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Abstract

Technical prediction of stock returns is known to be an extremely difficult problem. In this
report we use the concept of trends as predictor variables. A statistical investigation of the
relevance of a trend concept for predictions of future returns is presented for individual stocks
on the Swedish stock market. Negative correlation for strong negative trends is shown. The
overall correlation between trends and future returns is however found to be very weak. Trend
variables are further used as input variables in a k-nearest neighbor analysis to find patterns
of trend values that result in non-random future returns. The k-nearest neighbor algorithm is
extended with a selection procedure to find regions in the input space where the future returns
are non-symmetrically distributed. The new algorithm is successfully tested on artificial stock
data with trending patterns introduced. The algorithm is also applied to a number of national
stock indexes: the American Dow Jones, the German DAX, the British FTSE, and the Swedish
Generalindex. The results are positve for some of the tested indexes and negative for others.
Further tests must be conducted in order to give statistically significant results.

The suggested algorithm also has natural application in areas other than stock prediction.
It addresses situations in which the overall predictability is low and can only be expected to
apply in indeterminate regions of the input space.
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1 Introduction

The purpose of this report is to examine the concept of trends and how it can be utilized
for predictions of stock returns. A statistical analysis of stock data from the Swedish
stock market over the period 1987-1996 shows how the trends are correlated to future
returns.

A modified k-nearest neighbor algorithm identifies regions in the input space where a
correlation exists and improves prediction performance by issuing a ”don’t know” answer
where no correlation can be found.

2 Descriptive analysis of data

The data examined in this section is collected from the Swedish stock market over the
period 1987-1996. Results for two sets of stocks are presented: SXG which represents
33 major stocks with active trading and SXBIG which represents 210 major and minor
stocks (including those in SXG).

The k-step return Ry () of a stock-price time series y(t) is defined as

_on YO —yt—k)
Ry (t) = 100 T (1)

The returns Ry(t) are the primary target in most research on the predictability of stocks.
Some of the reasons for this are:

1.Rk(t) has a relatively constant range even if many years of data have been used as input.
The prices y(t) obviously vary much more and make it difficult to create a valid model
for a longer period of time.

2.Rk (t) for different stocks may also be compared on an equal basis (however, this is seldom
done in published research).

3.1t is easy to evaluate a prediction algorithm for Ry (t) by computing the prediction
accuracy of the sign of Ry (t). A long time accuracy above 50% (or more precisely above
the historical mean) indicates that a true prediction has taken place.

The basic statistical properties of Ry (t) for the two sets of stocks are listed in tables 1
and 2. The values in the tables are mean values for the included stocks. Each column
presents data for one particular value of k.

The last six lines in the tables show the distribution of signs for the returns. ” Return = 0"
is the fraction of returns that is equal to zero. ” Return > 0” is the fraction of returns
that is greater than zero and ” Return < 07 is the fraction of returns that is less than
zero. "Up fraction" is computed as

” Return > 07
100 - 2
005 Return > 07 + 7 Return < 0"’ (2)
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which is the positive fraction of all non-zero moves. ”Up fraction” is a relevant measure,
when it comes to evaluating the hit rate of prediction algorithms. Looking at one-step
returns in the tables, the "Up fraction” for SXG is 50.9% and for SXBIG is 50.6%. The
"Mean Up” and ” Mean Down” rows show the mean value on the positive and negative
returns respectively.

The fractions of zero returns in the data material are somewhat surprisingly high, 14.0%
for SXG and 23.4% for SXBIG. The higher value in the latter set is related to the lower
degree of activity in the smaller stocks included in SXBIG. The zero returns must be
dealt with in a proper way when evaluating hit rates for prediction algorithms. The ”Up
fraction” circumvents the zero returns by simply removing them before calculating the
hit rate. In this way, the zero returns will be counted as both increases and decreases, in
equal proportions. A similar procedure is proposed in [2] for test metrics when making
stock predictions.

3 Trends

A trend-following-trading strategy normally means buying stocks, which have shown a
positive trend for the last days, weeks or months. It also suggests selling stocks, which
have shown a negative trend. In this section the relevance of such a strategy will be
tested statistically.

A trend Tj(t) is defined using the k-step return as
100 y(t) —y(t — k)

L) =5 = (3)

By setting k at different numbers we get measures telling how much the stock has in-
creased per day since its value k days ago.

To see if Tj(t) is correlated to future changes, define the profit P,(¢) computed h days

ahead as ot + 1) — ()
y(t) '

P,(t) is obviously equal to Rj(t + h) (i.e. it is achieved by shifting the returns h days
backwards).

In Table 3 mean profit P;(t) is tabulated as a function of trend T%(t) , i.e. 1-step-forward
profit versus k-step-backward trends, for stocks SXG, over the years 1987-1996. Table 4
shows the "Up fraction” (2) and Table 5 the number of observations in each table entry.
Each column represents one particular value on k covering the values 1, 2, 5, 10, 20, 50, 100.
Note that the time series normally have 5 samples per week, i.e. k& = 5 represents one
week of data and k = 20 represents approximately one month.

Tables 6, 7 and 8 show the same, but with Ps(¢) and Ty(t) , i.e. 5-step-forward profit per
day versus k-step-backward trends per day.

Py(t) =100 -

(4)

To ensure that found patterns reflect fundamental properties of the process generating
the data, and not only idiosyncrasies in the data, the relation between trends and future
returns are also presented in graphs where one curve represents one year. Figures 1
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Table 1: Mean k-step returns for 33 major Swedish stocks (SXG)

k
1 2 5 10 20 50| 100
Mean 0.098 | 0.197 | 0.479 | 0.960 | 1.953 | 4.871 | 9.687
Median 0.000 | 0.029 | 0.162 | 0.562 | 1.533 | 4.217 | 7.432
Std. dev 217 3.16 | 5.06 | 7.23|10.54 | 18.01 | 28.08
Skewness 053 071 078 0.71| 0.59 | 0.56 | 0.63
Kurtosis 12.60 | 12.19 | 12.18 | 10.61 | 8.51 | 6.03 | 5.38
No of points 2090 | 2088 | 2084 | 2078 | 2065 | 2036 | 1987
Returns =0 (%) | 140 92| 54| 35| 23 1.2 038
Returns >0 (%) | 438 | 46.4| 49.8| 52.5| 56.8 | 61.1| 63.9
Returns <0 (%) | 422 | 44.4| 448 | 439| 409 | 37.7| 354
Up fraction (%) 50.9 | 51.1| 52.7| 544 | 58.2| 61.8| 64.3
Mean Up 1.8 2.6 4.1 5.9 8.6 | 15.3| 24.8
Mean Down -1.6| -22| -34| -48| -6.9]| -11.2| -15.9
Table 2: Mean k-step returns for 210 Swedish stocks (SXBIG)
k
1 2 5 10 20 50| 100
Mean 0.142 | 0.272 | 0.584 | 1.060 | 2.011 | 4.605 | 8.695
Median 0.000 | 0.009 | 0.057 | 0.254 | 0.948 | 2.905 | 5.216
Std. dev 3.01| 413 | 6.12| 8.39| 11.76 | 18.76 | 27.69
Skewness 079 1.06 | 1.02| 093 | 0.83| 0.77| 0.81
Kurtosis 15.75 1 16.40 | 11.45 | 9.21 | 7.53| 594 | 5.55
No of points 1353 | 1349 | 1342 | 1333 | 1319 | 1291 | 1244
Returns =0 (%) | 234 | 169| 10.7| 74| 49| 27| 18
Returns >0 (%) | 38.7| 42.0| 45.7| 485| 52.1| 56.3| 57.9
Returns <0 (%) | 379 | 41.1| 43.6| 44.1| 43.0| 41.0| 40.3
Up fraction (%) 50.6 | 50.6 | 51.2 | 52.4 | 54.8| 57.8| 589
Mean Up 2.7 3.5 5.2 71| 10.1| 16.7| 26.4
Mean Down 23| 29| -40| -53| -73]| -11.3| -15.5
Table 3: Mean 1-step returns for 33 stocks in SXG
k-day trend (% /day)
kK | -5.00 | -4.00 | -3.00 | -2.00 | -1.00 | -0.50 | 0.00 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
1 053 | 003 | 005 | -0.04 | 012 | -0.08 | 0.01 | 0.11 | 019 | 029 | 038 | 040 | 0.72
2 120 | 022 | 013 | 008 | -0.06 | 008 | 003 | 013 | 024 | 031 | 028 | 031 | 042
3 1890 | 008 | 015 | 017 | -0.03 | -0.07 | 0.03 | 0.15 | 0.20 | 0.25 | 0.27 | -0.03 | 0.35
1 319 | 048 | 001 ] 013 | 000 | -0.04 | 0.03 ]| 0.16 | 0.20 | 0.17 | 041 | -0.04 | 0.81
5 347 | 103 | 018 ] 0.02 | 002 ] 0.00] 0.05] 0.15] 020 015 | 0.19 | 057 | L1l
10 | 1064 | 7.39 | 040 | -0.07 | 001 ] 0.00 | 007 | 015 | 017 | 029 | 0.29 | 044 | 0.56
20 825 | 1.26 | -0.12 | -0.05 | 0.09 | 0.14 | 0.20 | 0.32 | 0.06 | 3.28 | 1.29
30 263 | 004 | 007 | 009 | 013 | 022 | 033 | 219 | 1.24 | 1.49
50 049 | -0.07 | 008 | 0.14 | 0.0 | 1.10 | 0.17 | 1.95 | 1.21
100 168 | 018 | 0.05 | 0.4 | 027 | 057 | 078 | 029 | 0.81




Table 4: Fraction up/(up+down) moves (% ) for stocks in SXG

k-day trend (% /day)

k | -5.00 | -4.00 | -3.00 | -2.00 | -1.00 | -0.50 | 0.00 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
1 560 | 506 | 49.6 | 485 | 472 | 474 | 492 | 513 | 533 | 549 | 558 | 54.9 | 548
2 581 | 52.3 | 530 | 495 | 477 | 47.8 | 495 | 518 | 545 | 545 | 52.9 | 51.9 | 485
3 623 | 520 | 495 | 535 | 488 | 47.3 | 49.8 | 52.7 | 53.6 | 53.6 | 51.5 | 42.3 | 47.5
1 645 | 560 | 490 | 50.6 | 501 | 47.9 | 50.0 | 52.9 | 540 | 5.1 | 49.4 | 43.2 | 50.0
5 606 | 600 | 507 | 501 | 501 | 489 | 502 | 52.9 | 527 | 50.1 | 483 | 491 | 533
10 | 1000 | 733 | 527 | 508 | 494 | 489 | 508 | 52.9 | 504 | 51.8 | 502 | 475 | 435
20 778 | 563 | 47.3 | 477 | 514 | 52.3 | 50.6 | 49.0 | 49.1 | 500 | 556
30 56.1 | 480 | 475 | 515 | 51.7 | 502 | 50.7 | 558 | 61.1 | 54.8
50 524 | 465 | 512 | 518 | 488 | 544 | 52.8 | 57.1 | 50.0
100 714 | 495 | 505 | 51.6 | 495 | 548 | 64.7 | 50.0 | 53.5

Table 5: Number of points (SXG)
k-day trend (%/day)

kK | -5.00 | -4.00 | -3.00 | -2.00 | -1.00 | -0.50 | 0.00 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00

1 1380 | 1167 | 2521 | 6358 | 8604 | 7433 | 12264 | 7209 | 8422 | 6390 | 3028 | 1500 | 1800

2 188 | 557 | 1533 | 4601 | 9224 | 10680 | 12654 | 10104 | 9252 | 5371 | 2001 | 754 | 794

3 242 | 341 | 969 | 3479 | 8710 | 11691 | 15181 | 11290 | 9177 | 4551 | 1410 | 477 | 455

1 115 | 212 | 707 | 2680 | 8144 | 12363 | 17058 | 11997 | 9215 | 3850 | 949 | 318 | 307

5 71 | 132 | 546 | 2136 | 7398 | 13075 | 18264 | 12742 | 9129 | 3211 | 705 | 244 | 214

10 3 30 | 161 | 935 | 4706 | 13522 | 23610 | 15499 | 7167 | 1543 | 286 | 93 | 79

20 0 0 9 | 347 | 2500 | 12130 | 29636 | 17267 | 4434 | 739 | 123 | 18 | 27

30 0 0 0 70 | 1792 | 10656 | 33498 | 17163 | 3156 | 473 | 48| 18 | 32

50 0 0 0 0 | 740 | 8630 | 38854 | 15791 | 1961 | 216 | 41 | 24 | 42

100 0 0 0 0 7 | 5616 | 45695 | 12134 | 848 | 258 | 40 5| 48

Table 6: Mean 5-step returns for 33 stocks in SXG
k-day trend (% /day)

k | -5.00 | -4.00 | -3.00 | -2.00 | -1.00 | -0.50 | 0.00 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
1 118 | 008 ] 045 ] 021 ] 023 016 ] 033 ] 043 | 0.65 | 067 | 0.66 | 0.74 | 1.20
2 194 | 079 ] 070 ] 031 ] 025 | 024 ] 028 ] 051 ] 0.62] 069 ] 045 | 059 | 1.35
3 277 | 079 | 090 ] 065 | 032 ] 017 ] 0.30 | 053 | 0.61 | 0.65 | 0.61 | 030 | 151
1 139 | 1.06 | 152 | 054 ] 030 ] 0.8 ] 036 ] 053] 067 | 050 | 1.13 | 041 | 2.52
5 630 | 186 | 1.12| 035 | 030 ] 024 ] 0.36 | 057 | 0.62 | 057 | 050 | 1.60 | 2.11
10 984 | 509 | 148 | 013 | 024 ] 017 ] 041 | 059 | 0.75 | 0.73 | 1.05 | 051 | 2.69
20 16.02 | 3.18 | -0.21 | -0.07 | 044 | 0.66 | 0.79 | 1.30 | -1.05 | 2.80 | 847
30 6.04 | -0.06 | -0.19 | 048 | 0.61 | 0.85 | 1.67 | 6.70 | -1.06 | 6.76
50 181 | 023 ] 039 | 060 | 076 | 3.10 | 4.13 | 9.78 | 4.2
100 7.96 | 1.01 | 0.26 | 051 | 1.36 | 3.25 | 1.91 | 4.36 | 3.81

Table 7: Fraction up/(up+down) moves (% ) for stocks in SXG
k-day trend (% /day)
K | -5.00 | -4.00 | -3.00 | -2.00 | -1.00 | -0.50 | 0.00 | 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
1 571 | 513 | 514 | 509 | 505 | 500 | 52.1 | 52.7 | 546 | 54.1 | 53.6 | 52.4 | 51.3
2 561 | 552 | 558 | 52.0 | 506 | 512 | 51.6 | 53.0 | 541 | 541 | 505 | 503 | 49.3
3 570 | 550 | 558 | 554 | 517 | 502 | 52.0 | 53.3 | 53.7 | 53.2 | 499 | 48.6 | 46.0

1 632 | 561 | 592 | 551 | 522 | 506 | 52.2 | 528 | 542 | 50.7 | 516 | 436 | 49.7
5 652 | 573 | 573 | 535 | 523 | 512 | 52.0 | 534 | 535 | 50.7 | 48.1 | 52.2 | 464
10 667 | 621 | 516 | 500 | 51.7 | 49.9 | 52.9 | 53.7 | 527 | 513 | 504 | 51.2 | 41.3
20 100.0 | 601 | 47.2 | 484 | 53.3 | 543 | 50.5 | 50.7 | 40.2 | 50.0 | 56.0
30 69.1 | 467 | 478 | 535 | 531 | 51.6 | 52.2 | 630 | 41.2 | 62.1
50 55.3 | 46.1 | 52.8 | 53.5 | 48.0 | 60.0 | 634 | 636 | 641
100 833 | 510 | 51.7 | 52.9 | 547 | 64.8 | 61.1 | 80.0 | 636




shows 1-step profits versus 1-step trends for SXG and SXBIG respectively. Figure 2
shows 5-step profit versus k-step trends.
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Figure 1: 1-step profits versus 1-step returns for stocks SXG and SXBIG. Each curve
represents one year between 1987 and 1996.
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Figure 2: 5-step profits versus 5-step returns for stocks SXG and SXBIG. Each curve
represents one year between 1987 and 1996.

Let us draw some conclusions from these statistical examinations of trends.

eThe massive better part of returns falls into a region, where it is very difficult to claim
any correlation between past and future price changes. The regions, where any corre-
lation may be significant, are the sparsely populated extreme ones. Looking at Table
3 we observe that a 5% decrease in price since four days ago (k = 4), stands a 64.5%
probability of showing an increase by tomorrow. However, these cases constitute only a
small percentage of the total number of investigated returns.

eThe cases that show large increases since yesterday call for a more complex interpretation.
Looking at Figure 1, a difference between the two investigated sets of stock becomes
apparent. The returns for the 210 stocks in SXBIG show a significant negative correlation
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to both large positive and large negative returns; whereas the returns for the 33 major
stocks in SXG show a positive correlation to large positive returns. This is in accordance
with the observed difference in the first lag of the AC'F, reported in [1].

4 k-nearest neighbor techniques

The method of k-nearest-neighbors is a general classification technique that makes min-
imal assumptions on the underlying function to be modeled. To classify a point p one
simply finds the set of k£ closest points from the example set. In the case of time series
the input points p; are typically formed by picking consecutive values from the time series
y; pr = (y(t — 1),y(t — 2)...,y(t — d)). In the general case, the input points p; can be
any type of feature vector that is believed to have predictive power. We have conducted
extensive tests with feature vectors consisting of stock trends 7}, according to definition
3. For example p, = (T3(t),T5(t), T10(t), T20(t)). In stock prediction, the classification
Ci(t) for the points is typically then sign of the k-day profit Py (¢):

+1  if y(t + k) > y(t)
Ce(t) =< =1 ify(t+k)<y(t) ;. (5)
0 ify(t+k)=uyt)

The closeness is normally computed as the Euclidean distance in the input space. The
mean or median classification of the k nearest points are then taken as estimate of the
classification for point p . In this way we can produce classifications immediately, given a
set of examples. A lot of variants of the basic algorithm exist. A discussion of weighting
schemes can be found in Robinson [6]. For an early work on time series applications and
proofs of convergence, see e.g.Yakowitz [7].

Even if the k-nearest-neighbors algorithm is computationally expensive in the application
phase, it is very attractive in initial data analysis where questions about predictability
and input variable selection are the important issues. It can be argued that failure in
applying the k-nearest-neighbors algorithm to a specific problem implies that the problem
can not be solved with any inductive method. The sole assumption made in the method
is that close inputs are mapped to close outputs. It’s hard to see how a sufficient amount
of data from any continuous function should fail such a test. The conclusion would be
in such a case that a functional relation between the selected inputs and the output
can not be shown, given the available data without imposing further restrictions on the
functional relationship. However, other methods using stronger models, may be more
successful then the totally non biased k-nearest-neighbors algorithm. One must also
realize that k-nearest neighbor in a normal implementation is a global method. In the
search for nearest neighbors one either scans the entire training set or all previous points
in the training set. The latter method avoids peeping into the future when predicting a
point classification. In either case, the neighbors are picked from a time period that may
very well be too long if the underlying function is non-stationary. Weighting schemes or
windowing techniques may be useful in such cases.
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4.1 Extensions of the algorithm

A prominent property of stock-price time series is the high level of noise present. Thus
there is reason to seriously doubt the possibility of predicting future values, given only
past values of the time series. What we can hope for is that the time series sometimes is
predictable and that in these situations it is possible to create a model that predicts the
future better than mere chance. This approach is not acceptable in a general prediction
situation, but is perfectly acceptable in the case of stock prediction. The performance
of a trading system is normally calculated as the success rate or generated profit in
the situations where buy or sell actions are suggested by the algorithm. The overall
prediction accuracy is normally of minor interest. This is a natural fact for traders and
is implemented in the huge variety of technical indicators that issue buy and sell signals
when certain conditions are fulfilled. A method where a neural network is combined with
a test for statistical dependence in the time series can be found in [5]. We propose below
an extension of the k-nearest-neighbor algorithm. Given the time series {y(t),t = 1,7}
the algorithm for prediction of the sign of P, (7") at time 7' looks as follows:

1.Generate patterns {p(t),t =1,...,7 — h}. In the presented examples the patterns are
defined as p(t) = (T5(t), T (t)). Each pattern p(t) is associated with a target value Py (t)
as defined in 4. Also generate p(T') with an unknown target value P, (7T) to be predicted.

2.Compute the Euclidean distance between p(7") and each of the pattern in {p(¢),t = 1,7 — h}.
Select the k nearest patterns and denote the set of associated target values ®. Compute
the homogeneity H of ¢ as:

max(|[{z|z € &,z > 0}]|, [[{z]x € B,z < O}]])

H:
{zlz € @,z > 0} + |[{z]z € ,2 < 0}]])

(6)

The norm ||.|| denotes the number of elements in the argument set. If the majority of
elements in ® is greater than zero, H is the fraction of elements greater than zero. If
the majority of elements in ® is less than zero, H is the fraction of elements less than
zero. H is used as a measure of the degree of randomness in the target values ®. A high
value on H is interpreted as a high possibility to predict P, (7") using a k-nearest-neighbor
method.

3.if H > Hy,i then the selected neighborhood around p(T) is regarded as non-random and
the mean value of targets in H is used as predicted target value for p(T'). If H < Hyjni
then the neighborhood around p(T') is regarded as random and a predicted target value
for p(T') is not evaluated.

Remark : Note that the search for nearest neighbors in step 2 must not involve any data
from the set ¢t > T" since this data is highly correlated to the unknown value P, (7). That
is the reason why the nearest neighbors are searched up to ¢ = T — h and no further.
Using target values Py (t) where ¢t > T'— h would involve peeping into the future beyond
time T" which is the point where the prediction is calculated. Furthermore note that the
value on Hy,,;; affects the number of situations where predictions are produced by the
algorithm. The statistical significance of the performance will therefor be reduced if too
high a value for Hj;,;; is chosen. In our tests, values between 0.6 and 0.9 have been used.
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5 Generating Test data

Testing algorithms for stock data predictions is a difficult problem that requires extreme
cautions. The risk of interpreting random fluctuations as results of a successful prediction
algorithm is always present and sometimes surprisingly high ([2]). Therefore, to properly
evaluate the developed algorithm described above we construct an artificial stock time
series. The purpose of the algorithm is to identify locations in the input space where a
correlation between input patterns and output Py (t) exists. In all the examples in this
report the prediction horizon h has the value 1. Since we use patterns with trend values
such as p(t) = (T5(t), Too(t)) as inputs, we introduce locations with correlation in a real
stock index time series y(t) by the following algorithm:

1.Compute the time series T5(t), Too(t) and Py (t) as defined in definition 3 and 4 using real
stock data for t =1,.., N.

2.Repeat fort=1to N

3. if T5(t) > 2 and T5(t) <4 and Ty(t) > 0 and Th(t) < 5 then
( force a 1% increase in stock price after a positive 5-day trend
and positive 20-day trend : )
with probability 0.75 set P, (t) < 1

4. if T5(t) > —4 and T5(t) < —2 and Ty(t) > —5 and Ty(t) < 0 then
( force a 1% decrease in stock price after a negative 5-day trend
and negative 20-day trend : )
with probability 0.75 set P (t) < —1

S.next t

In this way the original time series obtains a correlation between the inputs and the
output injected in two well defined regions of the input space. It should be mentioned
that the introduced correlation is arbitrarily chosen just for illustration of the working
of the algorithm. The regions in a real application are automatically detected by the
algorithm. The deterministic points are few compared to the total number of generated
points. For a 10 year long time series (2500 data points) only 5% are typically generated
in each of the two correlated regions in the input space. Such low signal to noise ratios
is normally difficult to handle with methods such as global regression analysis.

6 Results

In the two diagrams in figure 3 the relation between the inputs 75(t), Tao(t) and the
sign of the output P (¢) is illustrated. The top diagram shows the original data from the
German stock index DAX. The lower diagram has correlation injected as described in the
previous section. The input region {2 < T5 <4 ,0 < Tyy < 5} was set to positive output
with a probability of 75% and the input region {—4 < Ty < —2 , =5 < Tyy < 0} was set

9



1 day returns 940101-961231 >0:dot <O:cross

10

Loxe %o X
e
3 X%
S TS
Moo Sl X y)ﬁw;{“'
R
x,.i,éﬁ ek [%
X "';gx*)( X% X Xx
Yo x| -
s x . « X X x Txo XX X
- 3 X <, X g
- = = XX X 2 X X x

x XX

20 day trend
Xx

-10 S R

-15
-6 -4 -2 0 2 4 6 8
5 day trend
1 day returns with injected correlation 940101-961231 >0:cross <0:dot
10
x -
x,(xf‘“ % ¢ :X
5 -
TR
< % o Kxox
2 A R X
o N . % boc Xxx
= % X
z k . L SR )
o 5 % = = -
N x
-10
-15
-6 4 2 0 2 4 6 8

5 day trend

Figure 3: 1-day returns as a function of 5- and 20-day trends for DAX stock index.

to negative output with a probability of 75%. The task of the prediction algorithm will
be to identify these regions and assign them to the correct class by the nearest-neighbor
principle. As one can see in the bottom diagram, the correlation is not obvious even in
this artificial case with extremely high correlation introduced in the data. In the case of
the unmodified DAX data the task will be even harder indeed, since no obvious regions
with correlation can be seen in the top diagram. Figure 5 shows the situation when all the
artificial data points have been run through the extended k-nearest-neighbor algorithm.
The value of Hy,ie was set to 0.8 and the value of k, number of selected nearest neighbors,
was set to 10. The figure denotes points where the homogeneity was greater than 0.8 by
crosses and the other points by dots. As can be seen in the diagram, the regions where
correlation was injected are clearly identified by the homogeneity measure H. This also
shows up in the very high performance presented in table 9. Figure 4 shows a similar
diagram for the non-modified stock index DAX. Any clear regions with high homogeneity
can be hardly identified.

6.1 Prediction Performance

Evaluation of prediction performance is an important, difficult and often overlooked stage
in the development of prediction algorithms for financial data. Since we are looking for
very weak correlations, we always run a big risk of interpreting random fluctuations in
data as regularities with predictive power. The problem is further discussed for example
in [4] and [2]. In table 9 with performance measures for the predictions, we also present
values for two bench marks: Previous-Increase Model and the e-increase Model. The
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Figure 4: Homogeneity for DAX index. k=10

former is the naive prediction assuming that today’s return will be the same as yester-
day’s. The e-increase Model assumes that today’s stock price will increase by a very small
amount € since yesterday. The reason why we don’t use the usual zero-change model in-
stead of the € is that we want to compare hit rate performance to this bench mark model.
Since the hit rate is the ability to predict the sign of the returns, we stipulate that the
bench mark predicts an € increase instead of zero. The e-increase Model is also used
for calculation of the Theil coefficient which is the quotient between the RMSE for the
Modified k-nearest-neighbor algorithm and the e-increase Model. The investigated time
period ranges from the beginning of 1987 until the end of 1996. The limit of selection
of points, Hy.i; , is set to 0.80 for all examples in this report. The parameter k , the
number of selected nearest neighbors, is set to 10. The DAX column presents results
of the real DAX index, whereas Correlated DAX presents results of the time series
with injected correlation. As we can see from the first three lines, the performance for
Correlated DAX is excellent. The hit rate 75.26% clearly outperforms both of the
bench marks! The Theil coefficient is also below 1, indicating a true predictive power
beyond that of the e-increase Model. The algorithm produces 197 predictions, i.e. 10%
of the total number. This is approximately the number of points affected by the injection
of correlation described in section 5. The hit rate 75.26% also conforms nicely to the
75% randomness in the algorithm. The results for the real DAX index data appear to
indicate predictability even if the performance is clearly much lower than in the pre-
vious column with artificial data. However, one must bear in mind that the statistics
are based on 45 selected data points only. The risk of data snooping is huge. The last
three columns present prediction results for three other international stock indexes; the
Swedish Generalindex, The American Dow Jones and the English FTSE 100. The results
are somewhat contradicting and a statistically significant conclusion can hardly be made
based on these tests only.
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Table 8: Number of points (SXG)

k-day trend (% /day)
k -5.00 | -4.00 3.00 | -2.00 | -1.00 | -0.50 0.00 0.50 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00
1 1366 1160 2531 6337 8584 7410 | 12257 7179 | 8381 | 6361 | 3003 | 1490 | 1786
2 482 553 1516 4595 9204 | 10641 | 12617 | 10057 | 9215 | 5341 | 1994 748 791
3 235 335 949 3472 8679 | 11646 | 15173 | 11263 | 9142 | 4517 | 1395 468 457
4 112 206 700 2672 8113 | 12337 | 17016 | 11976 | 9159 | 3816 933 316 309
5 71 129 540 2135 7363 | 13042 | 18246 | 12717 | 9087 | 3180 704 244 207
10 3 30 160 924 4686 | 13447 | 23564 | 15497 | 7132 | 1535 283 90 80
20 0 0 8 349 2485 | 12132 | 29546 | 17183 | 4427 732 123 17 27
30 0 0 0 70 1787 | 10646 | 33412 | 17076 | 3144 467 48 17 32
50 0 0 0 0 735 8605 | 38753 | 15722 | 1950 214 43 24 42
100 0 0 0 0 7 5589 | 45585 | 12088 848 259 40 5 48

Table 9: Prediction performance for the period 1987-1996

| Modified k-nearest neighbor | Corr. DAX ‘ DAX ‘ Generalindex | Dow Jones | FTSE ‘
Hit rate relative Previous-Increase | 1.40 1.14 | 0.92 1.02 1.02
Hit rate relative e-increase 1.42 1.10 | 0.98 0.93 0.96
Theil coefficient 0.93 0.78 | 1.00 0.86 1.13
RMSE 1.03 0.86 | 1.15 0.96 0.91
Hit rate (%) 75.26 57.14 | 52.85 50.46 50.68
Number of points 197 45 125 123 74
Mean(|predictions|) 0.79 0.52 | 0.58 0.54 0.49
Mean homogenity H 66.03 62.26 | 65.82 63.46 64.11
Mean(|returns|) 0.79 0.76 | 0.77 0.64 0.61

| Previous-Increase Model | ‘ ‘ | | ‘
RMSE 1.54 1.58 | 1.49 1.64 1.10
Hit rate (%) 53.80 49.95 | 57.72 49.63 49.86
Number of points 1930 1930 | 2317 2218 1848

| e-increase Model | ‘ ‘ | | ‘
RMSE 1.10 1.10 | 1.15 1.12 0.81
Hit rate (%) 53.05 52.16 | 54.08 54.25 52.68
Number of points 1930 1930 | 2317 2218 1848

| Standard k-nearest neighbor | ‘ ‘ | | ‘
Hit rate relative Previous-Increase | 1.04 1.01 | 0.94 1.02 1.02
Hit rate relative e-increase 1.05 0.97 | 1.00 0.93 0.96
Theil coeflicient 1.02 1.05 | 1.04 1.08 1.06
RMSE 1.13 1.15 | 1.19 1.21 0.85
Hit rate (%) 55.77 50.34 | 54.33 50.71 50.63
Number of points 1929 1929 | 2316 2217 1847
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Figure 5: Homogeneity for correlated DAX. k=10

An important parameter to alter in the k-nearest-neighbor algorithm is the value on k.
The table 9 shows results of £k = 10. A thorough test with varying values on k£ has been
conducted for the DAX and for the other reported stock indexes. The relative hit rate
varies but cannot be shown to significantly exceed 1 for any value on k.

7 Conclusions and further development

The developed algorithm works well on the synthetic data with correlation injected and
also finds predictable patterns in the real stock indexes. However, the results are some-
what weak and further tests have to be conducted in order to obtain statistically signif-
icant results. For future work we will investigate higher dimensional patterns of trend
variables, such as p(t) = (T1(t), T(t), T5(t), To0(t)), and also combine them with normal-
ized volume values to test the hypothesis (see e.g. [3]) that patterns in traded volume bear
relevance to predictions of future returns. The algorithm can also be further developed
with more sophisticated decision criteria for predictability. The size of the neighborhood
could be determined in a more intelligent way than the fixed value of k£ neighbors used by
the basic k-nearest-neighbor algorithm. Since the input space with trend patterns such as
p(t) = (Tx(t), Too(t)) is not populated in a homogenious fashion, the k nearest neighbors
may be picked in some areas of the input space from a very small volume whereas in
other areas, the k nearest neighbors have to be picked from a large volume, where the
input space is sparsely populated. The suggested algorithm has natural application in
areas other than stock predictions. It addresses all situations where predictability can
only be expected to apply in small and indeterminate regions of the input space.
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