bench, the
system can run in batch mode, where a supplied objective function maps a trading
strategy to a profit measure. The batch mode can be used to tune parameters, or
automate the development of trading strategies, for example with genetic methods.
Examples of tuning parameters in standard technical indicators are presented. A
modified Sharpe Ratio is used as performance measure.

To improve the performance of a given algorithm, the data from the simulated
trades can be output and post-processed by classification methods, such as artificial
neural networks or fuzzy rule bases. The ASTA system has been applied successfully
to historical stock data, and results covering 11 years of the Swedish stock market
are presented.

The content of the thesis is a further development of work reported in the fol-
lowing papers:

1. T. Hellstrom and K. Holmstroém. Predicting the Stock Market. Opuscula ISRN
HEV-BIB-OP-26-SE, Milardalen University, Sweden. Presented at ML2000
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2. T. Hellstrom and K. Holmstrém. The Relevance of Trends for Prediction of
Stock Returns. Presented at ECML-98 (the 10th European Conference on
Machine Learning) in Chemnitz, Germany. April 24, 1998.

3. T. Hellstrom and K. Holmstrém. Predictable Patterns in Stock Returns. Au-
gust 6, 1998. Opuscula ISRN HEV-BIB-OP-30-SE, Milardalen University,
Sweden.

4. T. Hellstrom. ASTA - a Test Bench and Development Tool for Trading Al-
gorithms. UMINF-98.12 ISSN-0348-0542. Presented at EUFIT’98 (6th Euro-
pean Congress on Intelligent Techniques & Soft Computing) in Aachen, Ger-
many. September 7-10, 1998.
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using ASTA.
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Chapter 1

Introduction

Out of college, money spent

See no future, pay no rent

All the money’s gone, nowhere to go

You Never Give Me Your Money, Lennon/McCartney

Stock time series have a number of specific properties that, although not unique
when examined one by one, together make the prediction task rather unusual and
calls for special considerations when developing and evaluating a prediction system.

e Prediction of stocks is generally believed to be a very difficult task. The most
common viewpoint, especially among academics, is that the task of predict-
ing stocks is comparable to that of inventing a perpetuum mobile or solving
problems like the quadrature of the circle.

e The process behaves very much like a random-walk process. The autocorrela-
tion for day to day changes is very low. Hawawini and Keim [16] conclude on
several studies, that the serial correlation in stock-price time series is econom-
ically and statistically insignificant.

e The process is “regime shifting”, in the sense that the underlying process
is time-varying. The noise level and volatility in the time series change as
the stock markets move in and out of periods of “turbulence”, “hausse” and
“baisse”. This causes great problems for traditional algorithms for time series
predictions.

The obvious complexity of the problem and the strong resemblance to random-
walk processes has, as we shall see in the following chapters, direct implications on
the prediction, evaluation, and application tasks.

On the positive side, the application of a prediction system for stock prices is
somewhat special:

e A successful prediction algorithm does not have to provide predictions for all
points in the time series. The important measure of success is the hit rate and
the generated profit at the points where the algorithm produces predictions.
The behavior in-between these points is not equally interesting. A missed
opportunity to profit does not mean lost money.

3



4 CHAPTER 1. INTRODUCTION

The near-random-walk behavior also implies a somewhat different evaluation
situation than normally encountered:

e The evaluation of a prediction algorithm must be done with great care to
avoid both “Type I errors” (failing to accept a correct hypothesis) and “Type
IT errors” (accepting a false hypothesis). The problem is discussed in more
detail in Chapter 3.

Another interesting property of this problem area is that the prediction algo-
rithms themselves get integrated in the data generating process. Assume as an
example, that a new sophisticated algorithm shows a superior and unquestionable
predictive power, when applied to both historical data and real trading. As this
technique becomes public knowledge and commonly used, the market participants
include the new algorithm as a new tool adjoining all the previously suggested and
used stock evaluation methods. The predictive power of the new algorithm then de-
creases, until it becomes useless. Viewed this way, what remains to make profit on in
trading, is no more than the residual from the superimposed prediction algorithms
that comprise the process of price generation. If the superimposed algorithms do a
good job, the residual should be indeed the near-random walk that we are facing.



Chapter 2

Common Viewpoints

It is very easy to get opinions from people about what “has to be” successful strate-
gies in stock trading. It is equally difficult, by reasoning, to show that a proposed
strategy is not successful even if that really is the case. As we shall see in Chapter
3, it is very likely even for a random strategy to appear successful, although it has
been tested for a seemingly long period.

2.1 The Efficient Market Hypothesis

Roll me and call me the tumblin’ dice
Tumblin’ Dice, Jagger/Richards

The Efficient Market Hypothesis (EMH) states, that the current market price
reflects the assimilation of all the information available. This means, that given
the information, no prediction of future changes in the price can be made. As new
information enters the system the unbalanced state is immediately discovered and
quickly eliminated by a “correct” change in market price. Depending on the type of
information considered, there exist three forms of EMH:

e The weak form: Only past price data is considered. This kind of EMH rules
out any form of predictions based on the price data only, since the prices follow
a random walk in which successive changes have zero correlation®.

e The semistrong form: All publicly available information is considered. This
includes additional trading information, such as volume data (e.g. number
of traded stocks,) and fundamental data, such as profit prognoses and sales
forecasts.

e The strong form: All information, both publicly and privately available, is
considered.

The application of the weak and semistrong forms of EMH has been fairly well
supported in a number of research studies, e.g. White [41], Lowe and Welsh [22],
and has been for long the “official” viewpoint in the academic society. However, in
recent years many published reports show, that the efficient market hypothesis is far

LA more exhaustive description of the relation between random walk and the correlation is
provided in Chapter 3.



6 CHAPTER 2. COMMON VIEWPOINTS

from correct. Fama [12] goes as far as stating, in a review, that the efficient market
hypothesis surely must be false.

The strong form has been, for obvious reasons, difficult to test statistically due
to shortage in available data. However, indirect methods analyzing the performance
of mutual fund managers did not prove it to be superior to other investor types [36].

2.2 Traders Viewpoint

When the shit hits the fan,
I'll be sitting on the can
When the whip comes down,
L’ll be running this town

When the Whip Comes Down, Jagger/Richards

Despite the traditionally massive support for EMH, we have a majority of the
market actors believing, or at least claiming, that they can predict the prices so that
they can make profits. Almost all professional traders rely to some extent on either
technical or fundamental analysis of past information. They buy when the market is
“bullish” and sell when it is “bearish”, thereby assuming a direct correlation between
the current trend and future prices.

There are also numerous research papers claiming that applying nonlinear mod-
els, such as neural networks and genetic algorithms, can provide successful predic-
tions. However, this may not contradict the EMH if new useful methods are not im-
mediately assimilated by the global trading community. LeBaron [19], and Sweeney
and Surarjaras [33], have investigated technical trading strategies, and found some
evidence of a drop-off in profit in recent years.

Another reasonable argument against the EMH deals with the different time
perspectives different traders have when they do business. For example, a majority
stock owner reacts quite differently than a floor day trader, when a stock suddenly
drops in value. These differences in time perspectives cause anomalies in the market
prices, even if no new information has entered the scene. It may be possible to
identify these situations and actually predict future changes.

In summary, most arguments in favor of the EMH rely on statistical tests showing
no predictive power in the tested models and technical indicators. Most arguments
against the EMH refer to a time delay between the point when new information
enters the system and the point when the information has been assimilated globally,
and a new equilibrium with a new market price has been reached.



Chapter 3
Random Walk

Financial time series are often claimed to be a total or “near-to” total random walk.
A random-walk process is normally defined as:

y(t) =yt — 1) + a(t) (3.1)
where, y is the time series in question, and a is an error term, which has zero
mean, and whose values are independent of each other. The change Ay(t) = y(t) —
y(t — 1) is thus a(t) and is hence independent of previous changes Ay(t — 1), Ay(t —
2).... It can also be shown that (3.1) implies that even higher conditional moments
of Ay (e.g. the variance of Ay) are independent. This consequence has led to
discussions about the validity of the random-walk hypothesis as a theoretical model
of financial markets and to alternative formulations. One such formulation is the
martingale, which is defined as:

Yyt + D) —yt-1)
Ay(t) = " ,

where, D(t) is the dividend paid during period t. A stochastic process following
(3.2) rules out the conditional dependence of Ay, but not any higher moments of
Ay, as shown in Mills [23]. This is consistent with the observations that financial
time series go through quiet periods as well as periods of turbulence. As Mills points
out, this can be modeled by a process, in which successive conditional variances are
autocorrelated, but not with the more restrictive random walk.

In any case, predicting stock prices is generally accepted to be a very difficult
task. The stock prices do behave very much like a random-walk process, at least
when the hit rates generated by most prediction methods in use are viewed. Of
course, this has direct implications on the prediction, evaluation, and application
tasks.

(3.2)

3.1 Predicting an Almost Random-Walk Time Se-
ries

The prediction task is impossible, if the time series to predict is an absolute random
walk. In such a case any algorithm for prediction of the sign of Ay(t) produces a 50%
hit rate in the long run. The best we can hope for is that the time series we attempt
to predict have a “near to” random-walk behavior, but with limited predictability.

7



8 CHAPTER 3. RANDOM WALK

Degrees of accuracy of 54% hit rate in the predictions are often reported as satisfying
results for stock predictions [37, 4].

3.2 Evaluating Prediction Algorithms for Almost
Random-Walk Time Series

The purpose of evaluating a prediction algorithm is to produce an answer “Yes” or
“No” as to whether the algorithm really has predictive power. The evaluation task is
directly affected by the relatively low degree of accuracy that can be expected, even
from a “successful” model. Some simple statistical exercises show the situations
that may arise when trying to evaluate a prediction algorithm.

3.3 Scenario 1

Assume that we are doing one-day predictions of a stock time series consisting of
equal numbers of daily moves up and down during one year of 250 trading days. This
is a realistic assumption. The average up/(up + down) ratios for a large number of
Swedish stocks is shown to be between 50% and 51%, refer to Section 8.1.

A totally random prediction algorithm is applied for each day. The algorithm
simply produces a “1” (predicted move up in stock price) and a “0”(otherwise)
totally at random. The probability that x predictions are correct is given by:

P(hit rate = ) = (250) 0.5 % 0.52°07, (3.3)

T

This means that P(hit rate < z) follows the binomial distribution
binom(250,0.5) and therefore:

P(hit rate > ) = 1 — P(hit rate < z) = 1 — binom cdf(x,250,0.5). (3.4)

Here binom cdf denotes the binomial cumulative distribution function. Insertion
of x = 0.54 % 250 = 135 yields P(hit rate > 135) = 0.092 as the probability that
the random prediction algorithm would result in a hit rate higher than 54%. Thus
we are running a 9% risk of classifying the random algorithm as a useful predictive
model. This corresponds to what statisticians call a “Type II error”, i.e. accepting a
false hypothesis. Lowering the required hit rate limit to 52% hit rate would increase
the risk for a Type II error to 1 — binom cdf(0.52 x 250, 250,0.5) = 24.33. Not a
very advisable thing to do, apparently.

3.4 Scenario 2

Assume that we are evaluating technical indicators that produce sell and buy signals
once a week on average. We have selected one hundred different indicators and want
to conduct a proper test, and decide if any of them has predictive power, which we
define to be a hit rate of > 55%. For a test period of 10 years we get 500 predictions
from each indicator. They are compared to the actual stock chart, and then hit rates
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are computed for the indicators. What is the probability that a random indicator
would slip through this test?

As before, we can compute the probability that a purely random indicator pro-
duces z or fewer correct signals (hits) when applied to a stock: P(hit rate < z)
follows the binomial distribution binom(500,0.5) and thus:

P(hit rate > z) = 1— P(hit rate < z) = 1 — binom cdf(z, 500,0.5). (3.5)

We compute P(hit rate > 0.55 % 500) = 0.0112 as the probability that a random
indicator would produce a hit rate higher than 55%. But since we started off with
100 different indicators, we must calculate the probability that we falsely accept
ANY of the 100 random indicators. This risk is 1 — (1 —0.0112)'% which calculates
to 68%. It should be noticed, that there are many hundreds of suggested indicators
and rules, claimed to really predict future stock prices. In the light of what we have
just seen, the mere selection of one of these indicators, based on its past performance,
can be statistically totally unacceptable.

3.5 Why Do We Get these Results

The primary reason for obtaining results like the ones shown above, is that the
limits set for accepted prediction hit rates are too low. Increasing them to, say 60%
would provide considerably safer results. However, then the problem would be to
find prediction algorithms that really produce such high hit rates for the required
test period. The reason that so many papers present hit rates in the region below
55% may be simply that the prediction task is impossible (at least with the reported
method,) and the only way to obtain results that seem to be significant, is to keep
the required hit rate on a level where even a random predictor would produce them.

Scenario 2 above, pinpoints also another important issue to be borne in mind,
especially when selecting the best performing algorithm or technical indicator. The
dramatic increase to 68% in Scenario 2, is due to the fact that the selection is done
i sample. Given enough different indicators, it would be possible to find one with
any hit rate. It corresponds to overfitting a powerful model to a set of data points.
The conclusion is that a test set of data points must be kept untouched during the
entire parameter estimation and model selection process. Although this may sound
trivial, it is in fact quite difficult to fulfill completely. Model selection is in effect even
after the test results have been published, since good prediction results probably get
more attention than bad ones. For a thorough analysis of related problems refer to
[21].
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Problem Formulation
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Chapter 4
Available Data

A prediction algorithm uses a set of known entities to produce a prediction of future
values for the same or other entities. In the case of stock predictions, the entities
can be divided into two categories: pure technical data and fundamental data. The
technical data is the only one used by the technical analysts. Their prognoses are
based on past stock data only. The fundamental analysts include, in addition to
the pure technical data, data related to the companies’ actual activity and the
market situation. In addition to these two categories of data, derived entities can
be produced by transforming and combining technical and fundamental data. This
section describes the most common entities used either as input or output in the
prediction of stocks.

4.1 Technical Data

The daily available data for each stock is represented in the following four time
series, with data for each day of trading (normally Monday-Friday):

e yo or y : Close value; the price of the last performed trade during the day
e y; : Highest traded price during the day
e y; : Lowest traded price during the day

e IV : Volume; the total number of traded stocks during the day

Data for each individual trade during the day is sometimes available as well.
However, this data is seldom used in data modeling of stock prices, but is often used
for timing purposes before “pulling the trigger” in real trading.

The most obvious choice of entity to predict is the time series y¢o or y. Some of
the drawbacks of this approach are:

e The prices y normally vary greatly, making it difficult to create a valid model
for a longer period of time.

e y for different stocks may easily differ over several decades, and therefore can
not be used as the same type of input in a model.

Therefore the returns, defined in (4.1), are often used instead.

13
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4.2 Fundamental Data

Apart from the daily sampled data described above, there is a lot of information
concerning the activities and financial situation of each company. Most companies
quoted at a stock market, are analyzed on a regular basis by the professional market
analysts at the financial institutes. The analyses are often presented as numerical
items, which are supposed to hint at the “true” value of the company’s stock. The
buy and sell recommendations are then formed, either intuitively or with some sort
of mathematical weighting of these numerical items. A fundamental analysis of a
company typically focuses on the following three factors (Achelis [1]):

1 The general economy:

e inflation.
e interest rates.

e trade balance, etc.

2 The condition of the industry; The state of the industry, to which the company
belongs:

e Other stock prices normally presented as indexes (i.e. weighted means)
such as the US “Dow Jones”, the German “DAX” and the Swedish “Gen-
eralindex”.

e The prices of related commodities such as oil, different metals, and cur-
rencies.

e The value of the competitors’ stocks.

3 The condition of the company, extracted from the company’s financial state-
ments. From these a number of useful variables can be calculated:

e p/e ratio. The stock price divided by the earning per share during the
last 12 months.

e Book value per share; net assets (assets minus liabilities) divided by the
total number of shares.

e Net profit margin; net income divided by the total sales.
e Debt ratio; liabilities divided by the total assets.
e Prognoses of future profits.

e Prognoses of future sales.

Of course, most of the work performed by the professional financial analysts is
not publicly available. However, plenty of high quality data is published weekly in
several financial magazines. In any case, the availability of huge amounts of data in
machine readable form is much better for technical data than for fundamental data.
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4.3 Derived Data

4.3.1 Return

The one-step returns R(t) are defined as the relative increase in price since the
previous point in the time series:

y(t) —y(t—1)
R(t) =100 - . 4.1
(¥ s (11)
A common variant is the log-return
y(t)
R(t) = log . 4.2
() =tog L0 (12

The log-returns are often used in academic research, while the former version is
most common in the trading community. If the natural logarithm is used, the two
measures are very similar for small changes, since In($) ~ % — 1 = 22,

R(t) can be generalized to cover more than one-day intervals. The k-step return
Ry(t) is consequently defined as:

y(t) —y(t — k)
y(t — k)

Ry(t) = 100 - (4.3)

4.3.2 Trend

The return Ry (t) can be interpreted as the k-day price trend for the stock. It is
convenient to divide by k in order to get the daily increase in price. Trend values
for different values of k£ can then be analyzed on an equal basis. We suggest the
following definition for the k-trend Ty (t):

_ 100 y(t) —y(t =)

Tt =5 y(t — k)

(4.4)

4.3.3 Volatility

Volatility is a common concept in financial analysis. It describes the variability in
a stock price y and is used as an estimate of investment risk, but also for profit
possibilities. There exist several definitions, see the thesis by Andersson [2]. The
standard definition is:

1 & y(t) ) )2
V=\|—— In —m 4.5
\IN—l;( (y(t—l) (45)
where m is the mean value,

1 J y(t) )
m=—>» In{———]. 4.6
N ; (y(t - 1) (4.6)
In this case the volatility equals the standard deviation of the log-return series

R(t). If the volatility is to be used as input in a model identification, a sliding
window is normally used for the sums in the definition. It has been shown empirically
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that volatility and predictability of financial time series are connected, although a
theoretical explanation does not exist [32]. The volatility is of great interest for
financial analysts and provides useful information when estimating investment risk
in real trading. The volatility may be used both as input and output in prediction
models.

4.3.4 Volume increase

The increase of the traded volume V' is often viewed as an indication of new in-
formation reaching the market. Therefore, it may be useful to include the rate of
change of V' as an additional input variable.

4.3.5 Turning Points

Turning points in a stock price chart can be viewed as positions, where equilibrium
between demand and supply has been reached. Therefore, they may be viewed as
more significant than the data in between, which could be regarded as noise in this
context. Thus, one approach may be to use the distance in time and price as input
to the latest turning points.

4.3.6 Technical Indicators

Technical stock analysis deals extensively with derived entities. For a thorough
description of the most common technical indicators, see [1].

4.3.7 Artificial Data

Generating artificial data by adding noise to y (or by shifting data slightly) intro-
duces a degree of time invariance. It is a way of telling the modeling algorithm to
concentrate on the fundamental properties of the data instead of trying to model
what really is noise. Bishop [6] has shown, that adding noise to data is equivalent
to Tikhonov regularization.

4.3.8 Relative Stock Performance

Instead of attempting to predict individual stock prices, one may address the prob-
lem of performing and comparing predictions for many stocks at the same time. One
multi-stock approach is to predict the relative levels or a ranking list of a given set
of stocks. The rank concept is introduced formally in Chapter 11.

4.4 Data Transformations
The input data described above is often transformed before the actual modeling

takes place. The purposes of the transformations can be divided into the following
categories:
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4.4.1 Dimensionality Reduction

It is advantageous to have as few input variables as possible when modeling the
stock prices. It is therefore sometimes useful to compute aggregated entities that
express many points in the time series into one value. These entities then can be
used as the actual inputs in the modeling. Examples are running means of y, ypy,
yr and V.

4.4.2 Normalization

The purpose of normalization is to reduce range differences in the input variables.
Two major types can be distinguished:

1. Reduction of size differences between different input variables to enforce similar
behavior upon the modeling algorithms. For example, before entering variables
into an artificial neural network, all variables are often scaled to cover the range
0-1. This scaling, and the corresponding re-scaling of the network output, is
often performed automatically in neural network software packages.

2. Reduction of size differences over time in an input time series, which reduces
the non-stationary effect. For example, normalized y, y; and y;: The mea-
sured time series y, yy and y;, often vary by several hundred percent, if mea-
sured for some years. Therefore, it is often necessary to normalize the data
to reduce the non-stationary effect. There exist several procedures. Some
examples are:

Transformation to relative changes (returns) as defined in (4.1).

Transformation to log-returns as defined in (4.2).
e Normalization using the mean.

e Normalization using both the mean and the standard deviation.

As explained in Section 4.3, the first two measures are quite similar for small
daily changes. The motivation for using the log-return is statistical; the variance
becomes stabilized and outliers become less dominant. Both transformations are
very frequent in time series predictions of financial data.

Normalization using the mean is defined as:

Yn(t) = y(8)/Ymean(t) (4.7)

where the mean value Ypeqn(t) is computed using a running window of fixed
length n, e.g. 30 days backwards. The normalization with the mean and standard
deviation is defined as:

Yn(t) = (Y(t) = Ymean(t))/ 0y (1) (4.8)

where the estimated standard deviation o, (t), like Ymean(t), is computed in a running
window of length n. The variable y,,(t) expresses the number of standard deviations
the y values may differ from their running mean. Similarly, the normalized volume
Vo(t) is computed as:

Vn(t) = (V(t) - Vmean(t))/UV(t) (4-9)
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where the mean V.., (t) and the standard deviation oy (¢) of the volume are com-
puted in a running window of fixed length ny. A common backward window size is
ny = 30 days. V() expresses the number of standard deviations the volume figure
differs from its running mean.

4.4.3 Linearization

It is often preferable to remove obvious nonlinear factors, which would otherwise have
to be taken care of in the modeling. One example is the volume V (¢), often distorted
by extremely high figures resulting from individual trades by large institutional
traders, such as mutual funds. The linearization in this case may be a pre-processing
squashing function that suppresses values outside a set boundary. For example, the
input V() may be transformed to V' (¢) according to:

/ 1

VIt = 1= (4.10)

4.4.4 Principal Component Analysis (PCA)

Principal Component Analysis provides an efficient technique for dimensionality re-
duction of a data set. It works by finding a linear transformation 7", which is applied
to the original data set of p dimensional vectors. The transformed vectors are still p
dimensional, but 7" is computed in a way that the variances along each of the new p
dimensions are sorted by their sizes in a descending order. Therefore, a dimension-
ality reduction of the data set can be performed by simply ignoring the dimensions
with the smallest variances. The mean-squared error in such a truncation can be
shown to be the sum of the variances of the truncated dimensions. 7' is computed by
solving an eigenvalue problem, commonly encountered in linear algebra. The eigen-
vectors of the correlation matrix R correspond to the axes in the new transformed
coordinate system, and the eigenvalues correspond to the variances measured along
each one of these axes. Principal component analysis has been successfully applied
for dimensionality reduction in many areas, such as image recognition and speech
recognition [17].



Chapter 5

Defining the Prediction Task

As the present now will later be past,
The order is rapidly fadin’
The Times they are A-changin’, B. Dylan

A prediction problem involving stocks can deal with things other than pure
predictions of price levels or price changes. It is sometimes of interest to make pre-
dictions of future traded volumes or of future volatility measures. A new interesting
approach, in which the rank of the stocks is predicted, is presented in Chapter 11.
However, this thesis mainly deals with predictions of stock price levels, or predictions
of the returns Ry(t) as defined in (4.3) or (4.2).

One often chooses to predict Ry (t) instead of the original prices y. Some of the
reasons for this are:

1. R(t) has a relatively constant range even if data is being used as input for
many years. The prices y obviously vary much more, and make it difficult to
create a valid model for a longer period of time.

2. R(t) for different stocks may also be compared on an equal basis (however,
this is seldom done in published research papers.)

3. It is easier to evaluate a prediction algorithm for Ry(t), by computing the
prediction accuracy (hit rate) of the sign of Ry(t).

A prediction problem for Ry (t) or y(t) can be formulated in many different ways.
We investigate two major types:

e Fixed prediction-horizon methods

e Trading simulation methods

The former approach includes building models that attempt to predict the values
a fixed number of days ahead. The latter approach simulates a real trading situation,
where stocks, possibly many in parallel, are allowed to issue “buy signals” and “sell
signals” according to a trading rule that corresponds to the model in the fixed
horizon case.

A general problem with a fixed prediction horizon is that it does not reflect the
way financial predictions are being used. The ability of a model to predict should

19
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not be evaluated at one single fixed point in the future. A big increase in a stock
value 14 days into the future is as good as the same increase 15 days into the future.
And the most commonly used 1-day horizon definitely does not correspond to a
realistic way for stock trading.

A general problem with methods based on trading rules is that of statistical
significance. The trading rule normally gives Buy or Sell signal only for a minor
part of the points in the time series. While being one of the big advantages, it also
presents serious statistical problems when computing levels of significance for the
produced performance. It is easy to find a trading rule that historically outperforms
any stock index, as long as it does not have to produce more than a few signals.
It is clear that the performance measures for a trading rule that produces many
signals for a given time interval, is more reliable than one that just produces a few,
even if the profit is the same. However, it is not clear how this trade-off between
profit and number of signals should be settled in an optimal way. The selection
bias when choosing “good” trading rules, renders a complexity argument worthless,
since even a very simple trading rule can produce very high profit if it has to signal
just a few times. The general problem is left unsolved in the present work, with the
single but important observation, that the number of produced signals should be as
high as possible to render the trading rule credible. The trading system approach is
examined further in Chapter 16.1.

5.1 Fixed Horizon Methods

Time waits for no one,
And it won’t wait for me
Time Waits for No One, Jagger/Richards

The methods with a fixed prediction horizon can be further subdivided into what
I call “The Time Series Approach” and “The Trading Rule Approach”. Both can
be described as special cases of general inductive learning.

5.1.1 Prediction as Inductive Learning

A general prediction task may be formulated as a special case of inductive learning.
We define a time order and pick examples from time series as follows:

Given a set of N examples, {(X(t),z(t + h)),t = 1,..., N}, where z(t + h) =
f(X(t)),Vt, return a function g(X(t)) that approximates f(X(t)) in the sense that
the norm of the error vector £ = (ey, ..., ex) is minimized. For simplicity, g(X(t))
is denoted ¢(t). Fach e, is defined as e; = e(g(t), z(t + h)), where e is an arbitrary
error function. Thus we are aiming at approximating z(¢ + h) with g(¢), where h is
the prediction horizon. The prediction error in time step ¢ is a function e of example
output z(t + h), and the function value g(t).

To be more concrete we have to specify the following entities:

e The “Input”, i.e. the X(¢) vector.
e The “Output”, i.e. the z(t + h) vector.

e The error function e(g, z).
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e The error norm, based on some vector norm, for computing || E||.

e Prior knowledge (bias) of the approximating function g.

It is interesting to note that the function g that we eventually learn, depends on
all these entities. Even the error function, which often is regarded as a mere measure
of goodness of fit, is highly involved in the model selection. By specifying the above
five entities “The Time Series Approach” and “The Trading Rule Approach” can
be expressed as shown below.

5.1.2 The Time Series Approach

The input part X and output part z of each example (X(t),z(t + h)) have the
following form in this approach:

X(t) = (y(t),yt—1),...,y(t —k+1)) (5.1)

and

A+ h) = y(t +h). (5.2)

The inputs are thus formed as lagged values of the time series y(¢), that we want
to predict h steps ahead. In the case of stock predictions, the time series y(t) is
typically the h-day returns according to (4.1) or the closing price each day for the
stock. The prediction error e in each step is taken as the difference between what g
provides and what the examples suggest. L.e.:

ee = g(t) — z(t+ h). (5.3)

The root mean square error (RMSE) is used as the vector norm:

1 N
Bl == e7. 5.4
IBI= || 5 3 ¢ (5.4
The learning task is to find a function g that minimizes ||E||. The bias for g can
be chosen in many ways. Common choices are:

e A linear AR model:

g(t) = any(t —m—1)+ag (5.5)

m=1

e A general nonlinear model implemented by a multi-layer-feed-forward neural
network. A 1-hidden-layer net with linear output defines g as

g(t) =3 (wj h (mi:l Wi jy(t —m —1) + wo,j) + WO) (5.6)

J

1

where h is a nonlinear function, such as the sigmoid function h(r) = =
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The learning comprises finding the parameter values which minimize the error
norm (5.4).

It is most common to let the minimized RMSE measure (5.4) be the end point
in the prediction task. However, in order to utilize the predictions, a decision-taking
rule has to be created. A simple rule when predicting returns is:

Buy 2 if g(t) > «
D(t) = ¢ Sell s if g(t) < =0 (5.7)
Do nothing : otherwise

where a and [ are threshold parameters for buy and sell actions, depending on
the predicted change in the stock price.

The RMSE measure (5.4) is not always ideal for predictions of financial time
series for the following reasons:

1. The RMSE treats all predictions, small and large, as equal. This is not always
appropriate. Prediction points that would never be used for actual trading
(i.e. price changes too small to be interesting) may cause higher residuals at
the other points of more interest, in order to minimize the global RMSE.

2. A small predicted change in price, which actually resulted in a much higher
value, but in the same direction, will be penalized by the RMSE measure.
A trader is normally happy in this case, at least if, say the small positive
prediction was large enough to issue a buy signal.

3. Several papers report a poor correlation between the RMSE measure and the
profit made by applying a prediction algorithm, e.g. Leitch & Tanner [15] and
Bengio [5]. A strategy that separates the modeling from the decision-taking
rule, such as the one in (5.7), is less optimal than modeling the decision taking
directly [25]. Arguments 1 and 2 both offer some explanations to these results.

5.1.3 The Trading Rule Approach

Instead of predicting stock prices for all points 1 to N, algorithms can be constructed
to recognize situations where one should buy and sell stocks. This approach can also
deal with the disadvantages of the Time Series Approach described above.

The task can be defined as a classifying problem with three classes: “Buy”, “Sell”
and “Do nothing”. Since we want classifications for all points 1, ..., N, we still need
to use the time series framework. A trading rule can be described as a time series
T'(t) defined as:

Buy c o ifg(t) =1
T(t) =4 Sell c o ifg(t) =-1 . (5.8)

Do nothing : if g(t) =0
The unspecified function g determines the type of the trading rule. The general
problem of generating the function g can be formulated within the framework of

inductive learning.
The input part X of each example (X(¢), z(t + h)) has the same form as in (5.1):

X(t) = (y(t),y(t —1),...,y(t — k+ 1)) (5.9)
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where y(t) typically is the h-day returns or the closing price for the stock.
The output part z of each example has the following form:

z(t+h) = Ru(t + h) (5.10)

where Ry, (t + h) is the h-step return defined in (4.1) computed h days ahead.

The prediction error e; in each step t is somewhat different from the time series
approach. One alternative, which aims at maximizing the hit rate for the trading
rule, is:

1: gt)=1 AND z(t+h)<0
ee=4 1: g(t)=—1 AND z(t+h)>0 . (5.11)
0: otherwise

The model is hence penalized if the predicted return has a different sign than
that of the actual return z(¢t + h).

Another alternative, which aims at maximizing the theoretical profit for the
trading rule, is:

—z(t+h): g(t) = AND z(t+h) <0
z(t+h): g(t)= AND z(t+h) >0
ee =4 —z(t+h): g(t) = AND z(t+h)>0 . (5.12)
Z(t+h): g(t) = AND z(t+h) <0
t

0: o herw1se

This error measure equals the loss caused if trading was performed according to
the trading rule.
The mean error for the non-zero cases is used as the vector norm. l.e.:

N—h
= -
1B = = (5.13)
Y.
—k
where
. 1 Zf €t 7é 0
= { 0 otherwise * (5.14)

As before, the learning task is to find a function g that minimizes ||E'||. The bias
for g is normally very strong, as displayed in the following example:

Example:

Inputs: Lagged stock prices are used as input:

X(t) = (y(t),y(t = 1), ...yt — k+1)). (5.15)
Outputs: The 5-day-return computed at t + 5:
z(t +5) = Rs(t + 5). (5.16)

The error function is chosen according to (5.11) and the error norm according to
(5.13). The unknown function g is restricted according to:
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1: if mavg(t) > mavr(t) AND  mavg(t — 1) < mavg(t — 1)
g(t) =1 —1: if mavs(t) < mav(t) AND mavs(t —1) > mavg(t — 1)
0: otherwise

(5.17)
where mawvy(t) is a moving average of length k. Le.:
1 k—1
mavy(t) = P >yt —m) (5.18)
m=0

The trading rule is illustrated in figure 5.1.
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Figure 5.1: A trading rule based on moving averages

The learning in this example consists of finding optimal values to specify the
function g, i.e.: the length variables in the moving averages S and L. Typical values
are S = 2 and L = 10. The trading rule (5.8) signals “Buy,” if the short moving
average mavg crosses the long moving average mavy, from below. A “Sell” signal is
issued when mauvg crosses the mavy from above. The optimal settings for S and L
are determined by the learning process.

Note the difference between this and the Time Series Approach, where the pre-
diction error at all points was added up to the mean error || E||. Also note, that ||E],
viewed as a function of the parameters in g, may get a lot of local and even global
minima when there are very few points where e; # 0. These minima are clearly
not what we are looking for when attempting to minimize ||E||, and so they have
to be avoided. It is necessary in these cases to regularize the problem by adding
constraints to the number of predictions.

This formulation covers the so-called technical indicators that are very common
in practical trading. Even if they are seldom described in this formal way, they can
often be reformulated as a trading rule T'(¢) as described above. The general trading
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rule formulation can be also of interest when developing new prediction algorithms.
The fact that the prediction error g(t) — z(¢t + h) for the “Do nothing” situations
is set to zero in the error measure e;, points out the possibility to develop models
that take into account the varying noise contents and predictability of the data-
generating process. In this way, regions with low predictability produce more “Do
nothing” cases.

5.2 Trading Simulation Methods

A trading simulation implements a trading-rule-based prediction algorithm in a sys-
tem, where real trading is simulated as closely as possible. This means that the
trading rule’s Buy part initiates buy actions, and the Sell part initiates sell actions.
In this way a more realistic situation is achieved than the previously described one
of having a fixed horizon. Transaction costs for the trades can be also easily incor-
porated. A complete trading simulation includes much more than a pure prediction
algorithm. Decision support is needed to decide how many stocks to buy and sell
and, in the case of a multi-stock simulation, which stocks to prefer, if many stocks
show a predicted increase in price. The trading simulation approach is examined
further in Chapter 16.1.

5.3 Remarks

From the presented formalization of the prediction task we observe the following:

e The RMSE measure, commonly used in fixed-horizon prediction tasks, is just
one of many choices, and by no means is “given by the gods” as a universal
best alternative. The choice of error measure and error norm determines cen-
tral properties like hit rate, profit, and risk compensation for the produced
predictions.

e Modeling a trading rule by looking at fixed horizon values may be regarded,
on good grounds, as inappropriate. A more natural method is a trading simu-
lation, where both buy and sell signals are observed in relation to each other.
The system ASTA, described in Chapter 16.1, supplies an environment where
trading rules can be developed and evaluated in this fashion.

e [ would like to point out, that the separation of the definition of the task
and the performance measure is done purely to fit into the commonly used
methods for prediction and evaluation. As described further on, these two
concepts should be intertwined in order to reach an optimal solution of a
prediction problem.



Chapter 6

Performance

How can I go forward when I don’t know which way I'm facing?
How, J. Lennon

A way to measure the performance of a model is needed in two phases of the
development cycle of the prediction system. First, during the modeling phase, where
a model is selected or where optimal settings on unknown parameters in the model
or in the trading rules have to be decided upon. Secondly, when the complete
algorithm is put to test on historical data, to see if it serves the original goal of the
development project. As was mentioned in Chapter 5.1.2, there are good reasons to
use the same performance measure in these two phases. Otherwise, the final result
may be less than optimal.

Evaluation of prediction performance is an important, difficult, and often over-
looked stage in the development of financial prediction algorithms. In the case of
an algorithm based on trading rules, one problem is the comparatively low number
of produced trades, which constitutes a somewhat weak statistical basis for our per-
formance measures. Apart from this, we have the problem with overtraining and
selection bias. By tuning the parameters in the algorithm to maximize the perfor-
mance on historical data, we always run a risk of fitting the algorithm too closely to
the data set. Even for a rather “small” model (i.e. one with relatively few degrees
of freedom), the problem must not be overlooked. The near-random-walk behavior
in the data, combined with the comparatively low required prediction accuracy (a
little higher than chance is normally regarded as sufficient,) make the situation very
delicate. Illustrative examples were shown in Chapter 3.

A general problem with financial predictions is the non-stationary nature of the
process, i.e. the performance of a trading strategy varies over time, due to changing
global conditions affecting the market as a whole. One strategy may work fine in a
trending market, while another works best in a non-trending market. Even if this
should really be taken care of by the modeling phase, it often causes problems in
the final evaluation made on historical data.

Before starting to optimize the behavior of our prediction algorithm, we must
settle three issues:

e What performance do we want, or which performance metrics are relevant?

e What is the best way to measure the performance?

27
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e To what do we compare our system’s performance when we say that it is good?
We need a good benchmark.

Let us start by investigating alternative performance measures.

6.1 Performance Metrics

In [28] Refenes provides a survey of a large number of measures of performance for
financial predictions. In this section I present the ones I have found essential, as
well as some new metrics believed to be necessary. Two properties are considered
particularly important: relevance to the prediction task and the availability of a
benchmark. The latter is extremely important, since we are dealing with (at least)
near-random-walk processes, in which for a prediction system to be successful, it
barely has to outperform pure chance.

6.1.1 The Time Series Approach

Let me forget about today until tomorrow
Mr. Tambourine Man, B. Dylan

The metrics for testing algorithms constructed according to the Time Series Ap-
proach work by comparing the predicted values to the actual outcome in the time
series. The predictions of stock prices for time ¢ are expressed by the time series
{g(t),t = 1,...,N}. The actual prices are denoted by the time series {y(t),t =
1,...,N}. The predictions of returns at time ¢ are denoted by the time series
{R(t),t = 1,...,N}. The actual returns are denoted by the time series {R(t),t =
1,..., N}. We assume an h step horizon in the predictions. L.e.: The predictions ()
and R(t) are produced at time ¢ — h. The following metrics are relevant as perfor-
mance measures for algorithms constructed according to the Time Series Approach.

Stock Price RMSE

The RMSE for the predicted stock prices y is defined as:

RMSE = | = > (y(t) — 9(t))2. (6.1)

Return RMSER

The RMSE for the predicted returns R can be formulated correspondingly:

N

RMSER = % S (R(t) — R(t))2 (6.2)
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Hit Rate Hp

The hit rate of a return predictor indicates how often the sign of the return is
correctly predicted. It is computed as the ratio between the number of correct non-
zero predictions R(t) and the total number of non zero moves in the stock time
series. Le.:

i Ht|R(t)}:2(t) >0,t=1, N})
{tIR(ORE) #£0,t=1,..,N}|

The norm of the set in the definition is simply the number of elements in the set.

(6.3)

The reason for avoiding both zero predictions and zero returns in the computation
of the hit rate is the following: if zeros were included, we would have to decide
whether the following five combinations should be regarded as “hits” or not:

R(t) =0 R(t) >0
R(t)=0|R(t) <0
Rt)=0|R(t)=0
R(t)>0|R(t)=0
R(t) <0 | R(t)=0

Regardless of the choice made for the classification of these situations, the result
is invariably an asymmetric treatment of the positive and negative returns. Since
the zero-valued one-day returns can account for more than 20% of the samples in
typical stock data (see tables 8.2, 8.3,) they would result in “Up fractions” arbitrarily
either greater or less than 50%. Such a result would conceal the random-walk nature
of the time series. By removing all zeros from both predictions and outcome, “Up
fractions” very close to 50% are achieved. Therefore, in the case of one-day returns
(i.e. h = 1), a hit rate Hpg, significantly greater than 0.5, can be regarded as true
predictions of the sign of the returns. Refer to Section 8.1 for further discussion.

Mean Profit per Trading Day

The ultimate measure of success for a prediction algorithm is its ability to produce
profit if applied to real trading. This profit can be approximated for a Time Series
Approach method, by assuming a trade at every time step, in the direction of the
predicted change. The mean profit P per trading day for a time series prediction is
computed as:

_ 1L 1~ sign(g(t) —y(t—h)) (y(t) —y(t —h))
P_10()-E-N—_h-t:hz+1 o) (6.4)
where
1 if x>0
sign(z) =¢ —1 if x <0 . (6.5a)
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6.1.2 The Trading Simulation Approach

The following metrics are relevant for algorithms constructed according to the Trad-
ing Simulation Approach.

Total Profit

An intuitively appealing and very common measure is the total wealth achieved by
the trader, when simulating trading over the available training data period. The
wealth is often presented as a function of time in a so-called equity diagram.

Average Profit per Day

To get around the cumulative effect in the total-profit measure (more about that
in Section 6.4.2,) one could compute the average profit per day (percentage) and
use that as a measure of the trading performance. By this we lose the possibility
to evaluate the trader’s behavior during the varying global market conditions that
arise over any longer simulation period.

Profit per Year

Computing the annual profit achieved by applying the trading algorithm, would
provide a compromise between using the total profit and the average profit per day.
The mean annual profit could be used as total measure for the entire time period.
However, it is also very important to pay attention to the performance in each
individual year.

Statistical Significance

The profit from a Trading-Rule-based system has a very weak statistical significance,
if the number of trades produced during the simulation is too low. The number of
trades is therefore of central importance, and should be presented along with the
trading results. Histograms, such as the one shown in figure 6.1, give a good overview
of the annual performance.

6.2 What Is the Best Way to Measure the Per-
formance?

For the loser now will be later to win
The times they are a-changin’, B. Dylan

It is important to realize that the profit measure we select for optimization and
evaluation is a stochastic variable, which does not have any single “value” that can
be measured. Instead, it has a probability distribution that can be described by its
statistical moments, such as the expectation value and the wvariance. What we get
when we compute the annual profit for a year of trading simulation for example, is
merely one sample from this distribution (assuming it is stationary over the years).
The task of “maximizing” the profit by changing the parameters in the model now
becomes less well-defined. Obviously, the common way of using the mean value is
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just one option. Other choices could be the lower limit of a confidence interval,
the median value or the Sharpe Ratio. The issue connected to trading simulation
is further discussed in Section 16.6, where the profit is examined as a function of
various parameters in the model. However, the situation is the same, regardless
of the performance measure. An RMSE computed for one-day horizon predictions
may, for example, vary considerably depending on the degree of stationarity of the
process. It is therefore essential to present performance measures not only for the
whole investigated time period, but also as annual values, for example. In this way,

the spread in results and the dependencies on idiosyncrasies in the data become
highlighted.

6.3 Benchmarks

Besides a performance measure, we need something to which to compare the perfor-
mance. Whether it is a good or bad performance depends on the alternatives. Even
a prediction algorithm that loses money sometimes, may turn out to be successful
when compared to some of the alternatives.

The correct way to evaluate prediction performance depends on the approach
chosen for the problem formulation. Suitable benchmarks for the Time Series Ap-
proach and the Trading Simulation Approach are described separately below.

6.3.1 The Time Series Approach

In this section the new benchmarks € —increase prediction and Naive Prediction of
Returns are introduced as extensions to the well-known Naive Prediction of Stock
Prices. The new measures T, HR., HRy, and P, are suggested as testing metrics
for performance evaluation relative to these benchmarks.

Naive Prediction of Stock Prices

The naive price predictor asserts that the best estimate of the following price y(t+h)
is today’s price y(t). This is a direct consequence of the random-walk hypothesis.
It is always a good idea to measure the quality of a predictor in relation to this
trivial predictor. This is done in the Theil coefficient of inequality T, defined as the
quotient between the RM SFE for the investigated predictor and the RMSFE for the
naive price predictor . I.e.:

paiss, |, WO i)

RMSEyy ¢§ ((t) — ylt — B))?

T, (6.6)

t=h+1

The Theil coefficient is often referred to as the information coefficient or the t-
test. TFor T, > 1 the predictor is worse than the naive price predictor, while 7, < 1
implies that the predictor is making better predictions.
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€ — increase Prediction

The € — increase predictor asserts that the best estimate of the following price
y(t + h) is today’s price y(t) + ¢. The purpose of adding a small positive number
to today’s price is simply to enable computation of the hit rate for this predictor.
The hit rate of this predictor provides a measure for the overall positive trend that
“normally” makes an increase in price more likely than a decrease. The hit rate for
the € — increase predictor is defined as:
H - I{t|Rn(t) >0,t:h—|—1,...,N}]' (6.7)
{t|Rn(t) #0,t =h+1,..., N}|
The measure H R, is defined as the ratio between the predictor’s hit rate Hg (as
defined in (6.3)) and H,. Le.:

Hp
HR. = —. 6.8
" (6:5)
H R, compares the hit rate of the predictor to that of the € — increase predictor.
For HR. < 1 the predictor is worse than the € — increase predictor, while HR, > 1

implies that the predictor is making better predictions.

Naive Prediction of Returns

The Theil coefficient (6.6) compares the performance to that of the naive price
predictor. We propose a similar measure to compare to the performance of the naive
return predictor. The naive prediction of stock returns asserts today’s return Ry, (¢)
(price increase since t —h) as the best estimate of Ry (t+h). This naive prediction is
formed from the observation of a one-step memory in the price generating process.
In Section 8.2 the autocorrelation of stock returns is shown to exhibit a significant
first lag component that indicates a correlation between adjacent returns. It is a
good idea to measure the RM SFE of a return predictor in relation to the RM SFE for
this naive return predictor. This is done in Theil coefficient for returns T, defined
as:

RMSE, t=ha1

) ) ¢§ (Ralt) — Bal))?
RMSE,y \/ N

1,

(6.9)

> (Ba(t) = Ra(t — h))?
t=ht1

For T, > 1 the predictor is worse than the naive return predictor, while 7, < 1

implies that the predictor is making better predictions.

The Naive Prediction of Returns can also be compared on the basis of hit rate.
This is the purpose of our suggested measure H Ry (“Hit rate relative to the Naive
Predictor”) and is described below. The hit rate Hy for the naive return predictor
is first computed as:

_ {t|Ru(t)Rp(t —h) >0,t =h+1,...,N}|

= {t|Ra(t)Rp(t —h) #0,t =h+1,..., N} (6.10)

The Naive Prediction of Returns assumes, that an upswing is followed by yet
another upswing the next day, and a downswing by yet another downswing.
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The Relative Hit Rate H Ry is defined as the ratio between the hit rate of the
predictor Hy (as defined in (6.3),) and that of the naive return predictor. L.e.:

Hp
HRy = —. 6.11
= (6.11)
H Ry compares the hit rate of the predictor relative to that of the naive return
predictor. For HRy < 1 the predictor is worse than the naive return predictor,

while HRy > 1 implies that the predictor is making better predictions.

Buy-and-Hold
The Buy-and-Hold return 1, for a time period {t...t + n} of a stock is defined as:

r, = 100 - M, (6.12)

Yt
L.e. the profit (expressed in percentage) made when buying at the start and
selling at the end of the time period. The Profit Relative to Buy-and-Hold P, is
defined as the ratio between the predictor’s accumulated Mean Profit per Trading

Day P (as defined in (6.4),) and the Buy-and-Hold return. Le.:
(1+ P/100)" — 1
rb/100

For P, < 1 the predictor’s profit is worse than the Buy-and-Hold alternative,
while P. > 1 implies that the predictor is making higher profits.

P = (6.13)

6.3.2 The Trading Simulation Approach

The natural benchmark when doing Trading Simulation is some kind of stock index,
which is also most often used by professional broker companies. A broker who
outperforms the index gets bonuses, and the one who does not might risk his job.
Mutual funds in particular are governed by these attitudes. Even if the individual
traders don’t lose their jobs, the managers know that their funds will lose customers,
if they start doing worse than the global stock index. This is one of the reasons that
so many mutual funds acting on one particular market perform almost identically.

For our purposes, however, it is a reasonable benchmark because it compares the
performance to a very available alternative: that of buying a mutual fund instead of
doing the trading ourselves.

The following two kinds of indexes have been tried:

e The Swedish index Generalindex.

e An artificial index, in which all the stocks available for the artificial trader are
assigned equal parts.

No significant differences affecting the performance evaluation have been found
between the two kinds of indexes, and therefore the official Generalindex has been
chosen as a benchmark. It can be argued, that the change in the index underes-
timates the average profit achieved for the stocks that constitute that index. The
reason for this, would be that the dividends for the stocks are not taken into account



34 CHAPTER 6. PERFORMANCE

in the calculation of index'. On the other hand, the dividends are not included in the
profit calculations for the tested prediction algorithms either, which means, that it
is subject to the same underestimation. Therefore, the change in index is considered
a relevant benchmark when comparing different prediction methods?.

6.4 Conclusions Regarding Performance Evalua-
tion

The following presentation of results is recommended for a proper performance eval-
uation of prediction algorithms. General guidelines are also offered in Section 7.2.

6.4.1 The Time Series Approach

The results from a prediction system designed according to the Time Series Approach
should be presented with annual figures for the following entities:

o If absolute prices y are predicted: the Theil coefficient of inequality T, (or
RMSE, and RMSE,y separately)

e If returns R are predicted: the Theil coefficient for returns T, (or RMSE,
and RMSE,y separately)

e The hit rate relative to the e-increase predictor H R, (or Hgp and H, separately)

e The hit rate relative to the naive increase predictor HRy (or Hr and Hy
separately)

e The Profit Relative to Buy-and-Hold P, (or P and r, separately)

e The number of predictions

In addition to the annual values, summary and mean values for the entire time
period are also useful for fast comparison of methods.

6.4.2 The Trading Simulation Approach

The result of a trading system should be presented as annual profits together with
the increase in index. The mean difference between these two figures constitutes
the net performance of the system. The performance may be displayed in so-called
equity diagrams, as shown in figure 6.1 (examples from the ASTA system).

A global stock index is presented in the same diagram for comparison. The
curves are scaled, so the leftmost point has a wealth of 1 for both the trader and
the index. The values for other points along the date axis can be then interpreted
as wealth relative to the one at the starting point. A value 2.10 means, for example,
that the start capital has grown to 210% of its original value. Therefore, the final

I For the Swedish stock market, this underestimation has been around 3% per year for the period
1988-1997

2Some official indexes, for example the Swedish Affirsvirldens Index, are automatically com-
pensated for this effect.
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value at the very right of the diagram is the net result after trading for the entire
time period has been completed. The major drawback of this method is that the
trades in the beginning of the time period affect the end result more than the ones
in the end of the time period. This is a consequence of the cumulative nature of the
simulation. The profits in the beginning of the time period are being reinvested, and
therefore appear “several times” in the total wealth resulting from trading during
the entire time period °.

The performance can be also displayed in a tabular format, as shown in the table
part of figure 16.2. The second last line of the table in figure 16.2 presents the annual
profit to be above the index. The mean value of this entity is presented in the sec-
ond rightmost column, and represents a one-figure performance measure. However,
the individual figures for each year should also be considered. The Sharpe Ratio
produces a risk-dependent measure, and is discussed further in Section 16.6. The
number of trades for each year is also highly important for the statistical significance
of the results.

Equity curves for Trading (499%) and Index (138%)
8 I

—— Trading

6— —— Index mf Wi
‘ M )
2 g —

0
Jan90 Jan92 Jan94 Jan96 Jan98
Mean annual profits Trading:28% Index:14%
100
50

: . N L
LT

90 91 92 93 94 95 96 97

Trading (left) Index (right)

Figure 6.1: Presentation of performance for a (successful) trading strategy

3This is a nice effect if you want to show off your trading and stun people with an exponential
increase in wealth. It is commonly used by the financial institutes when presenting results for their
mutual funds over the years. However, the index curve is often not included in these presentations,
since it would reveal that the mutual fund actually has not performed any better than the market
in general. One has to realize that a constant economical growth of, say 5% over a period of 10
years, turns out a seemingly impressive exponential wealth curve for the average stock. With or
without clever trading systems.
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Guidelines for Algorithms

The near-random-walk behavior of the stock-price times series calls for exerting
extreme precaution, when developing and evaluating the outputs from any prediction
system. In this chapter some guidelines are presented, for limiting the risk of data-
snooping in the development and evaluation phases.

7.1 Developing Prediction Algorithms

The predictions of time series with near-random-walk behavior emphasize some is-
sues that should be considered when developing a prediction system:

e Ensure high data quality, because a few errors in the input data may very
well cause misinterpretations of the results in either direction. Watch out for
outliers in the data.

e Handle missing data correctly. When analyzing hundreds of time series with
daily data for many years, it is unavoidable to have missing data points. Be-
sides being a problem in the actual inference machinery, the missing data may
also introduce unwanted biases when analyzing the output results. The easy
way of solving this situation is to remove the missing data before doing the
analysis. This solution is not always advisable, for example, when a set of
stocks is analyzed simultaneously. The individual stock time series often have
missing data at different locations, which results in a rather mangled data set
after removal of all points where any of the stock data is missing. A better
approach is to make the algorithm accept missing data, and do as well as
possible when parts of the input data are missing.

e When predicting one step ahead, make sure this is what you are really doing.
“off-by-one” errors are seldom more fatal than in financial predictions.

7.2 Evaluating Prediction Algorithms

As pointed out earlier, the risk of interpreting random fluctuations as results of
a successful prediction algorithms is always present and is sometimes surprisingly
high. We propose the following guidelines for the testing and evaluation of prediction
algorithms that are parts of a trading system:

37
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e Beware of the data-snooping problem. Ensure that all parameter tuning,
data selection, and algorithm selection are done in sample. Do not involve
the test data. The final evaluation on the test data set should be the last
operation in the whole development cycle '. Experience shows that this is as
difficult as it is important. The outstanding solution is to add a final test of
the algorithm on data that simply didn’t exist at the time of the development.
In this way, a true estimation of the predictability is achieved.

e Test the predictions on as much data as possible; on many stocks and for long
time periods.

e Divide the available time period into smaller periods (e.g. annual) and perform
the evaluation on these smaller parts as well as on the total time period. The
purpose is threefold:

1. The statistical level of significance is increased by evaluating many sam-
ples instead of one grand total.

2. It is common that financial prediction algorithms turn out to depend on
global properties, such as long time trends or cyclic behavior in the time
series. By splitting the data, such biases can be revealed.

3. The variance of the prediction accuracy is estimated. It is important to
realize that a prediction system that produces a massive loss during its
first year in operation is most likely to be scrapped, probably along with
the developing team.

e Test the prediction algorithm on random-walk time series. If you manage to
predict random walk, there is either a bug in the program or a weak evaluation
procedure. Two tests can be performed:

1. Generate and test the same amount of random data as the available real
data. Repeat the testing several times (with different random “seeds”)
and record the test performance. By observing the spread between the
different runs and the results from the real data prediction, the signifi-
cance of the latter can be estimated.

2. Test the algorithm on a huge random test data set. The prediction results
should converge to zero predictability (zero profit and 50% hit rate) as
the size of the test data set increases.

e Use proper benchmarks. If a highly sophisticated and complicated prediction
algorithm does not outperform the naive prediction method, the application
(or publication) of the algorithm should be taken under consideration. Like-
wise, a total accumulated profit below the “buy and hold” profit implies that
the algorithm is rather useless as a real trading tool.

!The publication of new methods is very much a part of the development cycle (evaluation).
To be strict, the only way to avoid data snooping would be to publish all proposed prediction
algorithms, and propose all tested ones...
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Data Mining the Stock Market
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Chapter 8

Basic statistics

It took me so long to find out, and I found out, Ah, ah, ah, ah, ah, ah
Day Tripper, Lennon/McCartney

This part presents results from a statistical analysis of stocks of the Swedish
stock market for the period 1987-1996. The purpose of the project is to examine,
in general terms, the statistical properties relevant to the development of prediction
algorithms. Therefore, at this stage, we are not aiming at extracting patterns or
dependencies that can be utilized directly for trading purposes.

Results for two sets of stocks are normally presented; SXG which is a compilation
of 32 major stocks with active trading and SXBIG which is a compilation of 207
major and minor stocks (including those in SXG). The stocks included in SXG are
listed in Table 8.1.

8.1 Returns

The k-step return Ry(t) of a stock-price time series y(t) was previously defined as:

Ri(t) = 100 - y(t)yé y_(tk)_ k) (8.1)

The basic statistical properties of Ry (t) for the two sets of stocks are listed in
Tables 8.2 and 8.3. The values in the tables are mean values for the included stocks.
Each column shows data for one particular value of k.

The last six lines in the tables show the distribution of signs for the returns.
“Return = 0” is the fraction of returns equal to zero. “Return > 0” is the fraction
of returns greater than zero and “Return < 07 is the fraction of returns less than
zero. “Up fraction” is computed as:

“Return > 07
100 - 8.2
“Return > 07 + “Return < 0"’ (8.2)

which is the positive fraction of all non-zero moves. “Up fraction” is a relevant
measure, when it comes to evaluating the hit rate of prediction algorithms. Looking
at one-step returns in the tables, the “Up fraction” for the SXG stocks is 50.8%
and for the SXBIG stocks is 50.6%. The “Mean Up” and “Mean Down” columns
show the mean value of the positive and negative returns respectively. The fractions
of zero returns in the data material are somewhat surprisingly high, 14.1% for the
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Table 8.1: Stocks in set SXG

From To
AGA A 870102 | 961230
ABB A 870102 | 961230
AssiDoman 940408 | 961230
Astra A 870102 | 961230
Atlas Copco A 870102 | 961230
Autoliv 940609 | 961230
Avesta Sheffield 870126 | 961230
Electrolux B 870102 | 961230
Ericsson B 870102 | 961230
Hennes & Mauritz | 870102 | 961230
Incentive A 870102 | 961230
Industrivard A 870116 | 961230
Investor A 870102 | 961230
Kinnevik B 870105 | 961230
MoDo B 870102 | 961230
Pharm & Up SDB | 871015 | 961230
SE-Banken A 870102 | 961230
Sandvik A 870102 | 961230
SCA B 870102 | 961230
SHB A 870102 | 961230
Skandia 870102 | 961230
Skanska B 870102 | 961230
SKF B 870102 | 961230
Sparbanken A 950609 | 961230
SSAB A 890703 | 961230
Stora A 870102 | 961230
Sydkraft C 870102 | 961230
Trelleborg B 870102 | 961230
Tryge-H SPP B 891208 | 961230
Volvo B 870102 | 961230
Allgon B 880527 | 961230
Nokia A 870102 | 961230
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SXG stocks and 23.4% for the SXBIG stocks. The higher value in the latter set
is related to the lower degree of activity in the smaller stocks included in SXBIG.
The zero returns must be dealt with in a proper way when evaluating hit rates for
prediction algorithms. The “Up fraction” circumvents the zero returns by simply
removing them before calculating the hit rate. In this way, the zero returns are
counted as both increases and decreases, in equal proportions. A similar procedure
is proposed in section 6.1.1 for a test metric, when doing stock predictions.

8.2 Autocorrelation

Much of the literature about market efficiency and stock price predictability is fo-
cused on the properties of the autocorrelation function of the stock returns. Fama
[12] surveys a number of investigations and concludes that “The new research pro-
duces precise evidence on the predictability of daily and weekly returns from past
returns”. In this section we present our own results from investigations of data from
the Swedish stock market.

The autocorrelation for a time series X describes how well X is correlated to
itself at two different times. For a stationary X the autocorrelation is defined as a
function of the time difference 7 as:

Ay(r) = Cov[X(tzf,%j((thT)] (8.3)

where

Cov[X(t),X(t+7)] = E[(X(t)X(t+7)] — p%- (8.4)

iy and o, are the mean and standard deviation respectively for the time
series X. The F denotes the expected value of the argument.

The autocorrelation Ax(7) can be viewed as a measure of the T-step memory in
the process generating X, computed as a mean value over the entire time series. By
computing Ax(7) for 7 = 1,2, 3, ..., the autocorrelation can be plotted as a function
of 7. It should be noticed, that only linear dependencies are fully revealed by the
autocorrelation. However, it is often used as a general indicator of predictability,
even for nonlinear functions.

We want to investigate the autocorrelation for the one-step stock returns Ry ()
defined in (8.1). The autocorrelation for R;(t) (denoted ACF) is computed using
(8.3).

Figure 8.1 shows the ACF for the SXG stocks. For each lag (value on 7), the
mean value of the ACF for the 32 stocks is plotted. To test the stationary state
assumption for the underlying process, the data is broken down to five equal blocks,
each covering about two years of stock data. The graph to the left in Figure 8.1
shows the ACF for the entire time period. The graph to the right shows one curve
for each two-year period.

The autocorrelation values are overall very low. The autocorrelation for lag 1
is clearly positive, whereas the following lags, 2 and 3, are negative. The following
lags seem to vary in a rather random fashion around zero.

The same type of diagram for the larger SXBIG set is shown in Figure 8.2.
Surprisingly, the result for these 207 stocks shows a significantly negative correlation
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in the first lag, whereas positive correlation is found for the 32 major stocks in SXG.
We do not give any explanation for this observation, but it is reasonable to suspect a
“small-company effect” in the larger SXBIG set. As a reference, the corresponding
graphs for 100 simulated random-walk stocks are presented in Figure 8.3. The
autocorrelation is very close to zero in a statistically stable way. This reinforces the
results shown in the previous graphs for the real stock data.

Table 8.2: Mean k-step returns for 32 major Swedish stocks (SXG)

k

1 2 5 10 20 50 | 100
Mean 0.091 | 0.183 | 0.445 | 0.892 | 1.831 | 4.585 | 9.142
Median 0.000 | 0.017 | 0.140 | 0.494 | 1.447 | 4.025 | 7.133
Std. dev 218 3.17| 5.09 | 7.29 | 10.65 | 18.23 | 28.42
Skewness 0.52| 0.70| 0.78| 0.71| 0.56 | 0.53 | 0.64
Kurtosis 12,77 | 12.36 | 12.46 | 10.86 | 8.61 | 6.12 | 5.51
No of points 2178 | 2175 | 2172 | 2165 | 2153 | 2124 | 2074

Returns=0 (%) | 14.1 93| 55| 36 2.4 1.2 0.8
Returns>0 (%) | 43.6| 46.1| 49.5| 52.1| 56.1| 60.2| 62.6
Returns<0 (%) | 42.2| 446| 45.0| 443 | 41.5| 38.5| 36.6
Up fraction (%) | 50.8 | 50.9| 52.3| 54.0| 57.5| 61.0| 63.1
Mean Up 1.8 2.6 4.1 9.9 86| 153 | 24.8
Mean Down -1.6| 22| -35| 48| -70]| -11.5| -16.0

Table 8.3: Mean k-step returns for 207 Swedish stocks (SXBIG)

k

1 2 5 10 20 50 | 100
Mean 0.143 | 0.274 | 0.585 | 1.058 | 2.007 | 4.584 | 8.651
Median 0.000 | 0.007 | 0.060 | 0.248 | 0.946 | 2.895 | 5.148
Std. dev 3.02| 415| 6.15| 842 11.80 | 18.82 | 27.80
Skewness 079 | 1.06| 1.02| 093] 083 | 0.78 | 0.82
Kurtosis 15.78 | 16.49 | 11.55 | 9.27 | 7.58 | 5.99| 5.59
No of points 1367 | 1363 | 1356 | 1347 | 1333 | 1306 | 1259

Returns=0 (%) 2341 17.0| 10.8 7.5 4.9 2.7 1.9
Returns>0 (%) 387 42.0| 456 | 485 | 52.1| 56.1| 57.6
Returns<0 (%) 379 41.1| 43.6| 44.1| 43.0| 41.2| 40.5
Up fraction (%) | 50.6 | 50.6 | 51.1 | 52.3 | 54.7| 57.6| 58.7
Mean Up 2.7 3.5 5.2 7.1 10.1| 16.8 | 26.5
Mean Down -2.3 -2.9 -4.0 -5.3 73] -11.3 | -15.5
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Figure 8.1: The autocorrelation for 32 major Swedish stocks (SXG) for the years
1987 to 1996. The graph on the right is broken down to five two-year curves
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Figure 8.2: The autocorrelation for 207 Swedish stocks (SXBIG) for the years 1987
to 1996.
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Figure 8.3: The autocorrelation for 100 simulated random-walk stocks for the years
1987 to 1996
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Trends

A trend-following trading strategy means buying stocks that have shown a positive
trend for the last days, weeks or months. It also suggests selling stocks that have
shown a negative trend. In this section the relevance for such a strategy is tested
statistically.

A trend T(t) was defined in (4.4) using the k-step return. By setting different
values to k, we get measures indicating the growth of the stock per day, since its
value k days ago.

To see if T(t) is connected to future changes, define the profit Py,(¢) computed
h days ahead as:

(t+1) — y(t)

y
Py(t) = 100 - "o

(9.1)

P, (t) is obviously equal to Ry (t + h) (i.e. it is achieved by shifting the returns h
days backwards).

In Table 9.1 the mean profit P (t) is tabulated as a function of the trend Ty(t),
i.e. l-step-forward profit versus k-step-backward trends. Results are presented for
the SXG stocks for the years 1987-1996. Table 9.2 shows the “Up fraction” ((8.2))
and Table 9.3 the number of observations in each table entry. The label for each
column is the mid-value of asymmetrical interval. For example, the column labeled
0.00 includes points with k-day trend in the interval [—0.25 0.25[. The intervals
for the outermost columns are open ended on one side. Tables 9.4, 9.5, and 9.6
show the same, but with Ps(¢) and T(t) , i.e. 5-step-forward profit per day versus
k-step-backward trends per day. The six Tables 9.7, 9.8, 9.9, 9.10, 9.11, and 9.12,
repeat the same analysis for the larger SXBIG set.

To ensure that found patterns reflect fundamental properties of the process gen-
erating the data, and not only idiosyncrasies in the data, the relations between
trends and future returns are also presented in graphs, in which one curve repre-
sents one year. Figure 9.1 shows 1-step profits versus 1-step trends for SXG and
SXBIG respectively. Figure 9.2 shows 2-step profit versus k-step trends. Figure 9.3
shows 5-step profit versus k-step trends.

47



48 CHAPTER 9. TRENDS

Let us draw some conclusions from these statistical examinations of trends.

e The massive better part of returns falls into a region, where it is very difficult
to claim any correlation between past and future price changes. The regions,
where any correlation may be significant, are the sparsely populated extreme
ones. However, some interesting effects can be observed. Looking at Table 9.8,
we observe that a 5% decrease in price since the previous day, stands a 61.2%
probability of showing an increase by the following day. The same negative
correlation holds for both sets of investigated stocks.

e The cases with large increase since the previous day call for a more complex in-
terpretation. Looking at Figure 9.2, a difference between the two investigated
sets of stocks becomes apparent. For the stocks in SXG, a 5% increase in
price since the previous day stands a 54.9% probability of showing an increase
by the next day. For the stocks in SXBIG, a 5% increase in price since the
previous day stands a 53.3% probability of showing a decrease by the following
day. This is in accordance with the observed difference in the first lag of the
ACF, reported in Section 8.2.



Table 9.1: Mean 1-step returns for 32 stocks in SXG
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k-day trend (% /day)
k| -5.00 [ -4.00 | -3.00 | -2.00 | -1.00 | -0.50 | 0.00 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
1 052 | 003 | -0.05 | -0.05 | -0.12 | -0.08 | 0.00 | 0.1l | 0.19 | 0.28 | 0.37 | 0.40 | 0.73
2 110 | 020 | 013 | -0.09 | 006 | -0.08 | 0.03 | 0.3 | 0.24 | 031 | 0.28 | 0.31 | 043
3 187 | 006 | 0.5 | 0.6 | 004 | -0.07 | 0.03 | 0.5 | 0.20 | 0.25 | 0.27 | -0.02 | 038
1 317 | 048 | 003 | 0.2 | -0.00 | -0.04 | 0.03 | 0.16 | 0.20 | 0.16 | 0.42 | -0.04 | 0.83
5 347 | 093 | 0.9 | -0.03 | 002 | -0.01 | 0.05 | 0.15 | 0.20 | 0.4 | 0.21 | 0.57 | 1.12
10 | 1064 | 7.39 | 038 | -0.11 | 000 | -0.00 | 0.06 | 0.15 | 0.17 | 030 | 0.20 | 0.44 | 0.56
20 825 | 123 | 0.4 | -0.06 | 0.09 | 0.14 | 0.21 | 031 | 0.06 | 3.28 | 1.29
30 2.63 | 002 | -0.07 | 0.09 | 0.13 | 0.22 | 033 | 219 | 1.24 | 1.49
50 0.48 | -0.08 | 0.08 | 0.3 | 0.1 | 1.0 | 0.7 | 1.95 | 1.21
100 168 | 0.8 | 0.05 | 0.3 | 026 | 057 | 0.18 | 0.29 | 031

Table 9.2: Fraction up/(up+down) moves (% ) for stocks in SXG

k-day trend (% /day)
k| -5.00 | -4.00 | -3.00 | -2.00 | -1.00 | -0.50 | 0.00 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
L 55.0 | 506 | 49.6 | 485 | 471 | 473 | 49.0 | 514 | 533 | 549 | 55.6 | 550 | 549
2 583 | 519 | 53.0 | 495 | 47.6 | 478 | 495 | 518 | 545 | 544 | 52.0 | 51.8 | 483
3 622 | 514 | 495 | 533 | 48.7 | 473 | 49.8 | 52.6 | 53.6 | 53.6 | 515 | 424 | 479
4 648 | 5.7 | 489 | 504 | 49.9 | 47.9 | 50.0 | 52.8 | 540 | 508 | 494 | 43.0 | 50.6
5 60.6 | 589 | 51.0 | 498 | 50.0 | 489 | 50.1 | 52.8 | 52.7 | 50.0 | 483 | 49.1 | 533
10| 1000 | 733 | 526 | 503 | 493 | 488 | 50.8 | 528 | 504 | 518 | 50.2 | 475 | 435
20 778 | 561 | 471 | 475 | 514 | 523 | 507 | 48.6 | 49.1 | 500 | 556
30 56.1 | 476 | 473 | 515 | 51.7 | 502 | 50.7 | 558 | 611 | 543
50 52.3 | 463 | 51.2 | 518 | 488 | 544 | 528 | 57.1 | 50.0
100 714 | 495 | 50.5 | 51.6 | 49.2 | 548 | 64.7 | 50.0 | 53.5

Table 9.3: Number of points (SXG)

k-day trend (%/day)
k| -5.00 [ -4.00 | -3.00 | -2.00 | -1.00 | -0.50 | 0.00 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
i 1396 | 1178 | 2530 | 6427 | 8701 | 7543 | 12373 | 7317 | 8508 | 6443 | 3048 | 1504 | 1807
2 192 | 561 | 1553 | 4644 | 0334 | 10822 | 12800 | 10219 | 0335 | 5399 | 2008 | 759 | 796
3 244 | 346 | 985 | 3514 | 8807 | 11837 | 15360 | 11419 | 0238 | 4575 | 1415 | 478 | 456
1 116 | 215 | 716 | 2717 | 8246 | 12485 | 17295 | 12122 | 9272 | 3865 | 950 | 317 | 310
5 71| 136 | 553 | 2178 | 7478 | 13224 | 18504 | 12871 | 0185 | 3215 | 702 | 244 | 218
10 3 30 | 165 | 957 | 4794 | 13670 | 23902 | 15643 | 7177 | 1536 | 292 | 93 | 79
20 0 0 9 | 359 | 2548 | 12327 | 29970 | 17303 | 4441 | 742 | 123 | 18 | 27
30 0 0 0 70 | 1855 | 10820 | 33884 | 17278 | 3156 | 473 | 48 | 18 | 32
50 0 0 0 0 | 765 | 8802 | 30328 | 15867 | 1971 | 216 | 41 | 24 | 42
100 0 0 0 0 7| 5708 | 46293 | 12148 | 861 | 258 | 40 5 48
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Table 9.4: Mean 5-step returns for 32 stocks in SXG
k-day trend (% /day)
k | -5.00 | -4.00 | -3.00 | -2.00 | -1.00 | -0.50 | 0.00 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
1 T14 | 005 | 044 | 018 | 021 | 014 | 031 | 043 | 065 | 067 | 064 | 074 | 1.22
2 1.87 | 0.80 | 067 | 029] 023 ] 023 ] 026 ] 050 | 062 ] 068 ] 044 | 0.61 | 1.36
3 266 | 068 ] 088 | 062 030 ] 0.15] 0.29] 052 ] 060 ] 065 0.60 | 030 | 157
1 128 | 089 | 145 | 052 ] 027 | 0.7 ] 0.35] 052 066 | 050 | 1.15 | -0.41 | 2.55
5 630 | 144 ] 109 | 030 | 028 | 023 ] 0.35] 056 ] 062 ] 056 052 | 1.60 | 2.17
10 981 | 509 | 127 | 001 | 021 ] 016 ] 041 | 058 | 074 | 072 | 1.03 | 0.51 | 2.6
20 16.02 | 3.05 | -0.27 | -0.09 | 044 | 0.66 | 0.78 | 1.27 | -1.05 | 2.80 | 847
30 6.04 | -0.13 | 021 | 047 | 0.60 | 0.86 | 1.67 | 6.70 | -1.06 | 6.76
50 181 | 026 | 0.39 | 059 | 0.76 | 3.10 | 4.13 | 9.78 | 4.26
100 7.96 | 1.01 | 025 | 051 | 1.32 | 325 | 1.91 | 4.36 | 3.81
Table 9.5: Fraction up/(up+down) moves (% ) for stocks in SXG
k-day trend (% /day)
kK | -5.00 | -4.00 | -3.00 | -2.00 | -1.00 | -0.50 | 0.00 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
1 56.7 | 513 | 512 | 50.7 | 504 | 500 | 52.0 | 52.7 | 546 | 541 | 53.4 | 5256 | 514
2 55.0 | 554 | 553 | 517 | 503 | 511 | 515 | 53.0 | 540 | 541 | 50.6 | 50.2 | 49.3
3 564 | 545 | 556 | 550 | 515 | 501 | 510 | 532 | 53.7 | 53.2 | 498 | 48.7 | 46.1
1 626 | 553 | 590 | 548 | 518 | 505 | 52.1 | 528 | 542 | 50.7 | 516 | 434 | 50.2
5 652 | 555 | 570 | 533 | 520 | 51.0 | 52.0 | 534 | 535 | 50.7 | 480 | 52.2 | 475
10 66.7 | 621 | 503 | 493 | 514 | 49.7 | 52.9 | 538 | 52.7 | 51.1 | 504 | 51.2 | 413
20 1000 | 592 | 466 | 481 | 534 | 543 | 503 | 505 | 40.2 | 50.0 | 56.0
30 691 | 461 | 474 | 535 | 53.0 | 51.7 | 52.2 | 63.0 | 412 | 62.1
50 55.7 | 457 | 528 | 53.4 | 49.1 | 60.0 | 634 | 63.6 | 641
100 833 | 510 | 51.7 | 52.9 | 545 | 64.8 | 611 | 80.0 | 63.6
Table 9.6: Number of points (SXG)
k-day trend (%/day)
k | -5.00 | -4.00 | -3.00 | -2.00 | -1.00 | -0.50 | 0.00 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
1 1382 | 1173 | 2519 | 6406 | 8682 | 7519 | 12367 | 7288 | 8467 | 6415 | 3022 | 1494 | 1793
2 186 | 558 | 1536 | 4638 | 9315 | 10783 | 12763 | 10172 | 9300 | 5369 | 2001 | 753 | 793
3 237 | 340 | 966 | 3507 | 8776 | 11792 | 15363 | 11392 | 9204 | 4541 | 1400 | 469 | 458
1 113 | 209 | 709 | 2710 | 8216 | 12459 | 17253 | 12102 | 9216 | 3832 | 934 | 315 | 312
5 71 | 133 | 547 | 2177 | 7442 | 13103 | 18487 | 12846 | 9143 | 3186 | 701 | 244 | 211
10 3 30 | 164 | 046 | 4774 | 13595 | 23856 | 15642 | 7154 | 1520 | 289 | 90 | 80
20 0 0 8 | 361 | 2533 | 12329 | 29881 | 17312 | 4434 | 735 | 123 | 17 | 27
30 0 0 0 70 | 1850 | 10819 | 33799 | 17193 | 3145 | 467 | 48| 17 | 32
50 0 0 0 0| 760 | 8777 | 39226 | 15803 | 1960 | 214 | 43 | 24| 42
100 0 0 0 0 7 | 5771 | 46183 | 12106 | 861 | 259 | 40 5| 18




Table 9.7: Mean 1-step returns for 207 stocks in SXBIG

o1

k-day trend (%/day)

k| -5.00 | -4.00 | -3.00 | -2.00 | -1.00 [ -0.50 | 0.00 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 [ 5.00
1 142 | 040 | 030 | 0.09 | 002 | -0.07 | 0.02 | 0.09 | 0.1 | 0.4 | 0.15 | 0.16 | 0.06
2 235 | 0.75 | 044 | 022 | 006 | -0.00 | 0.02 | 0.06 | 009 | 0.13 | 0.06 | 0.10 | 0.05
3 338 | 095 | 062 | 035 | 042 | 0.01] 002 0.07 | 011 | 0.1 | -0.00 | -0.12 | -0.12
1 447 | 136 | 065 | 045 | 0.4 | 0.04 | 0.02 | 0.07 | 0.2 | 0.04 [ -0.00 | 0.07 | -0.03
5 506 | 221 | 087 | 040 | 020 | 0.04 ] 0.04 | 0.0 | 0.10 | 0.05 | -0.07 | -0.03 | -0.01
10 | 828 | 502 | 188 | 0.7 | 0.24 | 0.08 | 006 | 0.0 | 011 | 0.13 | 0.18 | 0.58 | -0.80
20 | 40.22 | 1158 | 2.43 | 1.84 | 026 | 0.5 | 0.08 | 0.1 | 0.6 | 0.05 | -0.10 | -0.02 | -1.07
30 807 | 341 | 038 | 009 | 008 | 010 | 0.9 | 0.21 | -0.12 | 0.59 | -1.37
50 755 | 081 | 0.08 | 0.0 | 0.14 | 0.1 | 0.01 | 037 | -0.71 | -1.05
100 251 | 022 | 0.08 | 0.5 | 0.31 | -0.15 | 053 | -2.10 | -0.30
Table 9.8: Fraction up/(up+down) moves (% ) for stocks in SXBIG
k-day trend (% /day)
k| -5.00 | -4.00 | -3.00 [ -2.00 | -1.00 [ -0.50 | 0.00 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
1 61.2 | 569 | 55.0 | 52.1 | 49.6 | 48.0 | 489 | 50.2 | 50.0 | 49.8 | 49.8 | 50.0 | 46.7
2 628 | 576 | 56.0 | 53.7 | 511 | 495 | 492 | 49.3 | 40.8 | 501 | 48.3 | 475 | 45.7
3 65.0 | 584 | 56.5 | 55.7 | 51.0 | 494 | 492 | 49.7 | 50.1 | 49.4 | 473 | 446 | 438
1 6.6 | 589 | 555 | 552 | 525 | 501 | 49.0 | 49.9 | 51.0 | 483 | 461 | 458 | 4d.7
5 654 | 608 | 557 | 545 | 528 | 50.0 | 495 | 505 | 50.2 | 47.8 | 449 | 455 | 44
10 | 650 | 651 | 560 | 530 | 519 | 506 | 50.3 | 50.7 | 489 | 478 | 46.2 | 47.0 | 384
20 | 667 | 654 | 548 | 569 | 502 | 495 | 508 | 50.7 | 490 | 478 | 3.7 | 440 | 406
30 552 | 575 | 494 | 493 | 51.0 | 504 | 493 | 47.3 | 393 | 536 | 377
50 57.7 | _50.5 | 484 | 50.7 | 510 | 48.2 | 46.0 | 47.0 | 375 | 41.7
100 524 | 491 | 50.3 | 50.7 | 49.3 | 46.0 | 47.7 | 316 | 500
Table 9.9: Number of points (SXBIG)
k-day trend (%/day)
k| -5.00 | -4.00 | -3.00 | -2.00 | -1.00 | -0.50 | _0.00 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
1 | 10256 | 6255 | 12158 | 23091 | 29276 | 19134 | 60845 | 184d7 | 28262 | 23213 | 13091 | 7077 | 13141
2 1071 | 3206 | 7475 | 19783 | 34386 | 35028 | 53625 | 33001 | 32519 | 20794 | 9214 | 4335 | 6703
3 2121 | 2101 | 5000 | 15661 | 33500 | 42333 | 58688 | 39244 | 32600 | 18332 | 6854 | 2994 | 4244
! 1187 | 1426 | 3640 | 12431 | 31945 | 46192 | 64660 | 42530 | 32581 | 15915 | 5432 | 2264 | 2082
5 T4 | 990 | 2852 | 10142 | 20791 | 49017 | 69243 | 45101 | 32426 | 13980 | 4384 | 1698 | 2344
10 116 | 255 | 1047 | 4837 | 10894 | 52570 | 80411 | 53333 | 27421 | 8062 | 2238 | 807 | 890
20 3 28 | 168 | 1041 | 11475 | 47613 | 112230 | 59258 | 19290 | 4344 | 1029 | 338 | 320
30 0 0 32 | 708 | 8330 | 42626 | 127005 | 58767 | 14641 | 3021 | 625 | 200 | 179
50 0 0 0 59 | 4033 | 34760 | 147072 | 54372 | 10147 | 1655 | 311 | 115 83
100 0 0 0 O | 364 | 23997 | 167490 | 44255 | 5972 | 1094 | 129 | 20 53
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Table 9.10: Mean 5-step returns for 207 stocks in SXBIG

k-day trend (% /day)
k| -5.00 | -4.00 | -3.00 | -2.00 [ -1.00 [ -0.50 | 0.00 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
1 230 | 082 | 066 | 038 | 027 | 018 | 041 | 047 | 053 | 0.56 | 0.54 | 0.63 | 021
2 432 | 156 | 086 | 057 | 032 | 0.26 | 040 | 049 | 055 | 048 | 027 | 0.56 | -0.16
3 589 | 1.67 | 136 | 0.0 | 038 | 024 | 041 | 0.51 | 054 | 050 | 0.26 | 0.61 | -0.22
1 751 | 337 | 142 | 082 | 037 | 026 ] 041 | 051 | 0.60 | 041 | 047 | 0.36 | -0.16
5 931 | 3.5 | 195 | 0.3 | 039 | 028 | 040 | 0.60 | 055 | 046 | 030 | 0.63 | -0.56
10 | 1656 | 12.35 | 4.20 | 0.86 | 0.33 | 0.22 | 0.47 | 0.60 | 0.65 | 0.44 | 0.84 | 047 | -3.16
20 | 78.89 | 11.97 | 13.65 | 4.96 | 0.8 | 0.6 | 0.44 | 0.63 | 0.76 | 1.36 | 0.20 | -0.42 | -4.85
30 2396 | 8.33 | 0.64 | 0.08 | 045 | 059 | 095 | 1.27 | 1.61 | -2.39 | 6.15
50 1218 | 239 | 001 | 041 | 0.73 | 071 | 092 | 0.73 | -2.77 | 5.8
100 833 | 068 | 033 | 0.68 | 1.08 | 058 | -1.84 | -4.26 | 2.10
Table 9.11: Fraction up/(up+down) moves (% ) for stocks in SXBIG
k-day trend (% /day)
k| -5.00 | -4.00 | -3.00 [ -2.00 | -1.00 [ -0.50 | 0.00 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
1 58.6 | 544 | 538 | 51.3 | 504 | 496 | 502 | 52.3 | 514 | 50.7 | 494 | 48.7 | 441
2 61.6 | 56.3 | 55.0 | 53.4 | 50.7 | 50.1 | 503 | 51.3 | 51.2 | 49.7 | 46,5 | 468 | 41.5
3 635 | 571 | 56.0 | 540 | 51.6 | 49.9 | 50.6 | 51.2 | 50.8 | 48.6 | 45.6 | 444 | 413
4 635 | 60.7 | 564 | 555 | 51.0 | 502 | 50.6 | 510 | 51.2 | 474 | 451 | 43.0 | 40.7
5 64.7 | 625 | 565 | 547 | 524 | 500 | 50.7 | 5.7 | 504 | 46.9 | 445 | 441 | 392
10 | 740 | 675 | 574 | 520 | 513 | 498 | 514 | 518 | 496 | 459 | 445 | 43.7 | 346
20 | 100.0 | 53.6 | 669 | 58.6 | 483 | 485 | 516 | 510 | 492 | 489 | 404 | 384 | 316
30 581 | 602 | 480 | 483 | 518 | 51.0 | 494 | 47.7 | 41.6 | 35.7 | 303
50 474 | 514 | 468 | 512 | 52.3 | 473 | 450 | 43.6 | 385 | 38.7
100 58.2 | 488 | 50.4 | 510 | 49.7 | 45.3 | 44.5 | 36.8 | 583
Table 9.12: Number of points (SXBIG)
k-day trend (%/day)
k| -5.00 | -4.00 | -3.00 | -2.00 | -1.00 | -0.50 | _0.00 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
1| 10120 | 6203 | 12085 | 23788 | 29099 | 19057 | 60477 | 18284 | 27958 | 22045 | 12888 | 6969 | 12834
2 1000 | 3177 | 7442 | 19726 | 34260 | 35003 | 53355 | 32659 | 32188 | 20508 | 9050 | 4255 | 6453
3 2029 | 2081 | 4916 | 15631 | 33442 | 42073 | 58477 | 38851 | 32278 | 17965 | 6713 | 2932 | 4049
1 1137 | 1391 | 3576 | 12334 | 31909 | 45973 | 64282 | 42165 | 32168 | 15663 | 5278 | 2197 | 2862
5 713 | 965 | 2790 | 10055 | 20701 | 48998 | 68890 | 44674 | 31987 | 13750 | 4200 | 1648 | 2234
10 111 | 256 | 1010 | 4736 | 10775 | 52317 | 88853 | 53000 | 27101 | 7880 | 2200 | 782 | 862
20 2 28 | 167 | 1010 | 11375 | 47582 | 111654 | 58661 | 10034 | 4241 | 999 | 327 | 305
30 0 0 31 | 693 | 8232 | 42555 | 126516 | 58131 | 14367 | 2057 | G602 | 207 | 175
50 0 0 0 59 | 3071 | 34558 | 146319 | 53863 | 0990 | 1623 | 311 | 111 83
100 0 0 0 0 | 359 | 23859 | 166617 | 43693 | 5910 | 1079 | 121 | 20 52
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Figure 9.1: 1-step profits versus 1-step returns for stocks SXG and SXBIG. Each
curve represents one year between 1987 and 1996.
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Figure 9.2: 2-step profits versus 1-step returns for stocks SXG and SXBIG. Each
curve represents one year between 1987 and 1996.
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Figure 9.3: 5-step profits versus 5-step returns for the SXG and SXBIG stocks. Each
curve represents one year between 1987 and 1996.



Chapter 10

Seasonal Effects

In this section we present some empirical investigations showing how the day of the
week and the month of the year affect the stock price returns. The results confirm
and complement similar investigations on other stock markets world-wide.

10.1 Handling the Missing Weekends

The exchanges in most countries are closed on Saturday and Sunday. The price time
series therefore have gaps for these days if plotted against a calendar-time axis. The
situation is normally approached in either of the two following ways:

e The returns from Friday to Monday are assumed to be three times the re-
turns on each of the other days of the week. This is called the calendar-time
hypothesis

e Returns are generated only during active trading days, and average returns
are the same for all five days of the week. This is called the trading-time
hypothesis.

Hawawini and Keim [16] report on negative Monday returns (i.e. relative price
changes from Friday close to Monday close) for several European stock markets. This
is inconsistent with both the calendar-time hypothesis and trading-time hypothe-
sis. A satisfactory explanation for this weekend effect does not exist, according to
Hawawini and Keim, at present.

Our own results do not support any of the mentioned hypotheses either. How-
ever, the day-to-day returns exhibit a complex pattern, as shown in the next sec-
tion. To proceed we have to define several metrics for a stock price time series

{w(0),y(1),y(2), ..., y(N)}.

10.1.1 Omne-Step and One-Day Returns

The one-step returns Rg(t) are defined as the relative increase in price since the
prior point in the time series:

Rs(t) = 100 - y(t)yé y_(tl)_ D) (10.1)
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The mean of one-step returns Rg(t) is computed using the standard definition
as:

1 N
Rs =+ t; Rs(t). (10.2)

To deal with the holiday effect we propose the concept of one-day returns Rp(t).
It is defined as the relative increase in price since the previous day, if that day is
represented in the time series:

Ro(t) = 100 - 6(1) W)y(‘t y_(tu_ D) (10.3)

where:
5(t) = { 1 if juliandate(t) — juliandate(t — 1) = 1

0 otherwise (10.4)

The function juliandate(t) returns the number of days since the start of the Julian
calendar up to the date for sample t. It is introduced as a means to compute the
number of days between two samples.

The mean of the one-day returns Rp(t) is:

1 N
Rp = = t; Rp(t), (10.5)
where: N
K=" 6(t). (10.6)

K is roughly the number of weekdays Tuesday-Friday in the data set. Holidays
occurring on weekdays as well as missing data also generate 6 = 0, and therefore a
reduced value on K.

The standard deviations for one-day returns and one-step returns are computed
correspondingly.

10.1.2 Increase Fraction

We also define increase and decrease fractions based on the standard one-step re-
turns. The one-step Increase Fraction g is defined as:

Is = Kiq i ar(t), (10.7)
where o
ort) = { g Y 103)
and
Ks :i ar(t) + ap(t). (10.9)

t=1

The one-step Decrease fraction Dg is defined as:

1
Ds =— " ap(t) (10.10)

S =1
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where
Lify(t) <yt —1)

0 otherwise (10.11)

anlt) = {

To deal with the holiday effect, we define in a similar fashion increase and de-

crease fractions based on the one-day returns. The one-day Increase Fraction Ip
is defined as:

1 N
Ip = K—D ; 6(t) - ar(t), (10.12)

where
Kp :Z 8(t) - (ar(t) + ap(t)). (10.13)

t=1

The one-day Decrease fraction Dp is defined as:

1
Do = 7 tzzl 5(t) - ap(t). (10.14)

Some simple statistics for the one-day and one-step returns are presented below.
The results in Table 10.1 are mean values for the SXG stocks and the results in
Table 10.2 are mean values for the SXBIG stocks. Results are presented for the
years 1987-1996.

Table 10.1: Average daily returns for 32 Swedish stocks (SXG)

One-Day-Returns Rp(t) One-Step-Returns Rg(t)

Mean | Std.dev. | No. of obs. ® | Mean | Std.dev. | No. of obs. *
0.103 2.20 54696 0.084 2.25 69687

Table 10.2: Average daily returns for 207 Swedish stocks (SXBIG)

One-Day-Returns Rp(t) One-Step-Returns Rg(t)

Mean | Std.dev. | No. of obs. ® | Mean | Std.dev. | No. of obs. *
0.132 3.25 222727 0.123 3.31 283008

The results show differences in both mean returns and variances for the two types
of returns computed. The difference in the mean values is caused by a weekend effect
and investigated in more detail in the next section. The difference in variances shows
that the one-day returns exhibit a more homogenous distribution than the one-step
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returns. It can be interpreted as a reduction in noise in the computation of Rp(?)
by removing the weekends, holidays, and other missing data.

Rejection of the trading-time hypothesis should call for some sort of special
treatment when creating models for the prediction of future returns. However, this
is seldom seen in published methods. Some researchers have noticed the problem,
which seems to be even more prominent in the case of prediction of exchange rates.
Weigend [39] deals with the situation by simply removing all but the Monday-to-
Tuesday returns and performs the prediction task on this aggregated time series.
Another way to deal with the problem would be to include the day of the week
explicitly in the model.

10.2 Day-of-the-Week Effect

Friday night arrives without a suitcase
Lady Madonna, Lennon/McCartney

The day-of-the-week effect has been studied in a number of research papers.
Hawawini and Keim [16] present a summary, which demonstrates significant dif-
ferences in average daily returns across days of the week. In our investigation of
the Swedish stock market, the daily returns are presented in a somewhat different
fashion than is normally done. The stock returns are computed for all twenty-five
combinations of buy and sell days. The returns are presented as “daily returns”, i.e.
they are divided by the number of calendar days between buy and sell. For example,
the return from buying on Friday and selling on Monday is divided by three before
it is put in the table. A second table with the same layout presents the “Increase
Fraction” for the same combinations of buy and sell days. This number is the frac-
tion of sampled buy/sell situations that resulted in a positive return (zero returns
are removed before calculating the Increase Fraction). In this way, all combinations
of buy and sell days can be compared on an equal basis.

As before, results are presented for the SXG set of stocks. A time period of 10
years (1987-1996) was used to generate the results. This provides statistically more
stable grounds than using one single index as in the investigations presented in [16].
The daily returns Rp are shown in Table 10.3 and the Increase Fraction I in Table
10.4.

The same type of tables as the above have been generated for the SXBIG stocks
as well. The daily returns Rp are shown in Table 10.5 and the Increase Fraction I
in Table 10.6.

We can extract several interesting “anomalies” from the last two tables:

e The day-of-the-week affects the returns significantly. The returns span between
0.003% (buy Friday/sell Tuesday) and 0.243% (buy Thursday /sell Friday).

e The one-day returns increase monotonically from Monday to Thursday: 0.004,
0.114, 0.167, 0.243 (buying on a Friday never yields a one-day return).

3The ratio between the two No.-of- obs columns should be 4/5 if only Friday-to-Monday returns
have been removed. However, there are additional gaps in the data series originating from holidays
and simply missing data.
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Table 10.3: Daily returns (%) for combinations of Buy and Sell days for SXG

Sell Day
Buy Day | Mon Tue | Wed | Thu Fri | Mean
Mon 0.045 | 0.005 | 0.033 | 0.078 | 0.088 | 0.050
Tue 0.062 | 0.056 | 0.094 | 0.138 | 0.133 | 0.097
Wed 0.054 | 0.048 | 0.057 | 0.174 | 0.159 | 0.099
Thu 0.023 | 0.018 | 0.033 | 0.049 | 0.138 | 0.052
Fri -0.013 | -0.012 | 0.002 | 0.027 | 0.046 | 0.010
Mean 0.034 | 0.023 | 0.044 | 0.093 | 0.113 | 0.061
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Table 10.4: Increase fraction (%) for combinations of Buy and Sell days for SXG
Sell Day
Buy Day | Mon | Tue| Wed | Thu Fri | Mean
Mon 50.58 | 48.99 | 49.88 | 51.20 | 51.67 | 50.46
Tue 51.13 | 52.05 | 50.73 | 52.42 | 52.61 | 51.79
Wed 51.38 | 51.75 | 52.83 | 53.08 | 52.86 | 52.38
Thu 49.20 | 49.72 | 50.87 | 51.61 | 51.27 | 50.53
Fri 48.41 | 48.02 | 48.99 | 50.24 | 51.43 | 49.42
Mean 50.14 | 50.11 | 50.66 | 51.71 | 51.97 | 50.92
Table 10.5: Daily returns (%) for combinations of Buy and Sell days for SXBIG

Sell Day
Buy Day | Mon | Tue| Wed | Thu Fri | Mean
Mon 0.069 | 0.004 | 0.050 | 0.078 | 0.105 | 0.061
Tue 0.081 | 0.066 | 0.114 | 0.136 | 0.152 | 0.110
Wed 0.076 | 0.060 | 0.066 | 0.167 | 0.186 | 0.111
Thu 0.061 | 0.044 | 0.051 | 0.058 | 0.243 | 0.091
Fri 0.014 | 0.003 | 0.018 | 0.033 | 0.062 | 0.026
Mean 0.060 | 0.035 | 0.060 | 0.095 | 0.150 | 0.080
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Table 10.6: Increase fraction (%) for combinations of Buy and Sell days for SXBIG

Sell Day
Buy Day | Mon | Tue| Wed | Thu Fri | Mean
Mon 50.21 | 48.42 | 49.07 | 49.89 | 50.66 | 49.65
Tue 50.85 | 50.68 | 50.39 | 51.24 | 52.04 | 51.04
Wed 50.79 | 50.27 | 51.16 | 51.63 | 52.40 | 51.25
Thu 49.80 | 49.38 | 49.86 | 50.41 | 52.05 | 50.30
Fri 48.70 | 47.51 | 48.18 | 49.02 | 50.30 | 48.74
Mean 50.07 | 49.25 | 49.73 | 50.44 | 51.49 | 50.20

e The rightmost column describes the mean returns achieved when selling be-
tween one and seven days from the buying day. Friday appears to be the worst
day to buy in this respect.

e Looking at “Increase Fractions,” it is still clear that the real trading conditions
are almost as bad as before. Even if we pick the best choice and buy on
Thursday and sell on Friday, we loose money in 47.95% of the cases. It would
take great patience and a stable financial backup to utilize the shown day-of-
the-week effect.

A question that should be posed always when looking for and finding structures
in huge data sets, is whether the found structure reflects some general property of
the data generating process, or is simply an effect of data snooping. The general
question is hard to answer, at the least, and is further discussed in Chapter 3. In
this particular case, we have calculated the same statistics for yearly data over 1987-
1996. In this way, the results are tested for stability in time. The reported effects
are present even in these cases, and thus provide additional support for the results.

10.3 Month Effects

The month effect on stock returns is investigated in a similar fashion as the day-of-
the-week effect above. We perform two statistical investigations:

e Average daily returns for each month

e Average monthly returns for combinations of buy and sell months

10.4 Daily Returns for Each Month

In this study we compute average daily returns Rp(t) and Rg(t) as defined in Section
10.1. The reason against using the “normal” Rg(t) is the day-of-the-week effect,
shown in the previous two sections. By using the weekend compensated return
Rp(t), we achieve more stable figures with the “noise” caused by weekends, holidays,
and missing data removed. The returns are computed for the SXG and SXBIG stocks
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for the years 1987-1996. The mean results for SXG are shown in Tables 10.7 and
10.8. The results for SXBIG are shown in Tables 10.9 and 10.10.

The results for the Swedish stock market fits well with investigations on other
markets. Hawawini and Keim [16] present a summary of a research on a num-
ber of stock markets world-wide. The high returns for January and low returns
for September are significant for most of the markets, including the Swedish stock
market.

10.5 Increase Fractions

The Increase Fraction Ip for SXBIG varies between 47.80% (March) and 54.44%
(January). The mean Ip is 50.62%, which is close to the 50%, proposed by the
random-walk hypothesis. Note, that a prediction accuracy (“hit rate”) of about
54% is often reported for elaborate prediction algorithms. Most algorithms do not
use the day-of-the-week or the month-of-the-year as input variables, see e.g. [37] or
[4]. These results are claimed to show predictive capability in the algorithms. Be
that as it may, if we can achieve the same hit rate by just looking at what month
we are trading in, it seems reasonable to incorporate in some way the month-of-the-
year in the algorithm. And the validation process really should be reconsidered for
algorithms that do not do that.
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Table 10.7: One-day returns for SXG

Mean | Std.dev. | Incr.fraction | No. of obs.
Jan 0.355 2.37 55.92 4338
Feb 0.173 2.24 52.19 4310
Mar 0.065 1.95 48.62 4748
Apr 0.227 1.85 54.78 4130
May 0.133 2.06 52.22 4078
Jun 0.007 1.75 47.71 4426
Jul 0.194 1.61 55.86 4887
Aug -0.002 2.17 48.17 5059
Sep -0.028 2.37 49.72 4750
Oct -0.019 2.73 48.33 5015
Nov 0.106 2.70 49.58 4872
Dec 0.076 2.18 50.52 4083
Mean | 0.103 2.20 51.03 4558

Table 10.8: One-step returns for SXG

Mean | Std.dev. | Incr.fraction | No. of obs.
Jan 0.331 2.48 55.07 5700
Feb 0.124 2.29 51.49 5499
Mar 0.034 1.98 48.31 6133
Apr 0.200 1.94 53.68 5486
May 0.178 2.08 53.17 5587
Jun 0.007 1.85 48.11 5709
Jul 0.176 1.71 54.68 6234
Aug -0.105 2.27 46.29 6352
Sep -0.038 2.49 48.65 6072
Oct -0.102 2.88 48.22 6303
Nov 0.092 2.79 49.63 6170
Dec 0.081 2.32 50.99 5575
Mean | 0.077 2.29 50.60 5902
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Table 10.9: One-day returns for SXBIG

Mean | Std.dev. | Incr.fraction | No. of obs.
Jan 0.376 3.32 54.44 17096
Feb 0.231 3.54 51.44 17307
Mar 0.019 2.93 47.80 19154
Apr 0.241 2.82 53.87 16224
May 0.143 3.02 51.28 16501
Jun 0.034 2.99 48.80 17750
Jul 0.237 2.64 54.10 18417
Aug 0.019 3.10 48.92 20524
Sep 0.041 3.38 50.03 19877
Oct 0.078 3.72 48.78 21181
Nov 0.133 3.52 49.58 20397
Dec 0.095 3.64 49.97 18303
Mean | 0.132 3.25 50.62 18561

Table 10.10: One-step returns for SXBIG

Mean | Std.dev. | Incr.fraction | No. of obs.
Jan 0.357 3.90 53.20 24058
Feb 0.208 4.03 50.76 23590
Mar -0.025 3.43 47.35 26661
Apr 0.202 3.28 52.67 23408
May 0.152 3.47 51.62 24406
Jun -0.026 3.23 48.10 24914
Jul 0.220 3.09 52.99 26042
Aug -0.096 3.45 47.24 27941
Sep -0.042 3.78 48.49 27338
Oct 0.036 4.57 48.77 28515
Nov 0.082 4.04 48.91 27764
Dec 0.111 4.56 50.33 26447
Mean | 0.092 3.78 49.94 25924

63
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10.6 Monthly Returns for Combinations of Buy
and Sell Months

We conclude the investigations of seasonal effects with a trading-oriented statistical
test, where both buying and selling are considered. The first trading day in each
month is always selected for both buying and selling. After buying in the beginning
of a month, the returns from selling in the beginning of each of the successive twelve
months are stored in a twelve-by-twelve table. The shown figures in this table
are daily returns times 30, to obtain comparable monthly returns for all months,
regardless of the number of days they contain. A second table with the same layout
shows the Increase Fraction for the same combinations of buy and sell months. This
number is the fraction of sampled buy/sell situations that resulted in a positive
return (zero returns are removed before calculating the Increase Fraction). In this
way, all combinations of buy and sell months can be compared on an equal basis.

Tables 10.11 and 10.12 show the results for the SXBIG stocks for the years 1987-
1996. Tables 10.13 and 10.14 show the results for the SXG stocks for the same time
period. To avoid false conclusions caused by extreme trends during parts of single
years, the data is also investigated in finer detail. Figures 10.2, 10.3, 10.4, 10.5,
10.6, and 10.7, present results for the 32 SXG stocks for the years 1987-1996. Each
graph contains data for one specific buy month. Each point in the graphs shows the
mean profit from selling all the stocks at that particular month in one particular
year. Each point thus represents 32 trades. There are 10 points plotted for each sell
month, and one for each year between 1987 and 1996. Both buying and selling are
done once per month on the first trading day of the month. The detailed analysis
for the SXBIG set can be found in [18]. The same combinations of buy and sell
months are shown in the 3-D diagrams in Figure 10.1.

Table 10.11: Monthly returns (%) for combinations of buy and sell months for
SXBIG

Sell Month
Buy Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean
Jan 1.47 6.36 4.79 2.70 2.91 2.92 2.35 2.70 2.18 1.91 1.87 1.76 2.83
Feb 1.14 1.91 3.91 1.34 1.95 2.27 1.76 2.40 1.82 1.65 1.61 1.49 1.94
Mar 0.52 1.27 1.33 -0.58 1.12 1.60 1.10 1.77 1.22 1.01 1.00 0.94 1.03
Apr 0.73 1.52 1.51 1.12 3.31 2.80 1.70 2.46 1.59 1.27 1.23 1.13 1.70
May 0.35 1.25 1.27 0.87 1.18 2.56 0.90 2.07 1.09 0.78 0.82 0.73 1.16
Jun -0.06 0.89 0.99 0.64 0.97 1.08 -0.65 1.49 0.51 0.27 0.26 0.29 0.56
Jul 0.16 1.20 1.32 0.85 1.19 1.28 1.13 4.01 1.11 0.62 0.57 0.54 1.16
Aug -0.82 0.43 0.63 0.28 0.66 0.85 0.72 1.01 -1.53 -1.07 -0.68 -0.32 0.01
Sep -0.49 1.06 1.24 0.76 1.13 1.31 1.15 1.54 1.28 -1.04 -0.45 0.08 0.63
Oct -0.05 1.82 2.00 1.29 1.61 1.81 1.57 2.06 1.67 1.45 0.15 0.74 1.34
Nov 0.07 2.32 2.43 1.58 1.86 2.10 1.80 2.26 1.85 1.60 1.82 1.25 1.75
Dec 0.35 3.68 3.38 2.10 2.34 2.51 2.09 2.48 1.97 1.70 1.90 1.85 2.20
Mean 0.28 1.98 2.07 1.08 1.69 1.92 1.30 2.19 1.23 0.85 0.84 0.87 1.36
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Table 10.12: Increase fraction (%) for combinations of buy and sell months for
SXBIG

Sell Month

Buy Month Jan Apr May Jun Jul Aug Dec

Jan 53.89 59.48 66.08 66.28 64.06 66.46 62 59.68

Feb 50.37 53.02 58.68 59.53 59.04 61.10 5 5 54.84

Mar 46.57 43.03 54.95 58.05 56.05 58.75 55.24 51.90 50.84

Apr 49.61 52.19 63.64 67.02 60.71 65.54 58.24 54.95 53.48

May 45.23 18.10 52.02 56.57 53.17 58.53 54.60 52.05 49.93

Jun 44.73 47.32 51.74 54.28 45.88 55.58 53.60 49.64 48.16

Jul 47.06 49.58 54.59 57.49 56.92 60.93 54.39 51.18 50.92

Aug 41.08 14.33 48.56 .13 5 2 53.74 ¢ 46.21 45.68 45.70

Sep 44.80 50.37 53.95 6 56.74 59.05 4.6 49.64 47.31 48.80

Oct 46.50 53.48 56.41 58.62 58.81 58.36 5 55.22 47.56 50.53

Nov 44.69 55.06 61.18 61.67 60.56 61.15 56. 57.31 55.61 48.80

Dec 49.87 59.71 64.90 66.00 64.49 66.26 60.43 61.12 59.27 61.07 2
Mean 47.03 51.31 57.23 59.58 57.41 60.46 55.10 55.45 52.48 51.90 54.77

Table 10.13: Monthly returns (%) for combinations of buy and sell months for SXG

Sell Month
Buy Month Jan Feb Mar Apr May Jul Aug Oct Nov
Jan 1.97 7.10 4.80 3.36 3.55 3.20 3.43 2.56 2.21
Feb 1.34 2.09 2.70 1.80 2.46 2.32 2.70 2.04 1.62
Mar 1.20 2.00 1.84 0.74 2.19 2.22 2.69 1.79 1.41
Apr 1.23 2.09 1.90 1.72 3.94 2.78 3.26 1.96 1.50
May 0.66 1.57 1.45 1.34 1.57 1.94 2.64 1.22 0.74
Jun 0.14 1.12 1.07 0.97 1.28 0.08 1.99 0.59 0.12
Jul 0.17 1.27 1.21 1.08 1.42 1.58 3.82 0.59 0.03
Aug -0.85 0.51 0.59 0.52 0.92 1.16 1.48 -1.17 -1.41
Sep -0.37 1.22 1.28 1.15 1.54 1.74 2.10 -0.92 -1.42
Oct 0.26 2.18 2.18 1.87 2.22 2.33 2.72 2.13 -1.84
Nov 1.21 3.51 3.24 2.66 2.93 2.94 3.24 2.51 2.54
Dec 0.92 4.60 3.63 2.80 3.00 2.89 3.08 2.19 2.15
Mean 0.66 2.44 2.16 1.67 2.25 2.10 2.76 1.29 0.64

Table 10.14: Increase fraction (%) for combinations of buy and sell months for SXG

Sell Month
Buy Month Jan Jun Jul Aug Oct Nov
Jan 58.73 75.80 75.00 76.16 71.89 65.71
Feb 55.24 73. 73.02 73.74 64.06 61.87
Mar 52.19 72. 68.90 70.77 61.13 56.34
Apr 52.36 75 67.96 73.50 63.07 56.79
May 47.41 5 65.85 [ 52.98 56.5¢
Jun 44.36 62.81 57. 50.00 54.49
Jul 45.88 66.78 54.86 57. 49.31 56.37
Aug 41.63 60.94 41.18 45,4 42.76 49.71
Sep 43.36 65.10 59.85 51.22 41.40 54.81
Oct 48.44 65.23 61.48 59. 44.91 59.13
Nov 51.18 75.58 68.08 67. 64.23 67.69
Dec 57.60 79.07 71.92 70. 64.73 72.93
Mean 49.87 69.63 62.06 60. 54.25 60.84
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Figure 10.1: Monthly returns as a function of combinations of buy and sell months
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Figure 10.2: Monthly returns as a function of the sell month. Stocks: SXG. Years:
1987-1996.
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Figure 10.3: Monthly returns as a function of the sell month. Stocks: SXG. Years:
1987-1996.
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Figure 10.4: Monthly returns as a function of the sell month. Stocks: SXG. Years:
1987-1996.
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Figure 10.5: Monthly returns as a function of the sell month. Stocks: SXG. Years:
1987-1996.

Buy month: Sep. Best sell: Aug (profit:2.1%) , Buy month: Oct. Best sell: Aug (profit:2.7%)
20 T T T T T T T T T T T T
.
15 4 15 N
+ + + + +
g 100 . e, 4 ;\S\ 10- : + + ot +
~ j: + + + + * + - +
S o+ 1ot * FREE S S 4 . e +o
c + + + P S + * [ T +
o .+ - P L g +F o+ o+ i i s
S IR IR T A I U I SR S O A
= + S : 1 + + + + - + + + + + I + 4 4
h Tl S = + + +
O 5 oy o+ 4 9Osp . + L1
(A ¥ :: + [a 4
M
10+ + . + B 10+ .
15 B -151
. +
205 2 7 6 g 10 12 ) 2 6 8 10 12
Sell month Sell month

Figure 10.6: Monthly returns as a function of the sell month. Stocks: SXG. Years:
1987-1996.
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Figure 10.7: Monthly returns as a function of the sell month. Stocks: SXG. Years:
1987-1996.



Chapter 11

Ranks

The returns R (t) (defined in (4.3)) are the primary target in most researches on
the predictability of stocks. In this chapter we focus on the observation, that a real
trading situation involves not only attempts to predict the individual returns for a
set of interesting stocks, but also a comparison and selection among the produced
predictions. We therefore introduce a rank concept A, based on the k-step return
Ry, as follows. The k-step rank A}* for a stock s, in the set {s1, ..., sy} is computed
by ranking the IV stocks in the order of the k-step returns Rj. The ranking orders
are then normalized so the stock with the lowest R gets rank —0.5 and the stock
with the highest Ry gets rank 0.5. The definition of the k-step rank A} for a stock
m belonging to a set of stocks {s, ..., Sy}, can thus be written as:

order( R (t),{Ri(t), ..., RY (t)}) — 1
N -1

where the order function returns the ranking order of the first argument in the
second argument, which is an ordered list. Thus, order returns an integer between
1 and N. R} is the k-step returns computed for stock m. The scaling between —0.5
and +0.5 assigns the stock with the median value on R, the rank 0. A positive rank
APY means, that stock m performs better than this median stock, and a negative
rank means that it performs worse. This new measure gives an indication of how
each individual stock has developed relatively to the other stocks, viewed on a time
scale set by the value of k. The scaling around zero is also convenient when defining
a prediction task for the rank. It is clear that an ability to identify, at time ¢, a
stock m, for which A7*(t + h) > 0 means an opportunity to make profit in the same
way as identifying a stock, for which Rg(t + h) > 0. A method that can identify
stocks m and times ¢ with a mean value of A}*(t + h) > 0, can be used as a trading
strategy that can do better than the average stock. The hit rate for the predictions
can be defined as the fraction of times, for which the sign of the predicted rank
A'(t + h) is correct. A value greater than 50% means, that true prediction have
been achieved. The following advantages compared to predicting returns Ry(t + h)
can be noticed:

AT(E) = 0.5 (11.1)

1. The benchmark for prediction performance becomes clearly defined (refer to
tables 8.2 and 8.3):

e A hit rate > 50% , for the predictions of the sign of ranks means, that
we are doing better than the average stock. When predicting returns
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Ry (t+ h), the general positive drift in the market causes more than 50%
of the returns to be > 0.

e A positive mean value for predicted positive ranks Ay (t + h) (and a neg-
ative mean value for predicted negative ranks) means, that we are doing
better than the average stock. When predicting returns Ry(t + h), the
general positive drift in the market causes the returns to have a mean
value > 0. Therefore, a mere positive mean return for predicted positive
returns does not imply any useful predicting ability.

2. The rank values A} for a set of stocks are uniformly distributed for all values
between —0.5 and 0.5. Returns Ry are distributed with sparsely populated
tails for the extreme low and high values. This makes the statistical analysis
of rank predictions safer and easier than predictions of returns.

3. The effect of global events gets automatically incorporated into the predictor
variables. The analysis becomes totally focused on identifying deviations from
the average stock, instead of trying to model the global economic situation.

11.1 Statistical Properties

We start by looking at the rank variables as defined in (11.1). In Table 11.1 mean
ranks A7'(t + k) are tabulated as a function of A7*(¢). Table 11.2 shows the “Up
fraction”, i.e. The number of positive ranks divided by the number of non-zero
ranks. Table 11.3 finally shows the number of observations in each table entry.
Each row in the tables represents one particular value on k, covering the values
1,2,3,4,5,10,20,30,50,100. The label for each column is the mid-value of a sym-
metrical interval. For example, the column labeled 0.05 includes points with k—step
rank A}* in the interval [ 0.00 0.10 [. The intervals for the outermost columns are
open-ended on one side. Note that the stock price time series normally have 5
samples per week, i.e. k = 5 represents one week of data and & = 20 represents
approximately one month.

Table 11.1: Mean 1-step ranks for 207 stocks

k-day rank
k -0.45 | -0.35 | -0.25 | -0.15 | -0.05 0.05 0.15 0.25 0.35 0.45
1 0.067 | 0.017 | -0.005 | -0.011 | -0.011 | -0.004 | -0.005 | -0.010 | -0.014 | -0.033
2 0.060 | 0.017 0.002 | -0.004 | -0.010 | -0.003 | -0.007 | -0.015 | -0.017 | -0.032
3 0.057 | 0.016 0.003 | -0.005 | -0.003 | -0.008 | -0.011 | -0.011 | -0.015 | -0.034
4 0.054 | 0.018 0.003 | -0.003 | -0.005 | -0.008 | -0.011 | -0.013 | -0.012 | -0.032
5 0.051 | 0.015 0.004 | -0.002 | -0.004 | -0.009 | -0.010 | -0.009 | -0.016 | -0.032
10 0.040 | 0.013 0.005 | -0.001 | -0.003 | -0.006 | -0.007 | -0.009 | -0.012 | -0.030
20 0.028 | 0.008 0.003 | -0.003 | -0.002 | -0.002 | -0.006 | -0.011 | -0.009 | -0.019
30 0.021 | 0.007 0.002 0.004 | -0.003 | -0.003 | -0.006 | -0.006 | -0.011 | -0.015
50 0.014 | 0.005 0.000 | -0.000 | -0.001 | -0.002 | -0.005 | -0.004 | -0.006 | -0.010
100 | 0.007 | 0.003 0.001 | -0.002 | -0.003 | -0.004 | -0.004 | -0.004 | -0.003 | -0.008

To ensure that found patterns reflect fundamental properties of the process gener-
ating the data, and not only idiosyncrasies in the data, the relation between current
and future ranks is also presented in graphs, in which one curve represents one year.
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Table 11.2: Fraction up/(up-+down) moves (% )

k-day rank
k -0.45 | -0.35 | -0.25 | -0.15 | -0.05 | 0.05 | 0.15 | 0.25 | 0.35 | 0.45
1 59.4 52.9 49.1 47.3 48.0 49.6 49.5 48.2 47.8 46.4
2 58.4 52.8 49.7 48.9 48.4 49.7 | 48.9 47.4 47.6 46.2
3 58.1 52.4 50.3 48.9 49.1 49.0 48.1 48.1 47.8 46.1
4 57.5 52.5 50.4 49.2 49.0 48.7 | 48.0 47.9 48.6 46.3
5 57.1 52.0 50.4 49.4 49.1 48.5 48.2 48.6 47.7 | 46.3
10 55.6 51.7 50.4 49.8 49.3 48.8 48.7 | 48.5 48.2 46.3
20 53.8 51.1 50.2 49.6 49.4 49.5 49.0 48.3 48.7 | 47.8
30 52.7 50.9 50.3 50.8 49.1 49.2 48.8 48.9 48.5 48.4
50 52.0 50.7 49.6 49.9 49.6 49.6 49.0 49.3 49.1 48.9
100 51.4 50.4 49.9 49.5 49.2 49.2 49.0 49.2 49.6 49.1

Table 11.3: Number of points

k-day rank
-0.45 | -0.35 | -0.25 | -0.15 | -0.05 0.05 0.15 0.25 0.35 0.45
30878 | 30866 | 31685 | 30837 | 30434 | 31009 | 31258 | 30539 | 30951 | 31550
30926 | 30548 | 31427 | 30481 | 30442 | 31116 | 31263 | 30435 | 30841 | 31675
30922 | 30440 | 31202 | 30404 | 30350 | 31146 | 31061 | 30449 | 30814 | 31697
30887 | 30315 | 31052 | 30320 | 30371 | 31097 | 31097 | 30328 | 30777 | 31776
30857 | 30293 | 30951 | 30275 | 30191 | 31049 | 31144 | 30254 | 30701 | 31816
0 30755 | 30004 | 30648 | 29958 | 30004 | 30875 | 30889 | 30155 | 30571 | 31775
0 30521 | 29635 | 30306 | 29591 | 29679 | 30560 | 30580 | 29836 | 30377 | 31692
0 30388 | 29371 | 30083 | 29388 | 29567 | 30349 | 30437 | 29652 | 30190 | 31503
50 30117 | 29006 | 29728 | 28979 | 29306 | 29876 | 30109 | 29236 | 29927 | 31159
100 | 29166 | 28050 | 28790 | 28011 | 28238 | 29015 | 29049 | 28254 | 29012 | 30460
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Figure 11.1 shows AT*(t + 1) versus A7*(t) in the diagram on the left. Le.: one-day
rank the following day versus one-day ranks the current day.

The same relation for 100 simulated random-walk stocks is shown in the diagram
on the right for comparison.

From figure 11.1 we can conclude that the rank measure exhibits a mean re-
verting behavior, where a strong negative rank in mean is followed by a positive
rank. Furthermore, a positive rank on average is followed by a negative rank on the
following day. Looking at the “Up fraction” in Table 11.2, the uncertainty in these
relations is still very high. A stock with a rank A;(¢) < —0.4 has a positive rank
A, (t + 1) the next day in no more than 59.4% of all cases. However, the general
advantages described above, coupled with the shown correlation between present
and future values, do make the rank variables very interesting for further investiga-
tions. The rank measure can be used both as input and output in inductive learning
methods such as neural networks, fuzzy rule bases, etc. In such cases, one could
formulate modeling tasks like

AT(E) = g(AT(t — 1), A™(t — 2), .., AT (t — k) (11.2)

where the function g for example is a feed-forward neural network. In this case,
we attempt to predict the 1-day-rank of the current day by looking at the one-day-
rank for the previous day, the day before, etc. Another possibility would be a model

like
AT'(t) = g(AT"(t — 1), AZ'(E — 1), ..., A (£ — 1)). (11.3)
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207 stocks 100 random walk stocks

0.05

Mean 1-day rank 1 day ahead
Mean 1-day rank 1 day ahead

0 : 0
1-day rank 1-day rank

Figure 11.1: One-day ranks AT*(t + 1) versus A7*(t). Each curve represents one year
between 1987 and 1997. Real data in the diagram on the left and simulated random
walk in the diagram on the right.

The one-day rank for the current day is predicted here from the 1-day rank,
5-day rank,...10-day rank, computed the previous day. The use of a neural network
as a model function is, of course, arbitrary. Other choices would be fuzzy rule bases,
radial-basis networks, or even linear models.



Chapter 12

Conclusions

We sum up the part of data mining with some of the most interesting observations.

e The investigations regarding autocorrelation show very low values with the
possible exception of the first lag in the ACF. Surprisingly, the result for the
207 stocks in SXBIG shows a significantly negative correlation in the first lag,
whereas positive correlation is found for the 32 major stocks in SXG.

e The analysis of trends produces supporting results. We observe that a 5%
decrease in price since the previous day, stands a 61.2% probability of showing
an increase by the following day. The cases with large increase since the
previous day exhibit a difference between the two investigated sets of stocks.
For the stocks in SXG, a 5% increase in price since the previous day, stands a
54.9% probability of showing an increase by the following day. For the stocks
in SXBIG, a 5% increase in price since the previous day, stands a 53.3%
probability of showing a decrease by the following day.

However, the massive better part of returns falls into regions, where it is very
difficult to claim any simple correlation between past and future price changes.

e The presented statistics show significant day-of-the-week and month-of-the-
year effects on the stock returns. The proposed concept of daily returns Rp and
a comparison to the ordinary step returns Rg, showed a significant difference,
caused by the holiday effect. The daily returns Rp vary between 0.004% (buy
Monday /sell Tuesday) and 0.243% (buy Thursday/sell Friday). The Increase
Fraction I was shown to depend on the month of the year and to vary between
47.80% (March) and 54.44% (January). Even if the effects are too small to
be utilized in actual trading, they are definitely big enough to influence other
prediction algorithms, such as ordinary time series analysis or neural network
models of daily returns. If not taken into account in such algorithms, the
seasonal effects appear as a high-noise level in the data. It was shown, that
the month-of-the-year effects are of the same size as the accuracy of many
published prediction algorithms that do not make use of any date information.

There are several ways to deal with the seasonal effects when constructing
prediction algorithms:

— Include the time dimension in the modeling, i.e. include a trainable
parameter describing how the return depends on the day of the week, or
on the month.
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— Aggregate data. For example, instead of modeling the return time series
for all the days in a given time period, we can restrict the model to predict
from one Monday to the next.

— Without having done this statistical investigation, the most natural way
to deal with the missing weekends might have been to expand the original
time series y(t) with interpolated data for Saturday and Sunday. How-
ever, the observed negative return between Friday and Monday shows,
that such an approach can not be recommended.

e The rank concept has many properties that make it interesting to use as both
inputs and outputs in prediction tasks.



Part IV
Methods

75



Chapter 13

Common techniques

13.1 Traditional Time Series Predictions

Take these broken wings and learn to fly
Blackbird, Lennon/McCartney

Traditional time series analysis might have begun in the end of the 20’s, when
Yule invented the autoregressive method (AR) to predict sunspots. The general
AR-model expresses future values of the time series as a linear combination of past
values plus a random noise component:

y(t) = Z any(t —m) + e(t) (13.1)

m=1

Another common model for time series analysis is the moving average model

(MA):

y(t) :Z bpe(t —n) (13.2)

The above equation describes a situation, where the time series y is controlled
by an external time series e, in a linear and deterministic relation.

Combining the two equations yields the Autoregressive Moving Average model
(ARMA), which dominated the time series analysis for more than 50 years:

y(t) = Z A y(t —m)+ Z bne(t —n) (13.3)

An important step beyond these global linear models was taken by Tong and
Lim [35] in 1980, when they suggested the Threshold Autoregressive model (TAR).
TAR consists of two AR models, selected locally, depending on the system’s state.

13.2 Nearest Neighbor Techniques

The method of k-nearest-neighbors is a general classification technique that makes
minimal assumptions about the underlying function to be modeled. To classify a
point p, one simply finds the set of k closest points from the example set. In the case
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of time series, the input points p; are typically formed by picking consecutive values
from the time series y; p; = (y(t — 1), y(t — 2)...,y(t — d)). In the general case, the
input points p; can be any type of feature vector believed to have predictive power.
We have conducted extensive tests with feature vectors, consisting of stock returns
Ry, defined in (4.3). For example, p, = (Ry(t), R5(t), R10(t), Rao(t)). The results are
presented in Chapter 15 together with an extension of the basic algorithm.

In stock prediction, the classification Cy(t) for the points is typically the sign of
the k-day return, computed k days ahead (i.e. Ry(t + k)):

+1 : if y(t+k) > y(t)
Ce(t)=<¢ =1 : if y(t+k) <y(t) . (13.4)
0 : if y(t+k) =yt

The closeness is normally computed as the Euclidean distance in the input space.
The mean or median classification of the £ closest points is then taken as an estimate
of the classification for point p. In this way, we can immediately produce classifi-
cations given a set of examples. There exists a multitude of variants of the basic
algorithm. A discussion of weighting schemes can be found in Robinson [29]. For an
early work on time series applications and proofs of convergence, see e.g. Yakowitz
[43].

Even if the k-nearest-neighbors algorithm is computationally expensive in the
application phase, it is very attractive in initial data analysis, where questions about
predictability and input variable selection are the important issue. It can be argued
that failure in applying the k-nearest-neighbors algorithm to a specific problem
implies that the problem can not be solved with any inductive method. The sole
assumption made in the method is that close inputs are mapped to close outputs. It
is hard to see how a sufficient amount of data from any continuous function should
fail in such a test. The conclusion in such a case would be, that a functional relation
between the selected input and the output can not be shown given the available
data, without imposing further restrictions on the functional relationship. However,
other methods using stronger models (described further in Section 14.3), may be
more successful than the totally unbiased k-nearest-neighbors algorithm. One must
also realize that k-nearest-neighbors in a normal implementation is a global method.
In the search for nearest neighbors one either scans the entire training set, or all
previous points in the training set. The latter method is used to avoid peeping
into the future when predicting time series. In either case, the neighbors are picked
from a time period that may very well be too long, if the underlying function is
non-stationary. Weighting schemes or windowing techniques may be useful in such
cases.

13.3 Neural Networks

I didn’t know what I would find there.

Another road where maybe 1,

could see another kind of mind there

Got To Get You Into My Life, Lennon/McCartney

Neural networks are often used for nonlinear regression, where the task is to find
a smooth approximation between multi-dimensional points. In both cases, the input
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and output data is presented simultaneously to the network. In the case of predic-
tions of time series, the situation is somewhat different. No patterns with features,
at least initially, are available. Instead, future time series values should be modeled
as a function of previous values. This temporal dimension can be incorporated into
the network setup in a number of ways:

e The lagged values of y(t), i.e. y(t),y(t—1),y(t—2), ..., can be used to construct
a feature vector, which is input to the neural network. This can be viewed as
a nonlinear generalization of the AR method described in (13.1). The network
output can be written as:

O(t) = gly(t — 1), y(t — 2)...,y(t — d)], (13.5)

where ¢ is a nonlinear function, created in the training of the network. As a
d

special case g(t) =Y any(t —m) + e(t) is recognized as an AR model. The
=1

motivations for this nonlinear generalization is the following. First, Takens
Theorem [34] states, that for a wide class of deterministic systems, there exists
a (one-to-one mapping) between past values y(t — 1), y(t —2)..., y(t — d) of the
time series and the state of the system at time ¢. This further implies, that
there exists a function g so y(t) = g[y(t —1),y(t — 2)...,y(t — d)]. Second, it
has been shown, that a neural network is a , capable of approximating any con-
tinuous function [9]. These statements together provide the basic motivation
for the use of artificial neural networks in time series prediction.

e Recurrent have an architecture where the outputs from intermediate neurons
are fed back to the input layer. In this way the network will contain memory
of previous values of the input data. A single value y(¢ — 1) is used as input
and a single value O(t) is produced as output from the neural network. The
temporal dependencies are modeled by the weights in the feedback loops of
the network. Applications of recurrent networks can be found in Ellman [11].

e Another sophisticated method replaces the connections between nodes in a
feed-forward neural network with FIR filters. A FIR-filter is a moving average
filter with input = and output y:

y(t) :Z bpz(t —n). (13.6)

In this way, memory of old values is stored in each FIR filter. The number
of necessary weights can be sometimes significantly reduced by assuming an
implicit symmetry in the optimal network structure [38].

13.3.1 Neural Networks as Classifiers

In addition to being used for nonlinear regression, neural networks are often used for
classification problems, where p-dimensional input vectors are to be mapped to an
m-dimensional output vector, with exactly one element set to one and the rest set to
zero. The position of the element set to one represents the class associated with the
corresponding input vector. In this way, examples of input vectors and corresponding
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output vectors can be used to train the network to assign a class label to unknown
input vectors. It is typically implemented with a multilayer perceptron with p inputs
and m outputs. The output layer often uses the sigmoid as an activation function,
producing an m-dimensional output vector, with values in the closed interval [0, 1].
It has been shown (see e.g. [17]), that the output from a successfully trained network
is an asymptotic approximation of the a posteriori class probabilities. This means,
that the optimum classification of an input vector is the position in the output vector
that has the highest value. It is common to offset the target output vectors by a
small amount ¢ so the zero-elements are represented by ¢, and the one-elements by
1 — e. The reason for this is the need to avoid saturation of the activation function
in the training process. In this case, the output from the trained network can not be
directly interpreted as a probability. A linear transformation [e, 1 —¢] — [0, 1] must
be first applied. However, the position in the output vector that has the highest
value is still the optimum classification for a given input vector.

13.4 Technical Stock Analysis

Oh, Carol, don’t let 'em steal your heart away,
Well I'm gonna learn to dance if it takes me all night and day
Oh, Carol, C. Berry

The term Technical Analysis denotes a basic approach to stock investing, where
the past prices are studied, using charts as the primary tool. The roots of Technical
Analysis go back to the Dow theory, developed in the beginning of this century by
Charles Dow!. The basic principles include concepts, such as the trending nature
of prices, confirmation and divergence, support/resistance, and the effect of traded
volume. Many hundreds of so-called Technical Indicators for prediction of stock
prices have been developed, and still are being developed on the grounds of these
basic principles. Most of the developed prediction methods have a weak scientific
support, and it is probably fair to say, that the authors of the numerous books on
Technical Stock Analysis have made more money selling their books than either
themselves or their readers have made applying the theories in practice. In Section
5.1.3 we mentioned that most technical indicators can be described as trading rules,
which produce buy and sell signals at certain times, as the price of the stock goes
up and down. A thorough survey of the most common technical indicators can be
found in [1]. The well-known stochastics indicator is analyzed in Section 16.5.

Some other examples are:

e Relative Strength Index (RSI). The relation between the average upward and
downward price changes within a time window of fixed length. The window is
normally 14 days backwards.

e Moving average (MA). A price rise above a moving average is interpreted as
a buy signal, and a fall below it as a sell signal.

!The widely used Dow Jones Industrial Average followed as a direct result of Charles Dow’s
new methods of analyzing the markets.
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e Moving average convergence divergence (MACD). Two moving averages with
different backward windows are used. The difference between the moving av-
erages is also smoothed. Buy and sell signals are generated from the crossings
and trends of these filtered price signals.



Chapter 14

General Learning Issues

I've told you once and I've told you twice,
You better listen to my advice
(This could be) The Last Time, Jagger/Richards

In this chapter some general concepts relevant to the prediction tasks are sur-
veyed. The focus is on the near-random-walk character of the stock prediction task.

14.1 Statistical Inference

Model-free estimation and non-parametric statistical inference deal with the prob-
lem of finding a hypothesis function, using a set of examples as primary information.
The estimators can take many forms: algebraic or trigonometric polynomials, neu-
ral networks, stepwise linear regression etc. Many of these techniques have been
shown to share the common property of being universal approximators, capable of
approximating any continuous function. Note, that these are theoretical results,
which may require a model with arbitrary complexity for convergence. The con-
vergence also assumes an infinite example set. Furthermore, the data must be free
of all noise. These conditions are seldom fulfilled in real applications. The general
limitations of statistical inference are also clearly understood, and formulated as the
“bias/variance dilemma” [14].

14.2 Bias and Variance

To estimate an unknown function f(P), which has produced a finite set of examples
(P,T), the following general procedure for inductive learning can be applied:

1. Draw a random training set from the set of examples
2. Train one estimator h;(P) (e.g. a neural network)

3. Evaluate the estimator on a randomly picked test set of examples

Perform steps 1-3 repeatedly, producing hypothesis functions hq, ..., hy.
Now concentrate on what we have produced for a specific point p. We have a
number of different estimators hq(p), ..., An(p). Since they all depend on random
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selections of training data, they themselves can be viewed as outcomes of a random
variable hp, with mean mp and variance Vp.
The mean squared error for the predictions at the point p can be expressed as:

E, = E[(hp — f(p)*] = Elhp + f(p)* — 2hpf(p)] = E[hp] + f(p)* — 2f(p)E£hP]-)
14.1
Inserting the identity V,, = E[h2] — m? results in:

By =V, +my+ f(p)* = 2f(p) Elhp] =V, + (m, — f(p))*. (14.2)

The mean squared prediction error F, is thus a random variable with two compo-
nents termed bias and variance:

e Bias: (m, — f(p))?. The amount, by which the average estimator differs from
the true value.

e Variance: V. The variation among the various estimators.

The mean mp can be estimated as Y, h;(p)/N and the variance Vp can be
estimated as Y°;(hi(p) — mp)?/(IN — 1). Note, that explicit estimation of Ep re-
quires knowledge of the underlying function f. This is seldom if ever, the case, or
there would be no need to estimate it. There exist statistical methods to estimate
Ep without this knowledge of f. For example, the jackknife, and the bootstrap
techniques [10]. However, it is possible to proceed without explicit calculation of
Ep, by looking at how the estimators’ complexity affects the distribution for Ep.
Depending on the estimators’ complexity, we get the following extreme cases:

e Too low complexity (e.g. a straight line or a neural network with few weights.)
The computed estimators hi(p), ..., Ax(p) produce roughly the same values,
because a low complexity model does not have the power to express minor
differences between different samples of training data. Hence the variance Vp
is low. However, the bias is high, because all of the estimators differ in the
same way from the true value f(P).

e Too high complexity (e.g. a neural network with several layers and many
weights) The computed estimators hq(p), ..., hy(p) train precisely to each train-
ing set, thereby producing high variance Vp for the estimators, because each
estimator operates on different random samples of training data. However, the
bias is low, because the mean value mp, computed as 3, h;(p)/N, is centered
around the true value f(P).

Now turn to the “real” situation, where only one single estimate hy(P) has been
produced. It is still an outcome of the random variable h(P), with its associated
mean and variance. So, from what distribution on the estimates do we prefer to pick
the single estimate: one with low-variance/high-bias or one with high-variance/low-
bias? The choice is partly controlled by the complexity of the model. Looking at
Equation (14.2), the correct answer would be, that neither of the alternatives is
optimal in terms of producing a minimal prediction error E,. The best choice is a
trade-off between low bias and low variance. Since the complexity affects the entities
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in different directions, we are facing what is called, the “bias/variance” dilemma. A
large variance has to be accepted to keep the bias low and vice versa.

According to Casdagli and Weigend [7], the position taken by most statisti-
cians is, “for reasons of conservatism,” to favor low-variance/high-bias over high-
variance/low-bias. This choice results in nonlinear models, with relatively low com-
plexity, and few parameters. These models work fine if the underlying function is
equally simple, and the interesting behavior is mainly due to outside perturbations.
For more complicated functions, models with higher complexity must be used, to
get acceptably low prediction error. The price to be paid for this additional expres-
siveness is higher variance.

In some cases a low-complexity model can be designed, using prior knowledge
about the specific application of interest. In such cases, the bias is “harmless,” since
it is directed towards the real function f(P). The bias then can be reduced without
increasing the variance. This approach can be applied even to black-box models, as
neural networks. In weight sharing several synapses (connections between nodes)
use the same weight. In radial basis networks the receptive field of the neurons in
the hidden layer can be preset, to reflect known properties in the function to be
modeled. The general situations are described with the terms “Weak” and “Strong”
modeling.

14.3 Weak and Strong Modeling

It ain’t no use to sit and wonder why, Babe
Don’t Think Twice, It’s All Right, B. Dylan

The terms Weak and Strong Modeling refer to the degree to which a model
is preconditioned to reflect the underlying process to be modeled. A weak model
makes few assumptions on what the real process looks like, whereas a strong model
makes many assumptions. The traditional choice in the natural sciences has been to
prefer strong models tightly connected to the actual process. The parameters in such
models can often be given a “meaning” in terms of slopes, constants, thresholds, etc.
However, there are also examples of weak modeling. In Physics dynamic systems
are sometimes modeled as fairly general nonlinear functions [7]. The classic ARMA
models, described in Chapter 13.1, are also examples of weak models with few
domain-specific assumptions.
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14.4 Overfitting and Underfitting

The term overfitting is used to denote the situation, where the selected model type
has too high a complexity with respect to the “bias/variance” trade-off. The term
underfitting denotes situations where the model has too low a complexity.

14.5 Overtraining

You could have done better but I don’t mind,
You just kinda wasted my precious time
Don’t think twice, it’s all right, B. Dylan

The term Overtraining refers to a situation, where a model is fit too closely to
the training data, thereby decreasing the computed models’ generalization perfor-
mance. The problem is caused by allowing the learning algorithm to keep iterating
in an attempt to bring the total prediction error on the training data to an abso-
lute minimum. However, when the prediction error has reached a point below a
certain problem-specific limit, the algorithm starts fitting properties in the training
data that are not general, but rather to be considered as noise. The generalization
performance therefore decreases from that point on in the learning process. The
phenomenon is normally connected to “weak modeling,” where the model is totally
unbiased, and capable of fitting data from any data source. It is also connected to
the issue of model complexity, since the point where the overtraining starts depends
on the model’s expressiveness. A model with a low complexity (e.g. a straight line)
is less sensitive to the problems with overtraining. A high-noise level in data also
increases the risk of overtraining, because noisy data gets interpreted more easily
as real data by the training process. The risk of overtraining is also affected by the
amount of data used for the training of the model. A huge amount of data prevents
a model of a certain complexity from interpreting noisy data as real.

Statements such as “In the statistical context there is no such thing as overtrain-
ing” [42] , are valid only in situations with low-noise levels, combined with either a
strong model or a weak one with low complexity. In other situations, the issue of
overtraining is a reality, and the training process, in our opinion, should be regarded
as part of the model selection rather than a mere parameter estimation problem.

The problem with overtraining can be solved either indirectly, by reducing the
model complexity, or directly, by interrupting the learning algorithm.

14.6 Selection Bias

The term Selection Bias is used to denote situations as the one described in Section
3.2, where the best performing method out of 100 candidates is selected. This
selection process is identical to an overfitting situation as described above, where a
much too complex model can be tuned to fit any data set. However, the selection
bias is much more deceitful, since the non-selected methods disappear from the
scene as soon as they are rejected. The only way to deal with the problem is to
emphasize the proper use of a fresh test data set. However, in practice, one must
realize that a selection bias is present in almost all presented research and results.
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Bad results are simply not published. The random-walk nature of stock predictions
makes this application very exposed to the problem. Selection bias of methods is,
in my opinion, one of the hardest and most important problems to handle in the
whole area of stock predictions.

14.7 Measuring Generalization Ability

The crucial measure for all learning algorithms is the ability to perform well when
presented with unseen data (also called: out-of-sample performance). The difference
between the performance on the training data and on unseen data is dramatically
increased when low-bias models, as artificial neural networks, are considered. The
importance of good estimates of the performance on unseen data in such situations
can be hardly overestimated. Apart from being the principal performance measure
for a modeling problem, the generalization ability is an important tool for model
selection.

The theoretical aspects of why and when learning works are covered by Com-
putational Learning Theory, a field in the intersection of Artificial Intelligence, and
Computer Science. A result of the sub-field PAC-learning (Probably Approximately
Correct) provides the following relation between the number of necessary examples
m, and the set of possible hypotheses H:

m> (ml +ln \H\) , (14.3)
€ 0

where ¢ is the error in a specific hypothesis and 6 is the probability of an incor-
rect hypothesis, being consistent with all the examples. Thus, by using at least m
examples in the training, then with probability at least 1 — ¢, the produced hypoth-
esis has an error of ¢ at most. Even if the practical results of PAC-learning are still
limited, it focuses on two important issues:

e The aim of learning is to find an approximately correct hypothesis. Traditional
learning theory focused on the problem of identification in the limit, where the
hypothesis should match the true function exactly.

e The size |H| of the hypothesis space, i.e. the model complexity, is a key issue
for both estimation and control of the generalization ability.

A number of methods to estimate the generalization ability exist.

14.7.1 Test-Set Validation

The standard procedure of validation in most machine learning techniques is split-
ting the data into a training set and a test set. Sometimes the training set is further
divided to extract a cross-validation set (used to determine the stopping point to
avoid overfitting). The test set is only used for the final estimation of the general-
ization performance. This approach is wasteful in terms of data, since not all the
data can be used for training. The advantage is that no assumptions have to be
made regarding error distribution, or model linearity. In the case of neural networks,
Weigend and LeBaron [40] have shown that the variation in results, due to how the
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splitting in the three sets is done, is much larger than the variation due to different
network conditions, as architecture and initial weights. The method used to show
this is a variation of the procedure described in Section 14.2. By really generating
a huge number of independent hypothesis functions, the variance can be explicitly
estimated. Weigend and LeBaron use predictions of traded volume on the New York
Stock Exchange as their application. Volume data is known to contain more fore-
castable structures than typical price series. However, it is dominated by a noise
component, which makes the analysis sensitive to the splitting of the data.

In our opinion, this result should not be regarded as a disqualification of the
method of test-set-validation, but rather as an illustration of the general problem of
all inductive inference methods. We also investigated the statistical difficulties with
predictions of noisy data in Chapter 3.

14.7.2 Cross-Validation

Cross-validation takes the idea of test-set-validation to an extreme. Assume that the
entire data set contains N data samples. One sample is left out and the remaining
ones are used to train a model. The performance of this model is estimated by the
squared error in the sample left out. The procedure is repeated for all N samples
in the data set, thus producing N models with associated error estimates for the
single point left out. The mean of these estimates is used as a total estimate of the
prediction error for the model. If N is large, the method easily gets too expensive
in terms of computations. Variations where more than one sample is removed from
the data set, were introduced in [13]. A method specifically developed for artificial
neural networks was proposed in [24]. Instead of starting the training from scratch
with each new training set, the weights from previous training are kept and used as
starting values for the next model.

14.7.3 Algebraic Estimates

The various methods of cross-validation require the data to be split to separate sets
for training and estimation of generalization error. This is often not possible to do
when the total number of data points is very limited, or the data is very noisy (a
large training set is then necessary). However, a number of algebraic estimates of
the generalization error exist, and they work without any splitting of the data. They

all impose prior assumptions on the statistical error distribution. Some well-known
formulae are the Akaike (FPE):

1+ 2
FPE = MSE - (14.4)
-

and the (GCV):

1
o N2
-9
The MSFE is the average squared error, computed for the whole data set of N

points. The methods work by penalizing the M SE with a term to compensate for
the complexity of the model. A sufficiently powerful model with many weights can

GCV = MSE - (14.5)



14.7. MEASURING GENERALIZATION ABILITY 89

fit, as is well known, any data set. A low value of the M SF is therefore not sufficient
to guarantee a low generalization error. The complexity is estimated by the number
of free parameters Q).

However, in the case of neural network models, the value on () is far from trivial.
If the training is done with regularization such as early stopping, Tikhonov regular-
ization or weight elimination, the number of free parameters is not the same as the
number of weights.



Chapter 15

An Extended K-nearest-neighbors
Analysis

Do onto neighbors,
What you do to yourself, yourself, yourself
Neighbors, Jagger/Richards

The method of k-nearest-neighbors was described in Section 13.2. In this chap-
ter trend variables, as defined in (4.4), are used as input variables in a k-nearest-
neighbors analysis, to find patterns of trend values that result in non-random future
returns, as defined by (9.1). The k-nearest-neighbors algorithm is extended with a
selection procedure, to find regions in the input space where the future returns are
asymmetrically distributed. The new algorithm is successfully tested on artificial
stock data, with trending patterns introduced. The algorithm is also applied to a
number of national stock indexes: the American Dow Jones, the German DAX, the
British FTSE, and the Swedish Generalindex. The results are positive for some of
the tested indexes, and negative for others. Further tests must be conducted to
attain statistically significant results.

15.1 Description of the Algorithm

A prominent property of stock-price time series is the high level of noise present.
Thus, there is reason to seriously doubt the possibility of predicting future values,
given only past values of the time series. What we can hope for is that the time
series is sometimes predictable, and that in these situations it is possible to create
a model that predicts the future better than mere chance. This approach is not
acceptable in a general prediction situation, but is perfectly acceptable in the case
of stock predictions. The performance of a trading system is normally calculated
as the success rate, or generated profit, in the situations where buy or sell actions
are suggested by the algorithm. The overall prediction accuracy is usually of minor
interest. This is a natural fact for traders, and is implemented in the huge variety of
technical indicators that issue buy and sell signals when certain conditions are met.
A method, where a neural network is combined with a test for statistical dependence
in the time series, can be found in [27]. We propose below an extension of the k-
nearest-neighbors algorithm. Given the time series {y(t),t = 1,7}, the algorithm
for prediction of the sign of P,(T') at time T' looks as follows:

91



92 CHAPTER 15. AN EXTENDED K-NEAREST-NEIGHBORS ANALYSIS

1. Generate patterns {p(t),t =1,...,7 — h}. In the presented examples the pat-
terns are defined as p(t) = (T5(t), T2o(t)). Each pattern p(t) is associated with
a target value Py(t) as defined in (9.1). Also generate p(7') with an unknown
target value P, (T) to be predicted.

2. Compute the Euclidean distance between p(T') and each of the patterns in
{p(t),t =1,T — h}. Select the k-nearest patterns and denote the set of asso-
ciated target values ®. Compute the homogeneity H of ® as:

max(|[{z]z € &,z > 0}], [[{z|z € ®,2 < 0}))

H:
{zle € @,2 > 0} + [{z]z € ®,2 < 0}])

(15.1)

The norm ||.| denotes the number of elements in the argument set. If the
majority of elements in ® is greater than zero, H is the fraction of elements
greater than zero. If the majority of elements in ® is less than zero, H is the
fraction of elements less than zero. H is used as a measure of the degree of
randomness in the target values ®. A high value on H is interpreted as a high
possibility to predict P, (7'), using a k-nearest-neighbors method.

3. if H > Hiinit, then the selected neighborhood around p(7T') is regarded as non-
random, and the mean value of targets in H is used as predicted target value
for p(T). If H < Hyi, then the neighborhood around p(T') is regarded as
random, and a predicted target value for p(T') is not evaluated.

Remark : Note, that the search for nearest neighbors in step 2 must not involve
any data from the set ¢ > T, because this data is highly correlated to the unknown
value P,(T). That is the reason that the nearest neighbors are searched up to
t =T — h and no further. Using target values P, (t) where ¢t > T — h would involve
peeping into the future beyond time 7', which is the point where the prediction is
calculated. Furthermore note, that the value on Hy,;; affects the number of situa-
tions where predictions are produced by the algorithm. The statistical significance
of the performance therefore is reduced if too high a value for Hj,; is chosen. In
our tests, values between 0.6 and 0.9 have been used.

15.2 Generation of Test Data

Testing algorithms for stock data predictions is a difficult problem that requires ex-
treme caution. The risk of interpreting random fluctuations as results of a successful
prediction algorithm is, as we saw in Section 3.2, always present and sometimes sur-
prisingly high. Therefore, to properly evaluate the developed algorithm described
above, we construct an artificial stock time series. The purpose of the algorithm is to
identify locations in the input space, where a correlation exists between input pat-
terns and output P, (¢). In all the examples in this report the prediction horizon h has
the value 1. Since we use patterns with trend values, such as p(t) = (T5(t), T20(t)),
as inputs, we introduce locations with correlation in a real stock index time series
y(t) by the following algorithm:
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Compute the time series T5(t), To(t) and Py (t) as defined in Definition (4.4) and
(9.1) using real stock data for t =1,.., N.

1. Repeat fort=1to N

2. if Tx(t) > 2 and T5(t) <4 and Ty(t) > 0 and Ty(t) < 5 then
% force a 1% increase in stock price after a positive 5-day trend
% and positive 20-day trend :
with probability 0.75 set P,(t) < 1
end

3. if T5(t) > —4 and T5(t) < =2 and Tgo(t) > —5 and Tgo(t) <0
then
% force a 1% decrease in stock price after a negative 5-day trend
% and negative 20-day trend :
with probability 0.75 set P, (t) <« —1
end

4. next t

In this way, the original time series obtains a correlation between the inputs and
the output injected into two well-defined regions of the input space. It should be
mentioned, that the introduced correlation is arbitrarily chosen just for illustrating
the working of the algorithm. The regions in a real application are automatically
detected by the algorithm. The deterministic points are few compared to the total
number of generated points. For a 10-year time series (2500 data points) only 5% are
typically generated in each of the two correlated regions in the input space. Such
low signal to noise ratios is normally difficult to handle with methods like global
regression analysis.

15.3 Simulation Results

In the two diagrams in Figure 15.1 the relation between the inputs T5(t), To(t) and
the sign of the output P;(t) is illustrated. The top diagram shows the original data
from the German stock index DAX. The lower diagram has correlation injected as
described in the previous section. The input region {2 < T5 <4 ,0 < Ty < 5} was
set to positive output with a probability of 75% and the input region {—4 < T5 < —2
,—b < Ty < 0} was set to negative output with a probability of 75%. The task of
the prediction algorithm is to identify these regions and assign them to the correct
class by the nearest-neighbors principle. As one can see in the bottom diagram, the
correlation is not obvious even in this artificial case, where extremely high correlation
is introduced into the data. In the case of the unmodified DAX data the task is
even harder indeed, since no obvious regions with correlation can be seen in the top
diagram. Figure 15.2 shows the situation when all the artificial data points have
been run through the extended k-nearest-neighbors algorithm. The value of Hiyit
was set to 0.8 and the value of k£, number of selected nearest neighbors, was set to 10.
The figure denotes points, where the homogeneity was greater than 0.8 by crosses
and the other points by dots. As can be seen in the diagram, the regions where
correlation was injected are clearly identified by the homogeneity measure H. This
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Figure 15.1: 1-day returns as a function of 5- and 20-day trends for DAX stock index

also shows up in the very high performance presented in Table 15.1. Figure 15.3
shows a similar diagram for the non-modified stock index DAX. Any clear regions
with high homogeneity can be hardly identified.

15.4 Performance Analysis

Evaluation of prediction performance is an important, difficult, and often overlooked
stage in the development of prediction algorithms for financial data. Since we are
looking for very weak correlations, we always run a serious risk of interpreting ran-
dom fluctuations in data as regularities with predictive power. The problem was
further discussed in Section 3.2 and also in for example [21]. In Table 15.1, which
presents performance measures for the predictions, we also present values for two
benchmarks: Naive Prediction of Returns and the e-increase prediction. The for-
mer is based on the assumption that next return will be the same as today’s. The
e-increase prediction assumes that next stock price will increase by a very small
amount € since today. The reason that we do not use the usual zero-change bench-
mark instead of the €, is that we want to compare hit rate performance to this
benchmark model. Since the hit rate signifies the ability to predict the sign of the
returns, we stipulate that the benchmark predicts an € increase instead of zero. The
benchmarks are used for calculation of the Theil coefficient Tr, H Ry and HR.. For
definitions of the used concepts, refer to Section 6.3.

The investigated time period ranges from the beginning of 1987 until the end
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Figure 15.2: Homogeneity for correlated DAX. k=10.

of 1996. The limit of selection of points, Hiji, is set to 0.80 for all examples in
this report. The parameter k, the number of selected nearest neighbors, is set to
10. The DAX column presents results of the real DAX index, whereas Correlated
DAX presents results of the time series with injected correlation. As we can see
from the first three lines, the performance for Correlated DAX is excellent. The
hit rate 75.26% clearly outperforms both benchmarks. The Theil coefficient is also
below 1, indicating a true predictive power beyond that of the e-increase prediction
benchmark. The algorithm produces 197 predictions, i.e. 10% of the total number.
This is approximately the number of points affected by the injection of correlation,
described in Section 15.2. The hit rate 75.26% also conforms nicely to the 75%
randomness in the algorithm. The results for the real DAX index data appear to
indicate predictability, even if the performance is clearly much lower than in the
previous column with artificial data. However, one must bear in mind that the
statistics are based on 45 selected data points only. The risk of data snooping is
huge. The last three columns present prediction results for three other international
stock indexes: the Swedish Generalindex, The American Dow Jones, and the English
FTSE 100. The results are somewhat contradicting, and a statistically significant
conclusion can hardly be made based on these tests only. However, the performance
for the modified algorithm compared to the unmodified k-nearest-neighbors algo-
rithm, shows a clear superior performance for the former. The Theil coefficient is
significantly lower in four of the five columns for the modified algorithm.

An important parameter that one can alter in the k-nearest-neighbors algorithm
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Figure 15.3: Homogeneity for DAX. k=10.

is the value on k. Table 15.1 shows results of £ = 10. A thorough test with varying
values on £ has been conducted for the DAX and for the other reported stock indexes.
The relative hit rate varies but cannot be shown to exceed 1 significantly for any
value on k.

15.5 Conclusions and Further Development

The algorithm works well on the synthetic data with correlation injected, and also
finds predictable patterns in the real stock indexes. However, the results are some-
what weak and further tests have to be conducted to obtain statistically significant
results. Future work could include investigating higher dimensional patterns of trend
variables, such as p(t) = (T1(t), Ta(t), T5(t), Too(t)), and also combinations of these
with normalized volume values to test the hypothesis (see e.g. [20]) that patterns
in traded volume bear relevance to predictions of future returns. The size of the
neighborhood could be determined in a more intelligent way than the fixed value of
k neighbors used by the basic k-nearest-neighbors algorithm. Since the input space
with trend patterns, such as p(t) = (T5(t), To(t)), is not populated in a homogenous
fashion, the k nearest neighbors may be picked in some areas of the input space
from a very small volume, whereas in other areas, the k nearest neighbors have to
be picked from a large volume, where the input space is sparsely populated. The
suggested algorithm has natural application in areas other than stock predictions.
It addresses all situations, in which predictability can be only expected to apply in
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small and indeterminate regions of the input space.

| Modified KNN Corr. DAX DAX Gen.index Dow Jones FTSE |
HRy = Hr/Hy 1.40 1.14  0.92 1.02 1.02
HR.= Hg/H. 1.42 1.10  0.98 0.93 0.96
Theil coefficient Tz 0.93 0.78 1.00 0.86 1.13
RMSFER 1.03 0.86 1.15 0.96 0.91
Hit rate Hg (%) 75.26 57.14  52.85 50.46 50.68
Number of points 197 45 125 123 74
Mean(|predictions|)  0.79 0.52  0.58 0.54 0.49
Mean homogeneity H 66.03 62.26 65.82 63.46 64.11
Mean(|returns|) 0.79 0.76  0.77 0.64 0.61

| Naive pred. ‘
RMSEy 1.54 1.58  1.49 1.64 1.10
Hit rate Hy (%) 53.80 49.95 57.72 49.63 49.86
Number of points 1930 1930 2317 2218 1848

| e-increase ‘
RMSE, 1.10 1.10  1.15 1.12 0.81
Hit rate H, (%) 53.05 52.16 54.08 54.25 52.68
Number of points 1930 1930 2317 2218 1848

| Standard KNN ‘
HRy = Hr/Hy 1.04 1.01  0.94 1.02 1.02
HR.= Hg/H. 1.05 0.97 1.00 0.93 0.96
Theil coefficient Tz 1.02 1.05 1.04 1.08 1.06
RMSFER 1.13 1.15  1.19 1.21 0.85
Hit rate Hg (%) 55.77 50.34 54.33 50.71 50.63
Number of points 1929 1929 2316 2217 1847

Table 15.1: Prediction performance for the modified k-nearest-neighbors algorithm,
the naive prediction of returns, the e—increase predictions and a standard k-nearest-
neighbors algorithm. Time period 1987-1996.



Chapter 16

ASTA - a Test Bench and
Development Tool

So give me all your money,
give me all your gold
Some Girls, Jagger/Richards

16.1 Introduction

The idea of expressing stock prediction algorithms in the form of trading rules has
gained considerable attention in academic research in the last years. The interna-
tional conference NNCM-96 devoted a whole section in the proceedings to “Decision
Technologies.” Bengio [5] writes about the importance of training artificial neural
networks with a financial criterion, rather than a prediction criterion. Moody and
Wu [26] use reinforcement learning to train a trading system with objective func-
tions, such as profit, economic utility, and Sharpe ratio. Atiya [3]| describes a trading
system based on time-variable, stop-losses, and profit objectives.

The general method with trading rules was described in Section 5.1.3. This chap-
ter describes the system ASTA, which is an implementation of an Artificial Stock
Trading Agent. With ASTA, trading-rule-based prediction algorithms are easily
evaluated, using historical data. The trading simulation extends the single stock
prediction problem to a multi-stock problem. In this way, the prediction problem
becomes focused on relative performance rather than increase or decrease of indi-
vidual stocks. Besides being an evaluation tool for existing algorithms, the system
is a high-level development tool, where trading rules can be developed, combined,
and tuned.

The program is written in the MATLAB programming language, and is used ei-
ther as an ordinary objective function called from a user’s program, or as a Windows-
based tool for making benchmarks, and developing trading algorithms.

ASTA performs a simulation of multi-stock trading, where trading rules are
executed for a large number of available stocks every day in the simulation period.
The situation is fundamentally different from the single-stock prediction algorithms
described in the previous chapters.
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16.1.1 Objectives

The development of ASTA was instigated by a need for good working tools for the
following research tasks:

1. A test bench for trading algorithms.

Many technical indicators for stock prediction are accepted and widely used,
without ever having been subject to an objective scientific analysis with his-
torical stock data. It is true, that many commercial software packages for
technical analysis offer both a comprehensive programming language, and a
simulation mode, where the performance can be computed. However, most
available products do not take this task very seriously and real trading simu-
lation with a multi-stock portfolio is seldom possible. Furthermore, often the
performance measures are not sufficient for a serious evaluation of the behavior
of an algorithm for a longer period of time. Therefore, there is a need for a
scientific test bench for the methods and algorithms already developed and in
common use.

The need for proper evaluation of new trading algorithms is of course the same
as for existing ones. ASTA is developed in MATLAB and therefore is suitable
for tests of algorithms developed in the same language, but MATLAB can also
communicate with other languages.

2. An interactive development tool for trading rules.

There are reasons to believe that a successful trading system consists of many
disjunct parts, where a buy signal can be for example, “screened” by looking
at the traded volume. A buy signal issued with a low traded volume may be
then rejected. Other composite rules include looking at the general trend of the
stock before accepting a signal from the system. ASTA provides the possibility
to test such composite rules easily. The included function library and the
possibility to define a trading strategy interactively, make implementation and
evaluation of many trading strategies possible “without programming.”

3. A non-interactive development tool for trading rules.

Furthermore, it is possible and maybe also fruitful, to automate the develop-
ment of trading rules. Since ASTA defines the trading strategy as symbolic
Buy rules and Sell rules given as arguments to the system, it would be perfectly
possible to construct buy and sell rules in a genetic framework, for example.

Even if the general look of the algorithm is fixed, there are often a lot of
tunable parameters that affect the trading performance. Examples are filter
coefficients, order of polynomials and levels above or below which an entity
should pass in order to generate a trading signal. Since we believe that the
actual behavior during a realistic trading situation is essential for proper selec-
tion and optimization of an algorithm, there is a need for an objective function
that can be included in an optimization phase for parameter tuning.

4. A data generating tool for post processing

The comprehensive and user-friendly macro language in ASTA makes it a very
suitable tool for extracting data for further analysis, such as classification with
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neural networks or fuzzy rule bases. A raw selection of trading situations is first
set up with simple trading rules. Data (“features”) for these situations is then
automatically written to a file. A “target” value for each trade is also supplied.
Thereafter it is a classification task to find out how to distinguish between a
profitable trade and a non-profitable one, based on the given features.

16.2 Design of the Artificial Trader

In this section we discuss the design and implementation of the ASTA system. The
task of the Artificial Trader is to act on an artificial market with a large number
of available stocks that vary in prices over time. The Trader has to execute the
trading rule T'(t) at every time step, and decide whether to buy or sell stocks. The
sole aim of the Trader is to produce as high a profit as possible. Various aspects
of the calculation of the performance were discussed in the Section 16.2.1. The
presentation and evaluation of the trading results are a major part of the ASTA
system.

16.2.1 Performance Evaluation

The result of the artificial trader is presented as annual profits together with the
increase in index. The mean difference between these two figures constitutes the
net performance for the trader. The performance is displayed in both tabular and
graphical formats as shown in the table part of Figure 16.3 and in Figure 16.4. The
second last line of the table presents the annual profit above the index. The mean
value of this entity is presented in the second rightmost column and represents a one-
figure performance measure. However, the individual figures for each year should
also be considered.

We now turn to the general architecture of the developed system.

16.2.2 Basic Architecture

The architecture of ASTA is based on an object-oriented approach with two major
objects; the Market and the Trader. The two objects have a number of attributes
and operations that can be applied on the objects. The basic components and their
relations are presented in Figure 16.1.

The Market Object

The Market Object essentially consists of the total number of stocks that should
participate in the trading simulation. A stock is defined by four time series; Close,
High, Low, and Volume. Each of these time series has a numeric value (or NaN in
the case of a unavailable value) for each date in the time period of interest. The
basic operation on the Market Object is the simulation of changing prices as the date
moves from start date to end date. The attribute T is updated by the Step-in-time
operation applied to the Market Object.
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The Trader Object

The Trader Object is more complex than the Market Object, as far as both attributes
and allowed operations are concerned. The Portfolio attribute keeps track of the
possession of stocks during the simulation. The Cash attribute is initialized to a
certain value and thereafter is modified automatically as stocks are bought and sold.
The Buy rule and Sell rule are the main attributes that affect the behavior of the
Trader. They are expressed in a high-level language and may include calls to a
large number of predefined MATLAB functions that access the stock data in the
Market Object. User-defined functions can also be called directly. The values of the
Buy rule and Sell rule attributes are set interactively to enable fast experimentation
when developing trading algorithms.

The basic operations on the Trader Object are Buy recommendations that eval-
uates the Buy rule and Sell recommendations that evaluates the Sell rule. The
result is vectors with buy and sell recommendations for all relevant stocks. These
recommendations are then carried out by the Buy and Sell operation. The behavior
of the Trader is modified by a number of Other parameters, e.g. minimum and
maximum values for one individual trade.

Operations Attributes
eInitialize *Stock data
Step in time «Index
*Current time T
Operations Attributes
eInitialize *Portfolio
*Buy recommendations *Cash
*Sell recommendations *Wealth
Buy *Buy rule
*Sell «Sell rule
*Evaluate *Other parameters
100 Buy rule : (M=max(High,T-10:T-1); Close>M & Close(T-1)<M)
751 Sell rule : (Loss>10 | Profit>30)
50
1 =) Mean profit above index=11.3 %
o 920 91 92 93

Figure 16.1: Basic Components of the ASTA System

Other Parts of the System

The Market and Trader Objects have to be controlled by a support system that
takes care of the following “meta” operations:

e Simulation.

The Step-in-time operation has to be applied to the Market Object in a loop
for the selected time period. For each time step, the Trader Object also should
be activated. The following pseudo code describes the full ASTA system:
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Trader.Initialize
Market.Initialize
loop until Market.T>EndDate
s = Trader.Sell Recommendations
Trader.Sell(s) % Sell all stocks of type s
s = Trader.Buy Recommendations
n = T.available cash / length(s)
Trader.Buy(s, n) % Buy n stocks of type s
Market.Step in time
end loop
Trader.Evalute

e User interface.

The end user assigns values to parameters such as the Buy rule and Sell rule of
the Trader and the desired time period for simulation. After the simulation the
computed performance of suggested trades is presented and optionally printed
to different media.

The “silent mode” makes it possible to use the system as an objective function
in a parameter optimization. The Artificial Trader is then called as a standard
MATLAB function from the optimization program code, returning a function
value for each set of input parameters.

ASTA is available in two versions:

e As a MATLAB function, fasta.m, that takes a Buy rule and Sell rule as pa-
rameters and returns the performance for a selected time period.

e As a Windows application to be run under MATLAB. The Buy rule and
Sell rule and all other settings are controlled interactively and the results are
presented on the screen.

16.2.3 Predefined ASTA Functions

ASTA has a large number of predefined functions that make it possible to express
compound trading rules interactively (as Buy rules and Sell rules). They also
provide the developer of new algorithms with basic database access functions, as
well as some useful high-level functions. A complete description of the predefined
functions in ASTA can be found in Section 16.4.

16.2.4 Other Design Issues

We conclude the general description of the design with some specific issues that
must be considered in the design of an Artificial Trader.

When Is Data Available?

In a real trading situation on day T, the Close, High, and Low for day T are not
available. However, it is common that prediction algorithms assume that this data
is available, and can be included in the prediction of the following day’s prices.
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Furthermore, it is often assumed that the Buy and Sell recommendations from the
trading system can be executed using the close prices for day T. Of course, in
reality this is hard to achieve, since the stock market is closed by the time the data
for the current day becomes available, not to mention it having been transferred to
a computerized trading system. ASTA can be configured to execute the simulated
trades, using prices from either day T or day T+1 for buy and sell. The data for
day T is assumed to be available for analysis on day T.

How Many Stocks to Buy and Sell?

The trading rule 7'(s) does not contain any guide as to how many stocks or how
big a portion of the cash should be invested in the particular stock that gets a buy
signal. It is obvious that this affects the performance of a trading system, and it
is also clear that a risk estimate coupled with the trading signal could be of help.
The present version of ASTA does not offer any sophisticated procedures for the
selection of the number of stocks to buy. The agent simply divides all available cash
equally among the stocks that get a buy signal (taking into account the upper and
lower limits for one individual trade). When a stock gets a sell signal, all shares are
sold.

Reinvesting Money

The Artificial Trader buys and sells stocks and hopefully increases the wealth during
the simulated time period. In such a strategy there is a cumulative effect, since old
profits are reinvested in future trades. The reinvesting is necessary if the trading
results are to be comparable with the change in index, e.g. in equity diagrams such
as presented in Figure 6.1.

Interest on Cash

The money not invested in stocks is assumed to yield interest in a bank account.
The level of interest varies over time, and in our test database follows the daily
Swedish three-month-bond interest rate (configurable).

Unused Buy and Sell Signals

One problem of the basic approach of evaluation by simulated trading is that a large
portion of the buy signals are neglected due to lack of money for the artificial trader.
Even sell signals are neglected, simply because the stock that issues the signal is not
in the trader’s portfolio. Tests show that more than 90% of the signals often are
ignored in this way. This seriously affects the statistical basis of a performance
analysis for the trading algorithm. A possible way to attack the problem is a top
level loop with multiple runs and randomization of entities like:

e The starting date of trading
e The acceptance of buy signals

e The set of available stocks for trading
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The present version of ASTA does not include any of the suggested improve-
ments. Since the running time of one simulation of a 10-year trading takes in the
order of 0.5-3 minutes on a 266 MHz Pentium PC, the problem needs proper analysis
before any further development along these lines is conducted.

16.3 Using ASTA

ASTA is available in two versions:

e As a MATLAB function, fasta.m, that takes a Buy rule and Sell rule as in
parameters and returns the performance for a selected time period.

e As a Windows application to be run under MATLAB. The Buy rule and
Sell rule and all other settings are controlled interactively and the results are
presented on the screen.

16.3.1 Fasta

The purpose of the “batch” version of the program is to provide an objective function
that can be used for parameter tuning or automated generation of trading rules. This
report does not describe that part of the system more than by showing the following
example of how it can be used:

Example 1 :
%4 load the workspace with stock data:
load(’astaszg’)
/4 Simulate trading with Buy and Sell rules for 1990-1995.
/4 The performance ts returned in the p wvariable.
p = fasta(’Clos(T)>Clos(T-1)’, ’Profit>20 | Loss>10",[], [90 95])

16.3.2 Wasta

ASTA can be also run as an interactive Windows application in the MATLAB
system. In this section examples from the interactive version are demonstrated.

To start ASTA, run the wasta.m function from the MATLAB environment. The
screen layout is shown in Figure 16.2. In this picture, the user can set up parameters
for a simulated trading. The stocks of interest are picked from a large database in
Metastock format. Stocks from the Swedish stock market have been used in the
presented runs. 32 major stocks with active trading for the years 1987-1997 have
been selected. Other databases could be interfaced to the system easily.

The most interesting items are the lines “Buy rule” and “Sell Rule”. This is the
place where the trading algorithm is decided. The rules follow MATLAB syntax
and can include any of the large number of predefined functions or the user’s own
functions with new algorithms. The simulation of trading starts by clicking on the
“Run” button. The results are presented in tabular form and in graphs as in Figure
6.1.

The command button “Sweep” initiates a whole series of simulations with dif-
ferent values on symbolic parameters in the Buy and Sell rules. The name of the
parameters is given in the “Parameter” text box, and the values to be included in
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ASTA

Stocks Fram date To date Transaction Min trans- Wlin buy (%) Max buy (%) Initial Cash
cost (%) action cost per trade per trade
| XG | 57 | a7 | 0.15 30 | B | z0 | 1ooooo
Buy rule [Close (T)>High(T-1) ==l
Sell rule |Loss>10 | Profit:zo ﬂﬂ
Predict |
Predictor |
Market: 32 stocks. Dates: §20104-230409 (4071 days) Durnp Trades Buy price: Sell price:
Load | | astasxg [T To window & Today's & Today's
Generate | SEG [~ Tofile © Tomorrow's € Tomorrow's
Save I I [~ Diagram
Performance:
Annual profits:
= a8 g9 =D} 91 9z 93 94 95 98 57 Mean  Total
Strategy profit : -5.9 26.3 -9.5 -34.3 1.0 -5.7 33.6 13.9 39.8 36.6 30.2 11.4 154.4
Index profit : -7.9 E51.9 2z2.9 -29.7 5.4 -0.0 5z2.1 4.6 18.3 38.2 23.8 16.3 310.3
Difference profit 2.0 -25.86 -32.4 -4.8 -4.4 -5.7 -18.6 9.3 21.5 -1.6 6.4 -4,9 -155.8
Number of trades : sz 43 49 85 65 59 oz 49 39 45 =1 52 650

ISwitch to graph window for performance plots

Multiple runs FParameter Values

Run | I 1 Save graph Sweep | | Help End

Figure 16.2: Screen layout for the windows version of ASTA

the multiple simulations are given in the “Values” text box. The results are pre-
sented in six graphs, which are also written as encapsulated postscript (eps) files.
Examples can be found in Section 16.6.

16.4 Developing Trading Algorithms with ASTA

One of the key goals of using ASTA has been to provide a solid and easy-to-use basis
for development of trading algorithms. The “Trading rule” approach has been taken
as described in Section 5.1.3. The algorithm should be formulated in a day-by-day
structure, where buy and sell recommendations are produced daily by the algorithm.
The decisions should be based on past stock data only. Fundamental data about
the companies cannot be used in the present version of the system. It should be also
emphasized that the “Trading Rule” approach implies a decision-making system,
and not a modeling system. However, implemented algorithms may use modeling
“internally” and base the buy and sell recommendations upon it.

The following goals and guidelines have been kept in mind while designing the
user interface in ASTA:

e Fool proofness

An “off-by-one” error seldom results in more drastic consequences than when
developing prediction algorithms. Looking into the future, which is normally
pretty hard to do, is in the case of prediction algorithms surprisingly easy to
do, even unintentionally. In the case of indexing time series vectors however,
it should not come as a surprise that finding an error in code segments, like
the following one, is indeed difficult.
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i=k—h+1
z(m)=ylk+2x(j—j)—1)...
Therefore, the access functions implemented in ASTA have been designed
with a check for arguments that peep into the future. The global variable T is
automatically updated by the simulation mechanism to point to the “current

day”. Attempts to address the stock time series after this point, automatically
issue an error message. Example:

y = Clos(T — 4 : T) assigns the close prices for the current day and the 4
previous days to the variable y.

y = Clos(T : T 4 1) issues an error message when executed during the simu-
lation.

The same check routine has been implemented in the higher level routines as
well, thereby issuing clearer error messages pointing to the first instance where
an illegal time reference is found.

e FEase of use

Existing ASTA functions can be used interactively to create Buy rules and Sell
rules. When the user has implemented a new trading algorithm, the MATLAB
function can be used also in the Buy rules and Sell rules. It can be easily tried
out interactively with different settings on parameters etc.

e High level functionality

Predefined ASTA functions can perform operations, such as moving averages
and detecting crossings between time series. Other predefined functions com-
pute derived entities from the stock data time series: gaussian volume, volatil-
ity, trend and ranks. These functions can be included in the user-defined
algorithms and simplify the coding considerably.

ASTA is equipped with a large number of predefined functions to be used in-
teractively in Buy rules and Sell rules. They may be used also in user-defined
functions. Before going into details of the available functions, some basic concepts
are described.

16.4.1 Global Variables

The variables listed in Table 16.1 are dynamically set by the system and normally
should not be changed by any user routines.

The variable T is central both when defining Buy rules and Sell rules and when
writing new functions for prediction. The idea is that the user should never have to
worry about the time aspect, since it is automatically taken care of by the simulation
framework. By using T as index, the “current” day is always referenced. By using
T-1, the previous day is referenced etc. Attempts to use T+1 issue an error message,
thus prohibiting the program from peeping into the future.

It is seldom necessary to use the variable Stocks when writing user-defined func-
tions. However, it should be made clear that the variable is set to all stocks in the
market when the system looks for stocks to buy (i.e. when the Buy rule is evaluated)
and to all stocks in the Trader’s portfolio when the system tries to find stocks to
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Name Type Size | Decription

T numeric | 1 Row pointer to “current” day

Column pointers to allowed stocks.

Stocks is set to all stocks in market
Stocks | numeric | 1z N | when evaluating a Buy rule

Stocks is set to all stocks in portfolio
when evaluating a Sell rule

Market | struct 1 The Market object

Trader | struct 1 The Trader object

ST struct 1 Parameters controlling the Trader’s behavior

Table 16.1: Global variables in ASTA

sell (i.e. when the Sell rule is evaluated). The function call Clos(T) for example,
returns a row vector with the close values for all stocks in the Stocks variable for
the day T (the “current” day in the simulation).

16.4.2 Time Series Matrices

Most time series data within the ASTA system are enclosed in objects denoted
Time Series Matrices, and are abbreviated TSM in this documentation. They are
ordinary 2-dimensional MATLAB matrices, where each row represents one date and
each column represents one stock. The actual dates and actual stocks in a particular
matrix vary, but the last row most often corresponds to the “current” day T. The
columns normally correspond to the stocks in global stocks variable.

The available data is the stock time series enclosed in the Market Object: Close,
High, Low, and Volume. These are the only features available when creating Buy
rules and Sell rules, and also when creating new prediction algorithms. Clos, High,
Low, and Volume are the names of the access functions used throughout the system.

Example 2 : The call Clos(T-5:T) returns a 6 row matriz, where each column is
assigned the close value for a stock in the global Stocks variable. Row 1 corresponds
to day T-5, row 2 to day T-4, down to row 6, which corresponds to day T.

A whole range of functions that accept TSM’s as arguments and/or generate
it as output, are included in the system. This design principle turns out to be
convenient, since the column wise matrix operations within MATLAB can be used,
and makes the code very readable and effective. The MATLAB function OHIGH
in the following example detects Clos values that cross a k day maximum of High
from below.

Example 3 :
function b = OHIGH(k)
C = Clos(T);

Cml = Clos(T-1);

M = maz( High( T-k:T-1 )); J The call to High returns a k
/4 rows long Time Series Matriz
b = C>M & Cmi<=M;

return
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The function returns a binary row vector with a “1” in those columns where
the corresponding stock fulfilled the condition. It is an example of the data type
Indicator Vector.

16.4.3 Indicator Vectors

An Indicator Vector is a single-row TSM. Sell and Buy rules should evaluate to
binary Indicator Vectors used directly as sell and buy recommendations. Other In-
dicator Vectors, such as the return values from the function calls Profit and Trend1,
contain real numbers as values.

In the previous section the function OHIGH returned an Indicator Vector with
binary values, “0” or “1”. A number of predefined functions return Indicator Vectors,
and a user-defined trading algorithm or component normally should return a vector
of this type. This enables such compositions of Buy rules as:

OHIGH(10) & ( Trend1>1 | Trend5>0.5 ) (16.1)

The Buy rule evaluates to a binary Indicator Vector with “1” for stocks where
OHIGH(10) returned “1” and, where either the short trend is greater than 1% /day
or the long trend is greater than 0.5%/day. Functions Trendl and Trend5 are
described in section 16.4.6.

16.4.4 Predefined ASTA Functions

This section provides a list of all predefined functions that have been included to
make it possible to express compound trading rules interactively (as Buy rules and
Sell rules) and also to provide the developer of new algorithms with basic access
functions, as well as some useful high-level functions.

The functions are divided into four categories:

1. Feature Functions

Feature Functions are primarily access functions to stock prices (Close, High,
Low) and traded Volume. Numerous functions for commonly used derived
entities, such as trend, gaussian volume, and volatility, are provided as well.
A Feature Function always returns a TSM.

2. Indicator Functions

Indicator functions return an Indicator Vector most often used in the logical
expressions that define the Buy rules and Sell rules. Examples are standard
technical indicators, such as MACD and Stochastics. Other Indicator Func-
tions implement a dynamic stop-loss handling and achieved profit or loss since
a stock was bought.

3. Operator Functions

Operator functions perform a computation on one or several TSM’s, and return
another one. Examples are computation of moving averages, minimum values
in time windows etc.
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4. Utility Functions

Some functions are support functions that may be of use primarily when de-
bugging new algorithms. Functions that extract stock names and actual dates
are in this category.

Note:

All functions of type 1, 2, and 3 return a TSM. Each column represents one stock
in the global variable Stocks. Stocks is automatically set to all stocks in the market
when the system looks for stocks to buy (i.e. when the Buy rule is evaluated) and
it is set to all stocks in the Trader’s portfolio when the system tries to find stocks to
sell (i.e. when the Sell rule is evaluated). It is seldom necessary to use the Stocks
variable explicitly in Buy rules or Sell rules or when writing user-defined functions.

16.4.5 General Parameters

This section describes some parameters, which are common to many of the prede-
fined functions.

Days

This parameter tells for which day or days the function should return values. In the
case of days being a vector, the result is a TSM with the same number of rows as
elements in the days parameter. Each row contains values as if computed on the
corresponding day. The default value for the days parameter is the global T, i.e.
the current day.

Example 4 : Clos(T) returns a single-row TSM with close prices for all the stocks
in the global variable Stocks.

Example 5 : Trend5(T-9:T) returns a ten-row TSM with 5-day trends for all
the stocks in the global variable Stocks.

To simplify the description of functions below, the days parameter is not covered.
The Description field in the tables refers to each row of the returned TSM.

Plot

Many functions have the optional plot argument. By setting this parameter to the
global constant PLOT, the function is plotted versus time for all the stocks selected
in a row. The exact contents of the plot depends on the function. User-defined
functions can easily incorporate the plotting functionality, which is extremely useful
during development and debugging.

Only one function at a time can have the plot parameter set to a non-zero value
(the global constant PLOT equals to 1). The default value for the plot parameter
is 0.
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16.4.6 Feature Functions

Feature Functions are primarily access functions for obtaining stock prices (Close,
High, Low) and traded Volume. Derived entities such as ranks and trends are also
provided.

All the Feature Functions return a TSM with one row for each day in the days
parameter and one column for each stock in the global Stocks variable. Table 16.2
lists all predefined Feature functions in ASTA. The plot argument is described in
Section 16.4.5.

Function | Parameters | Description

Clos days, plot The close value

High days, plot The highest traded price during the day
Low days, plot The lowest traded price during the day
Volume | days, plot The traded volume value
Rankl days, plot The 1-day rank value
Rank2 days, plot The 2-day rank value
Rank5b days, plot The 5-day rank value
Rank20 | days, plot The 20-day rank value
Trendl | days, plot | The 1-day trend (%/day)
Trend2 | days, plot | The 2-day trend (%/day)
Trend5 | days, plot | The 5-day trend (%/day)
Trend20 | days, plot | The 20-day trend (%/day)
Gvol2 days, plot The 2-day gaussian volume
Gvol5 days, plot The 5-day gaussian volume
Gvoll0 days, plot The 10-day gaussian volume
Gvol20 days, plot The 20-day gaussian volume
Volat2 days, plot The 2-day relative volatility
Volath days, plot The 5-day relative volatility
Volat1l0 | days, plot The 10-day relative volatility
Volat20 | days, plot The 20-day relative volatility

Table 16.2: Predefined feature functions

The following special concepts should be further explained:

K-Step Return

The k-step return R}*(t) of a stock m with a price time series Clos™(t) is defined

as:

Clos™(t) — Clos™(t — k)
Clos™(t — k)

Ry(t) = 100 - (16.2)

By setting k at different numbers we get measures indicating how much the stock
has increased since its value k days ago. The Return values are not pre-computed
in ASTA. The related Trend functions described in the next section can be often
used instead.
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K-Step Trend
The k-step trend Ty (t) of a stock m is defined as:

(L) = % RP(8). (16.3)
By setting k at different numbers we get measures indicating how much the stock
has increased per day since its value k days ago.
The four functions Trendl, Trend2, Trend5, and Trend20 can be used to access
four return measures for k£ = 1,2, 5, and 20. They are computed and stored during
market initialization to speed up the use during the simulation phase.

K-Step Rank

The k-step Ranks A} for stocks {sy, ..., sy} are computed by ranking the N stocks
by the k-step returns R;'. The ranking orders are then normalized, so the stock
with the lowest Ry gets rank —0.5 and the stock with the highest R gets rank 0.5.
Therefore, the definition of the k-step Rank A} for a stock s,,, belonging to a set
of stocks {sy, ..., sy}, can be written as:

order( R (t), {RL(t),...RY(t)})—1
N -1

where the order function returns the ranking order of the first argument in the
second argument, which is an ordered list. R} is the k-step return (definition 16.2)
computed for stock m.

The Rank for a stock is a measure seldom or never seen as input to automatic
trading systems. Since the ultimate goal is to “beat the market”, i.e. to do bet-
ter than the average stock, it seems reasonable to have them available at least as
potential inputs.

The four functions Rank1, Rank2, Rank5, and Rank20 can be used to access four
rank measures for £k = 1,2, 5, and 20. They are computed and stored during market
initialization to speed up the use during the simulation phase. The set {si,...,sy}
is all the stocks available for trading.

AT(t) = — 0.5 (16.4)

Gaussian Volume

The gaussian volume V,,(t) is defined as:
Va(t) = (V(t) = my (1)) /ov (t) (16.5)

where my (t) and oy (t) are computed in a running window of length n:

() — % S V(t - i) and (16.6)

i=1

oy = J ni : ﬁ; (V(t — i) — my ()2 (16.7)

V., expresses the number of standard deviations by which the volume differs from
its running mean. Therefore, it can be used as an indication of “abnormal” values,
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caused by a sudden change in market interest for a particular stock. That is the
reason that the sums in Definition (16.6) and (16.7) do not include the current day’s
volume, i.e. V(t). The four functions Gvol2, Gvol5, Gvol10, and Gvol20 can be used
to access four Gaussian volumes V,, for n = 2,5, 10, and 20. They are computed and
stored during market initialization to speed up the use during the simulation phase.

Relative Volatility
The Relative volatility W,,(¢) is here defined as:

(Tc(t)
me(t)

W, (t) = 100 - (16.8)

where m¢(t) and o¢(t) are computed on the time series Clos in a running window
of length n. ILe.:

me(t) = % S Clos(t — i) (16.9)
and
oolt) = J ni 1 n:: (Clos(t — i) — mo(t))2. (16.10)

Definition (16.8) is recognized as the “coefficient of variation” or “relative standard
deviation” in statistics. Relative volatility W,, is preferred to ordinary volatility
estimation by the standard deviation, because it provides a measure that can be
compared over longer time periods and also between stocks with totally different
price levels.

The four functions Volat2, Volatd, Volat10, and Volat20 can be used to access
four volatilities W, for n = 2,5,10, and 20. They are computed and stored during
market initialization to speed up the use during the simulation phase.

16.4.7 Indicator Functions

These functions return an Indicator Vector, i.e. a TSM with one row and one
column for each stock in the global variable Stocks. Each column can be used in
logical expressions to compose Buy rules and Sell rules. They can also be used
with user-defined functions to create compound trading rules. Table 16.3 lists all
predefined Indicator Functions in ASTA. The plot argument is described in Section
16.4.5. Some Indicator Functions require further explanation.

Profit and Loss

The system automatically keeps track of the change in price of each stock since it
has been bought. The Profit is defined as:

Profit(t) = (Clos(t) / BuyPrice — 1) x 100. (16.11)

The Loss is sometimes a more convenient measure and is defined as:
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Function | Parameters | Description

Profit - % increase in Close since buy of stock
Loss - % decrease in Close since buy of stock
Implements a dynamic stop-loss function:
Stop loss is initially set to S1

If Profit>P1, change the stop loss to S2,
Stoploss S1, S2, P1 Stoploss returns “1” iff the Loss is less
than the dynamic set stop loss.

This function keeps track of each stock
separately.

“1” iff Close crosses a L day min

of Low from above

“1” iff Close crosses a L day max of
Overhigh | L,plot High from below and High(T-1) is

less than the same max

“1” iff day number is in vector dys

Underlow | L

Days dys (1:Monday...7:Sunday)
Stoch K,Ks,S,plot | The technical indicator Stochastics.
Macd K,D,S,plot | The technical indicator MACD

Table 16.3: Predefined indicator functions

Loss(t) = (1 — Clos(t) / BuyPrice) * 100. (16.12)

BuyPrice is the average buy price of each stock in a portfolio. Profit and Loss
are not defined for stocks outside the portfolio.

The functions are of great use when defining trading rules. For example, a simple
Sell rule may be defined as:

Loss>10 | Profit>20 (16.13)

The Sell rule evaluates to an Indicator Vector with “1” for stocks where either
Loss returned a value less than 10 or Profit returned a value greater than 20. A
more complex function based on the profit and loss concept is Stoploss.

Stoploss

An often mentioned “trading rule to live by” is that of never allowing a profitable
trade to turn into a loss. This idea is implemented in the function Stoploss. Each
stock gets a stop-loss parameter of its own. This parameter is initialized to the value
S1 when a stock is bought. It is changed to S2 when the Profit function registers
more than P1% profit. Typical values for the parameters S1, S2 and P1 are 20%,
-5%, and 10%. This results in the following behavior during trading:

1. The stock is sold immediately if the price drops by more than 20% below
purchase price, thus cutting the maximum loss.

2. If the price ever rises by 10% above the purchase price, a consecutive drop in
price to 5% above purchase price issues a sell signal. In this way, a profitable
trade never turns into a loss.
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16.4.8 Operator Functions

These functions perform an operation on one or several TSM’s and return another
TSM with transformed values.

All Operator Functions return a TSM with one row for each day in the days
parameter, and one column for each stock in the global Stocks variable. The pa-
rameters x, x1, and x2 can be either a TSM or a string with the name of a function
returning a TSM.

The parameter days:

e If x is a TSM, the days parameter should be row numbers in the matrix. The
default value for days is the last row in the matrix.

e If x is a string, the days parameter should be a vector with day numbers, such
as T, T-1, etc. The default value for days is T.

Note:

The Operator Function performs its operation on each of the lines in the x
matrix and returns a TSM with the result for each row. In the following description
of Operator Functions, the d variable is implicitly assumed to run through the full
range defined by the days parameter. Each value on d results in one row in the
output TSM.

Table 16.4 lists all predefined Operator Functions in ASTA.

Function | Parameters Description

Minn x, L1, days, plot | L1-day-min value in the rows of x
Maxx x, L1, days, plot | L1-day-max value in the rows of x
Mav x, L1, days, plot | L1-day-moving av. for columns in x

Stdev x, L1, days, plot | L1-day-st.deviation for columns in x
“1” iff Mav(x1,L1) crosses
x1,L1,x2,L2,A, Mav(x2,L2) from below.

Mavx days,plot The A argument (optional) is the
min required angle for the crossing.
Table 16.4: Predefined operator functions
Minn

Computes the minimum value in an L1 days long window backwards.

If x is a string, Minn is defined as:

Minn = min(z[d — L1 + 1 : d]), where the square brackets denote function
invocation of x.

Example 6 Minn('Clos’,4,T).
Will generate a 1-row TSM: min(Clos(T —3:T)).
Example 7 Minn('Clos’, 4, T —1:T).

_ [ min(Clos(T —4:T —1))
Will generate a 2-row TSM: ( min(Clos(T — 3 : T))
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If x is a not a string it should be a TSM. Minn is defined as:
Minn = min(z(d — L1+ 1:4d,:)).

Example 8 Minn(Z,4,10) where Z is a 10-row-long TSM.
Will generate a 1-row TSM: min(Z(7 : 10 ,:)).

Example 9 Minn(Z,4,9:10) where Z is a 10-row-long TSM.

| o min(Z(6:9 ,3))
Will generate a 2-row TSM: ( min(Z(7:10 ,3)) )

Maxx, Mav, and Stdev

These functions have the same parameters and behavior as Minn above. Just sub-
stitute min for max, mean, and std.

Mavx

Crossings between moving averages of various signals are often used in the definition
of traditional technical indicators. The Mavx function supplies a convenient way
to implement the detection of such crossings. The optional argument A makes it
possible to specify the minimum angle for the crossing. Crossings at angles lower
than the specified one do not generate a logical “1” at that point. Mavx can be used
to detect both crossings from below and above, by changing the order of L1 and L2
arguments.

Example 10 Mavz(’Clos’,2,’Clos’,20,45) returns a binary Indicator Vector with
17 4ff a 2-day moving average of Clos crosses a 20-day moving average of Clos
from below in an intersection angle no less than 45 degrees. The computation is
performed “today” since the default value for the days parameter is T.

16.4.9 Utility Functions

These functions are support functions that may be of use primarily when debugging
new algorithms. They can not be included in Buy rules and Sell rules, because
they do not return Time Series Matrices. Table 16.5 lists all predefined Indicator
Functions in ASTA.

Date days | Vector with the real date (yymmdd) for days
Stockname | s String with the name of stock s.

Table 16.5: Predefined utility functions

16.5 Examples

This section presents one example from the Windows version of ASTA. 32 major
stocks with active trading from the Swedish stock market for the years 1987-1997
have been selected for analysis. The main ASTA screen is shown in Figure 16.3.
The fields “Buy rule” and “Sell Rule” are the places where the trading algorithm
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is defined. The rules follow the MATLAB syntax and can include the predefined
functions or the users’ own functions with new algorithms.

The example shows a test of the Stochastics indicator Stoch[ t, K, KS, D,
Buylevel, Sellevel], common in technical trading, and here defined as:

Stoch(t) = mav(100* (Clos(t)— L) / (H— L), D) with  (16.14)
L = mav(min(Low(T — K :T)), KS) and
H = mav(max(High(T — K : T)), KS).

The parameters K, KS and D are the window lengths of the moving average
function mav.

A Buy signal is issued when Stoch(t) > Buylevel and a Sell signal when
Stoch(t) < Sellevel. The parameters K, KS, D, Sellevel, and Buylevel control
the performance of a trading strategy based on the indicator and are subject to
analysis in the next section.

In Figure 16.3, the “standard” values 30, 3, 3,20, 80 are used for the parameters.
The results shown in Figure 16.3 and Figure 16.4 are quite stunning, with an average
annual profit of 53.4% compared to the 16.3% achieved by the index. It is noteworthy
that the only negative result is for the year 1997, where the strategy only made 1.7%
whereas the index increased by 23.8%.

Stocks From date To date Transaction Min trans- hlin by (%) Pl buy (%) Initial Cash
cost (%) action cost per trade per trade
| FEG | 87 | o7 | 0.15 | EE | 5 | 20 | 100000
Buy rule [stochis0,3,3,20,80) 20 _|<_|>
Sell rule IStDch(SD,3,3,20,80)<D i
Predict |
Predictor |
harket: 32 stocks. Dates: 520104-850409 (4071 days) Durnp Trades Buy price Sell price:
Load I astassg ™ To window & Today's & Today's
Generate SEG ™ Tofile © Tomorrow's O Tomorrow's
Save | ™ Diagram
Performance:
Annual profits:
87 88 ==l a0 1 9z 93 o4 a5 =L a7 Hean Total
Strategy profit i 27.0 53.2 7T3.6 0 -9.3 9.6 3&.4 313.6 Z2.5 £5.1 38.3 1.7 53.4 3863.5
Index profit : -7.9 51.8 22.9 -28.7 5.4 -0.0 5z.1 4.6 15.3 38.2Z 23.8 16.3 310.3
Difference profit : 34.8 1.3 50.6 20.4 4.2 32.% 261.5 18.0 6.9 0.1 -22.1 37.1 3553.2
Numker of trades : 37 34 38 7z z 86 55 74 48 50 64 57 630
ISwit,c:h to graph window for performance plots
Multiple runs Pararneter YWalues
Run | 1 Save graph Swaep | | | Help | End |

Figure 16.3: ASTA command window with Stochastics buy and sell rules

16.6 Viewing the Trader as an Objective Function

The obvious wish to maximize the profit of a trading system can be tackled in two
ways:



118 CHAPTER 16. ASTA - A TEST BENCH AND DEVELOPMENT TOOL
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Figure 16.4: Performance of the Stochastics indicator.

1. Parameterizing the Buy rule and Sell rule, i.e. introducing parameters within
the rules. Example:

Buy rule =’Clos(T) > Mazx(’High’, Nhigh,T — 1)’
Sell rule =’Loss > L | (Profit > P & Clos(T) < Clos(T — 1))’

The function Maxx returns the maximum time series value in the interval
[T'— Nhigh,T — 1]. It is now possible to optimize the profit P with respect
to the parameters Nhigh, L and P.

2. Viewing the Buy rule and Sell rule as symbolic expressions. The optimization
then turns into a search problem, most naturally implemented in a genetic
framework or using Inductive Logic Programming.

An optimization of one of the parameters in the Stochastics indicator serves as
an example for approach 1. We set up an optimization with buy and sell rules
according to:

Buy rule = ’Stoch(30,3, 3, Sellevel, 80)’

Sell rule = ’Stoch(30,3,3, Sellevel, 80)’

The excess profit P can be optimized now with respect to Sellevel. The graphs
in Figure 16.8 are automatically generated by the “Sweep” function in the ASTA
system. The name of the parameter is given in the “Parameter” text box and the
range in the “Values” text box.

It must be emphasized that optimization of the performance is a multi-dimensional
parameter estimation problem. The graphs presented show the profit P as a func-
tion of one of the involved parameters, whereas the rest of the parameters are fixed.
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The main purpose is to illustrate the possibilities and problems involved, even in a
one-dimensional optimization.

From the summary graph (top left in Figure 16.8) over the entire training period,
we can deduce that the highest profit is achieved for a Sellevel somewhere around
35. However, a look at the data at a higher resolution reveals a more complicated
situation. In the bottom left diagram the same relation is plotted with one curve
for each year in the training data set. It is clear that the mean profit is totally
dominated by the results from one of the years (1993).

From these curves we can learn at least two important points:

1. The spread between individual years is very high.

2. The location of the maximum is not obvious.

This behavior of data is typical for most variables. The profit cannot be easily
described as a function of measurable variables without introducing a dominant
noise term in the function. Let us therefore view the annual excess profit as a
stochastic variable P(#), where 0 stands for one particular setting of the parameters
that affect the profit. In the shown example, 0 is the Sellevel parameter. P(6) has
been sampled once per year during the eleven years in the data set:

{P1(9)7P2(9)7P3(9)7P4(9)7P5(9)7P6(9)7P7(9)7P8(9)7P9(9)7P10(9)7P11(‘9)}' (16'15)

Viewed this way, the task of tuning the parameter 6 to find the “maximum”
profit P is not well defined. P is a stochastic function and consequently has no
“maximum”. It has a probability distribution with an expectation value E and a
variance V. It is important to realize that tuning 6 in order to maximize E[P(6)]
is just one of the available options. Maximizing E[P(6)] provides the highest mean
performance. Another possibility is to maximize the lower limit of a confidence
interval. Since the risk factor is always a major concern in investments, and since
the spread between individual years obviously can be very high, this sounds like a
promising idea. A lower limit P, for a confidence interval could be defined as:

Piow = E[P(0)] = |VIP(O)], (16.16)
where V[P(#)] is the variance of the stochastic variable P(#). Yet another pos-
sibility is to use the Sharpe Ratio SR, which expresses the excess return in units of
its standard deviation as:
EP©)]
VIP(0)]

The Sharpe Ratio is normally used to evaluate the performance of a trading strategy
(Sharpe [30, 31]). However, Choey and Weigend [8] propose to use the Sharpe Ratio
as an objective function in portfolio optimization and derive a learning algorithm
for artificial neural networks. The Sharpe Ratio should be as high as possible for an
optimal trading algorithm.

Due to the high noise level in the data, we have added a modified Sharpe Ratio,
where the outliers have been removed. The largest and smallest P;(f) in Expression
(16.15) have been removed before taking the expected value and standard deviation
for each 6. The unmodified Sharpe Ratio is shown in the top-right diagram, and the
one with outliers removed in the mid-right diagram. As we can see, the one with
the outliers removed clearly reveals a maximum at around 20-25, followed by a clear
decline. The unmodified Sharpe Ratio shows no such pattern.

SR = (16.17)
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16.7 Other ASTA Features

By adding a PLOT parameter in the call to many of the predefined ASTA functions,
illuminating graphs are generated. The call to the previously used Stoch function
for example, may look like:

Stoch(30,3,3,20,80,PLOT)>0. (16.18)

The enabled PLOT option generates separate graphs with the signals from the
Stoch function. In Figure 16.6 the components of the Stochastics indicator are
displayed. The two horizontal lines mark the buy level (80%) and the sell level
(20%). When the “Oscillator %K” value passes these lines, a buy or sell signal is
issued.

A problem with a trading-rule-based system like ASTA is that commonly used
methods for modeling or inductive learning, such as regression models and artificial
neural networks, cannot be applied in a normal fashion. The reason for this is
that a set of training data with patterns and targets is not available in the same
way as in the Time Series Approach. However, a related modeling problem can be
formulated as an extension to a system based on trading rules. The points where
the system signals buy or sell, can be used to extract examples that can be input
to a modeling or classification routine. The trading rule may be refined in this way
to produce a higher hit rate and most probably a higher overall profit. Therefore, a
data extraction function has been built into the ASTA system. In Figure 16.5, the
“Dump trades to window” box has been checked. All generated trades are dumped
in ASCII form in the MATLAB command window (Figure 16.7). By “Dump trades
to file”, a data file for post-processing with classification tools is written to the disk.
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ASTA

Stocks From date To date Transaction  Min trans- Min buy (%) Max buy (%) Initial Cash
cost (%) action cost per trade per trade

[ sz | 93 | a3 [ o.is | a0 | 5 | z0 [ 1ooooo

Buy rule |St,u\:h(SD,S,S,ZD,ED,PLOT)>D ﬂil

Sell rule |Stnch(30,3,3,ZD,EDJ<D =|=

Predict |

Predictor |

Market: 32 stocks. Dates: 820104-350408 (4071 days) Durnp Trades  Buy price: Sell price:

Load astasxg W Towindow & Today's & Today's
Generate 3HG ™ Tafile = Tamarrow's € Tomorrow's

Save " Diagram

Perfarmance
Lnnual profics:

93 Hean Total
Strategy profit : 352.1 352.1 35z2.1
Index profit : 52.1 5z2.1 s5z.1
Difference profit : 3oo.o 300.0 Joo.o
Hurber of trades : 41 41 41

ISmlt.zh to graph window for performance plots

Pefultiple runs Fararmeter Walues

Run 1 Save graph | Sweep || | Help End

Figure 16.5: ASTA command window with Stochastic buy and sell rules. The PLOT
option in the Buy rule generates separate plots with signals for each stock. The
”"Dump trades to window” check box generates a list of all trades in the MATLAB
command window.
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Figure 16.6: Stochastics buy and sell signals for the ABB stock. Upgoing bar denotes
a buy signal and downgoing bar denotes a sell signal.
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Trade Date No. Stock Price Total Preofit (%) Wealth Cazh
1 330105 X 21 Skandia 85,27 GheG. 05 93343.95
2 930105 79 27 Sydkrafe C g2.60 Gh2h. 22 8e728.73
3 930105 1535 31 &llgon B 4,28 SR W] 99730.00 go00a4.01
4 330107 375 20 SHE 4 26,34 9875.96 70119.50
5 230107 329 32 Nokia & 30.00 9g70.00 9958562 60159, 50
& 930108 349 10 Hermes & Mauritz 28.20 9841.80 E0Ze0.08
7 930108 323 25 BELE A 30.50 9851.50 99860, 44 40315, 58
3 930115 431 7 Ayesta Sheffield ZZ.68 9776 63 30525, 47
9 930115 351 Z0 SHE A 27.84 977177 100374.14 2066671

10 930121 25 Z AEE A 33.40 990720 10702, 32
11 930121 G4 14 Eirmmevik B 31.00 5ls4.00 Wall LAZE. 32
12z 930127 54 21 Skandis Q7. 46 LZBZ.E8 Wall 34,48
13 930302 -6 14 Eirmmevik B 79.00 -5056.00 -2.47 128010.13 E051.23
14 930322 -131 21 Skandia 93,71 -12275.62 3.78  131:216.32 17260.75
15 930323 -431 7 Avesta Sheffield 23.16 -9980. 37 2.08 Wall 27165.09
14 930325 -323 25 BHAR A 33.75 -10901.2% 10.66 132663, 458 37991, 32
17 930329 4597 31 Allgon B .45 2667518 13262685 11247.39
13 930406 2031 31 Allgon B 5.5l 11186.34 132246.33 1.77
19 930519 -258 2 ABE A 43,70 -11274.80 13.80 164709.29 11186.39
20 930525 113 22 Bkanska B a7.50 11017.50 Wall 24,54
21 930608 -329 32 Nokia & 456,25 -15216.2% 54,17 187009.89 15221.10
22 930510 154 27 Sydkrafe C a7.0% 15083, 58 1534210.74 4,44
23 9305621 -349 10 Hernmnes & Maurite 38.00 -13262.00 34,75 1322655
24 9305621 132 22 Skanska B aa.00 13065, 00 185875, 28 63,55
25 930716 -233 27 Sydkrafe C Q3,56 -21799.1F% 0.88 1977558.60 21778.13
26 930719 308 7 Avesta Sheffield 34,07 10770.39 197540, 39 lo9zz.70
27 930720 235 2 ABE A 46,00 10g10.00 199141.85 30.11
28 930006 -235 2 ABE A 47.20 -110592.00 2.61 273799.16 11032.41
20 930016 -308 7 Avesta Sheffield 36.86 -11352.70 £.41 272925.4°% 22322.39
30 930920 227 9 Ericsson B 97.83 22207.73 272115.39 33.78
31 930921 -245 22 Skanska B 135%.00 -33810.00 40,37 270652, 53 33753.80
32 930922 -7Z6 20 SHE A a5.00 -g58970.00 251.03 269365.953 102627.47
33 930923 672 32 Nokia & g0.00 53760.00 270719.82 45795.81
34 330927 562 10 Hermes & Mauritz 43,20 24275.40 282121.66 24450, 66
35 931004 495 Z ABE A 43, 20 24354.00 30965525 42,43
36 931108 -227 9 Ericsson B l0z.87 -23350.81 5.15 Nall 23303.54
37 931111 136 21 Skandia 170.55 23194.39 429195.43 42,458
38 931128 -g72 32 Nokia & l00.50 -67536.00 25,62 399726.79 6747730
39 931203 764 30 Wolwo B 858,20 67354.19 387109.87 85.89
40 931215 -136 21 Skandia 159.30 -21664.94 -6.5%9 434649.03 2legl.0z
4] 931221 127 22 Skanska B lg9.00 21l453.00 443866, 23 132.74

Figure 16.7: Dump of generated trades from Stochastic trading rules for the year
1993.
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16.8 Results and Further Development

The presented system provides a powerful tool for the development and evaluation
of trading algorithms. Parameter settings can be tested and data screening can be
performed easily interactively. As was mentioned in Section 16.1.1, one of the reasons
of the development of the ASTA system, was to use it as an objective function when
tuning model parameters with global optimization, and to find the general structure
of trading rules, for example within a genetic framework. The preliminary results
show both possibilities and difficulties. The track can be examined considerably.

The dangers of “data snooping” got highlighted by breaking down the perfor-
mance measures into shorter intervals. However, the inherent uncertainty result-
ing from the noisy processes involved, calls for more computer-intensive simulation
schemes in order to achieve statistically significant performance measures. Methods
such as those described in Section 16.2.4 will be implemented and evaluated.

Well after all is said and done,

Gotta move, while it’s still fun,

So let me walk before they make me run
Before They make Me Run, Jagger /Richards
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