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1. INTRODUCTION

Predicting stock prices is generally accepted to be a very diÆcult task. The

stock prices behave very much like a random-walk process, both when investigating

them statistically and when looking at the results from properly evaluated attempts

to create prediction algorithms. This paper shows various ways to de�ne the pre-

diction problem, introduce performance metrics and suggest suitable benchmarks

for performance evaluation. At �rst we take a look at how the near random-walk

behavior has direct implications on the prediction and evaluation tasks.

2. PREDICTING AN ALMOST-RANDOM-WALK TIME SERIES

The prediction task is impossible, if the time series y(t) that we attempt to

predict is an absolute random walk. In such a case any algorithm for prediction of

the sign of �y(t) produces a 50% hit rate in the long run. The best we can hope for

is that y(t) has a \near to" random-walk behavior, but with limited predictability.

Degrees of accuracy of 54% hit rate in the predictions are often reported as satisfying
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results for stock predictions. See e.g. Tsibouris and Zeidenberg (1995) or Baestaens,

van den Bergh, Vaudrey (1996).

The purpose of evaluating a prediction algorithm is to produce an answer \Yes"

or \No" as to whether the algorithm really has predictive powers. The evaluation

task is directly a�ected by the relatively low degree of accuracy that can be ex-

pected, even from a \successful" model. Some simple statistical exercises show the

situations that may arise when trying to evaluate a prediction algorithm.

Scenario 1:

Assume that we are doing one-day predictions of a stock time series consisting

of equal numbers of daily moves up and down during one year of 250 trading days.

This is a realistic assumption. The average up=(up+down) ratios for a large number

of Swedish stocks is in Hellstr�om (1998b) shown to be between 50% and 51%.

A totally random prediction algorithm is applied for each day. The algorithm

simply produces a \1" (predicted move up in stock price) and a \0"(otherwise)

totally at random. The probability that x predictions are correct is given by:

P (hit rate = x) =

 
250

x

!
0:5x � 0:5250�x: (1)

This means that P (hit rate � x) follows the binomial distribution

binom(250; 0:5) and therefore

P (hit rate > x) = 1� P (hit rate � x) = 1� binom cdf(x; 250; 0:5): (2)

Here binom cdf denotes the binomial cumulative distribution function. Insertion

of x = 0:54 � 250 = 135 yields P (hit rate > 135) = 0:092 as the probability that

the random prediction algorithm gives a hit rate higher than 54%. Thus we are

running a 9% risk of classifying the random algorithm as a useful predictive model.

This corresponds to what statisticians call a \Type II error", i.e. accepting a false

hypothesis. Lowering the required hit rate limit to 52% hit rate would increase the

risk for a Type II error to 1�binom cdf(0:52 � 250; 250; 0:5) = 24%. Not a very

advisable thing to do, apparently.

Scenario 2:

Assume that we are evaluating technical indicators that produce sell and buy

signals once a week on average. We have selected one hundred di�erent indicators

and want to conduct a proper test, and decide if any of these indicators has predictive

powers, which we de�ne to be a hit rate of > 55%. For a test period of 10 years

we get 500 predictions from each indicator. They are compared to the actual stock
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chart, and then hit rates are computed for the indicators. What is the probability

that a random indicator would slip through this test?

As before, we can compute the probability that a purely random indicator pro-

duces x or fewer correct signals (hits) when applied to a stock: P (hit rate � x)

follows the binomial distribution binom(500; 0:5) and thus

P (hit rate > x) = 1� P (hit rate � x) = 1� binom cdf(x; 500; 0:5): (3)

We compute P (hit rate > 0:55 � 500) = 0:0112 as the probability that a random

indicator gives a hit rate higher than 55%. But since we started o� with 100 di�er-

ent indicators, we must calculate the probability that we falsely accept ANY of the

100 random indicators. This risk is 1� (1� 0:0112)100, which calculates to 68%. It

should be noticed, that there are many hundreds of suggested indicators and rules,

claimed to really predict future stock prices. In the light of what we have just seen,

the mere selection of one of these indicators, based on its past performance, can be

statistically totally unacceptable.

Why Do We Get these Results

The primary reason for obtaining results like the ones shown above, is that the

limits set for accepted prediction hit rates are too low. Increasing them to, say 60%

would provide considerably safer results. However, then the problem would be to

�nd prediction algorithms that really produce such high hit rates for the required

test period. The reason that so many papers present hit rates in the region below

55% may be simply that the prediction task is impossible (at least with the reported

method,) and the only way to obtain results that seem to be signi�cant is to keep

the required hit rate on a level where even a random predictor would produce them.

Scenario 2 above also pinpoints another important issue to be borne in mind,

especially when selecting the best performing algorithm or technical indicator. The

dramatic increase to 68% in Scenario 2, is due to the fact that the selection is done

in sample. Given enough di�erent indicators, it would be possible to �nd one with

any hit rate. It corresponds to over�tting a powerful model to a set of data points.

The conclusion is that a test set of data points must be kept untouched during the

entire parameter estimation and model selection process. Although this may sound

trivial, it is in fact quite diÆcult to ful�ll completely. Model selection is in e�ect

even after the test results have been published, since good prediction results proba-

bly get more attention than bad ones. For a thorough analysis of related problems

refer to Lo (1996).
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3. AVAILABLE DATA

A prediction algorithm uses a set of known entities to produce a prediction of

future values for the same or other entities. In the case of stock predictions, the

entities can be divided into two categories: pure technical data and fundamental

data.

Technical Data

The daily available data for each stock is represented in the following 4 time

series, with data for each day of trading (intra-day data is often also available but

is seldom used)1:

Close The price of the last performed trade during the day

High Highest traded price during the day

Low Lowest traded price during the day

V olume The total number of traded stocks during the day

Fundamental Data

Apart from the daily sampled data described above, there is a lot of information

concerning the activities and �nancial situation of each company. Most companies

quoted at a stock market are analyzed on a regular basis by the professional market

analysts at the �nancial institutes. The analyses are often presented as numerical

items, which are supposed to hint at the \true" value of the company's stock. The

buy and sell recommendations are then formed, either intuitively or with some sort

of mathematical analysis of these items.

4. PERFORMANCE EVALUATION

A way to measure the performance of a prediction algorithm is needed in two

phases of the development cycle of the prediction system. First, during the modeling

phase, where a model is selected or where optimal settings on unknown parameters

in the model or in the trading rules have to be decided upon. Secondly, when the

complete algorithm is put to test on historical data, to see if it serves the original

goal of the development project.

Evaluation of prediction performance is an important, diÆcult, and often over-

looked stage in the development of �nancial prediction algorithms. In the case of

an algorithm based on trading rules, one problem is the comparatively low number

of produced trades, which constitutes a somewhat weak statistical basis for our per-

formance measures. Apart from this, we have the problem with overtraining and

1Open, the price for the �rst performed trade for the day is sometimes also available
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selection bias. By tuning the parameters in the algorithm to maximize the perfor-

mance on historical data, we always run a risk of �tting the algorithm too closely to

the data set. Even for a rather \small" model (i.e. one with relatively few degrees

of freedom), the problem must not be overlooked. The near-random-walk behavior

in the data, combined with the comparatively low required prediction accuracy (a

little higher than chance is normally regarded as suÆcient,) make the situation very

delicate. Illustrative examples were shown in section 2.

A general problem with �nancial predictions is the non-stationary nature of the

process, i.e. the performance of a trading strategy varies over time, due to changing

global conditions a�ecting the market as a whole. One strategy may work �ne in a

trending market, while another works best in a non-trending market. Even if this

should really be taken care of by the modeling phase, it often causes problems in

the �nal evaluation made on historical data.

From all this it should be clear that performance computation and evaluation

are vital ingredients in a scienti�c approach to stock prediction. The evaluation

part de�nes a number of performance metrics and suitable benchmarks to which the

computed metrics can be compared in order to judge the prediction algorithm. Two

properties are considered particularly important for metrics to be used: relevance

to the prediction task (i.e. measure what we try to model) and the availability of

a benchmark. The latter is extremely important, since we are dealing with near-

random-walk processes, in which for a prediction system to be successful, it barely

has to outperform pure chance. Furthermore, whether the performance is good

or bad depends on the alternatives. Even a prediction algorithm that loses money

sometimes, may turn out to be successful when compared to some of the alternatives.

We now gradually become more and more speci�c as we categorize prediction

algorithms, performance metrics and benchmarks. Prediction algorithms for stock

prices can be categorized in a number of ways. One categorization focuses on the

way the points to predict are selected. Two broad classes can be identi�ed: The

Time Series Approach and The Trading Rule Approach. The methods, suitable per-

formance metrics and benchmarks are described in separate sections below.

5. THE TIME SERIES APPROACH

The traditional way to de�ne a stock prediction problem is to form a time series

y(t) from the stock prices Close. The most common way is to use the h-day returns

Rh(t) de�ned as

Rh(t) =
Close(t)� Close(t� h)

Close(t� h)
: (4)
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In this context the time series Rh is denoted y. y is furthermore assumed to be a

function g of the k previous values in the same time series. To predict the return h

days in the future, we thus assert

y(t+ h) = g(y(t); y(t� 1); :::; y(t� k)): (5)

The task for the learning or modeling process is to �nd the function g that best

approximates a given set of measured data. The unknown function g can be de-

�ned in many ways, e.g. as a linear autoregressive (AR) model or a feed-forward

neural network. The unknown parameters in the model are normally computed by

a learning (identi�cation) algorithm that minimizes the root of the mean squared

prediction error

RMSE =

vuut 1

N

NX
t=1

(g(t)� y(t+ h))2: (6)

It is most common to let the minimized RMSE measure (6) be the end point in the

prediction task. However, in order to utilize the predictions, a decision-taking rule

has to be created. A simple rule when predicting returns is:

D(t) =

8><
>:

Buy : if g(t) > �

Sell : if g(t) < ��

Do nothing : if g(t) = 0

(7)

where � and � are threshold parameters for buy and sell actions, depending on

the predicted change in the stock price (by de�ning a decision rule such as (7), the

Times Series oriented algorithm is transformed into a Trading Rule which is further

described in section 6).

5.1 Performance metrics

Predictions according to the Time Series Approach are normally evaluated at a

�xed horizon but, as was previously described (7), can be transformed into a trading

rule. The metrics for testing algorithms at a �xed horizon work by comparing the

predicted values to the actual outcome h days ahead. The predictions of stock prices

for time t are expressed below by the time series fĈlose(t); t = h + 1; :::; Ng. The

actual prices are denoted by the time series fClose(t); t = 1; :::; Ng. The predictions

of the h-day return at time t are denoted by the time series fR̂(t); t = h+1; :::; Ng.

The actual returns are denoted by the time series fR(t); t = h+ 1; :::; Ng and were

de�ned in (4). We assume an h step horizon in the predictions. I.e.: The predictions

Ĉlose(t) and R̂(t) are produced at time t� h.
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Refenes (1995) provides a survey of a large number of measures of performance

for �nancial predictions. Below we present the ones we have found essential, as well

as some new metrics believed to be necessary.

RMSE

The RMSE for the predicted stock prices Close is de�ned as:

RMSE =

vuut 1

N

NX
t=h+1

(Close(t)� Ĉlose(t))2: (8)

The RMSE should be obviously as low as possible for a good prediction algo-

rithm.

Hit Rate HR

The hit rate of a return predictor indicates how often the sign of the return

is correctly predicted. It is computed as the ratio between the number of correct

non-zero predictions R̂(t) and the total number of non-zero moves in the stock time

series. I.e.:

HR =

����nR(t)R̂(t) > 0
o
N

h+1

��������nR(t)R̂(t) 6= 0
o
N

h+1

����
: (9)

The norm of the set in the de�nition is simply the number of elements in the set.

The reason for avoiding both zero predictions and zero returns in the computation

of the hit rate is the following: if zeros were included, we would have to decide

whether the following �ve combinations should be regarded as \hits" or not:

R̂(t) = 0 R(t) > 0

R̂(t) = 0 R(t) < 0

R̂(t) = 0 R(t) = 0

R̂(t) > 0 R(t) = 0

R̂(t) < 0 R(t) = 0

Regardless of the choice made for the classi�cation of these situations, the result

is invariably an asymmetric treatment of the positive and negative returns. Since

the zero-valued one-day returns can account for more than 20% of the samples in

typical stock data, they would result in \Up fractions" arbitrarily either greater or

less than 50%. Such a result would conceal the random-walk nature of the time

series. By removing all zeros from both predictions and outcome, \Up fractions"
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very close to 50% are achieved. Therefore, in the case of one-day returns (i.e. h = 1),

a hit rate HR, signi�cantly greater than 0:5, can be regarded as true predictions of

the sign of the returns. Refer to Hellstr�om (1998b) for more details.

There are two useful extensions to the general hit rate HR de�ned above. It is

often interesting to distinguish the ability to predict positive and negative returns

R respectively. The measures HR+ and HR� capture this. We de�ne

HR+ =

����nR(t) > 0 AND R̂(t) > 0
o
N

h+1

��������nR̂(t) > 0
o
N

h+1

����
(10)

and

HR� =

����nR(t) < 0 AND R̂(t) < 0
o
N

h+1

��������nR̂(t) < 0
o
N

h+1

����
: (11)

By demanding both HR+ > 0:5 and HR� > 0:5 the misleading e�ects of long

time trends in data are illuminated.

Net Pro�t

The ultimate measure of success for a prediction algorithm is its ability to pro-

duce pro�t if applied to real trading. This pro�t can be estimated for a Time Series

Approach method, by assuming a trade at every time step in the direction of the

predicted change. The net pro�t Pn for a time series prediction is computed as:

Pn =
NX

t=h+1

(Close(t)� Close(t� h)) � sign(Ĉlose(t)� Close(t� h)): (12)

5.2. Benchmarks

A benchmark should provide an alternative and a standardized way to produce

predictions. The algorithm at test is then compared to the alternative in order to

evaluate the performance. In this section benchmarks for predictions according to

the Time Series Approach are presented. The " � increase prediction and Naive

Prediction of Returns are introduced as extensions to the well-known Naive Predic-

tion of Stock Prices. The measures Tr, HR�, HRN , and Pr are suggested as testing

metrics for performance evaluation relative to these benchmarks.
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Naive Prediction of Stock Prices

The naive price predictor asserts that the best estimate Ĉlose(t + h) of the

future price Close(t + h) is today's price Close(t). This is a direct consequence of

the random-walk hypothesis. It is always a good idea to measure the quality of a

predictor in relation to this naive predictor. This is done in the Theil coeÆcient

of inequality Tc, de�ned as the quotient between the RMSE for the investigated

predictor and the RMSE for the naive price predictor . I.e.:

Tc =
RMSEy

RMSEyN

=

qP
N

t=h+1(Close(t)� Ĉlose(t))2qP
N

t=h+1(Close(t)� Close(t� h))2
: (13)

The Theil coeÆcient is often referred to as the information coeÆcient or the t-

test. For Tc > 1 the predictor is worse than the naive price predictor, while Tc < 1

implies that the predictor is making better predictions.

"� increase Prediction

The � � increase predictor asserts that the best estimate of the future price

Close(t + h) is today's price Close(t) + ". The purpose of adding a small positive

number " to today's price is simply to enable computation of the hit rate for this

predictor. The hit rate of this predictor provides a measure for the overall positive

trend that \normally" makes an increase in price more likely than a decrease. The

hit rate for the �� increase predictor is de�ned as:

H� =

���fRh(t) > 0g
N

h+1

������fRh(t) 6= 0g
N

h+1

��� : (14)

The measure HR� is de�ned as the ratio between the predictor's hit rate HR (as

de�ned in (9)) and H�. I.e.:

HR� =
HR

H�

: (15)

HR� compares the hit rate of the predictor to that of the �� increase predictor.

For HR� < 1 the predictor is worse than the �� increase predictor, while HR� > 1

implies that the predictor is making better predictions.

Naive Prediction of Returns

The Theil coeÆcient (13) compares the performance to that of the naive price

predictor. We propose a similar measure to compare to the performance of the naive

return predictor. The naive prediction of stock returns asserts today's return Rh(t)

(price increase since t�h) as the best estimate of Rh(t+h). This naive prediction is
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formed from the observation of a one-step memory in the price generating process.

In Hellstr�om (1998b) the autocorrelation of stock returns was shown to exhibit a

signi�cant �rst lag component that indicates a correlation between adjacent returns.

It is a good idea to measure the RMSE of a return predictor in relation to the

RMSE for this naive return predictor. This is done in Theil coeÆcient for returns

Tr de�ned as:

Tr =
RMSEr

RMSErN

=

qP
N

t=h+1(Rh(t)� R̂h(t))2qP
N

t=h+1(Rh(t)�Rh(t� h))2
: (16)

For Tr > 1 the predictor is worse than the naive return predictor, while Tr < 1

implies that the predictor is making better predictions.

The Naive Prediction of Returns can also be compared on the basis of hit rate.

This is the purpose of our suggested measure HRN (\Hit rate relative to the Naive

Predictor") and is described below. The hit rate HN for the naive return predictor

is �rst computed as:

HN =

���fRh(t)Rh(t� h) > 0g
N

h+1

������fRh(t)Rh(t� h) 6= 0g
N

h+1

��� : (17)

The Naive Prediction of Returns assumes, that an upswing is followed by yet

another upswing the next day, and a downswing by yet another downswing.

The Relative Hit Rate HRN is de�ned as the ratio between the hit rate of the

predictor HR (as de�ned in (9),) and that of the naive return predictor. I.e.:

HRN =
HR

HN

: (18)

HRN compares the hit rate of the predictor relative to that of the naive return

predictor. For HRN < 1 the predictor is worse than the naive return predictor,

while HRN > 1 implies that the predictor is making better predictions.

Buy-and-Hold

The Buy-and-Hold pro�t Pb for a time period f1:::Ng and one particular stock

is de�ned as:

Pb = Close(N)� Close(1); (19)

i.e. the pro�t made when buying at the start and selling at the end of the time

period. The Pro�t Relative to Buy-and-Hold Pr is de�ned as the ratio between the

predictor's Net Pro�t Pn, as de�ned in (12), and the Buy-and-Hold pro�t Pb. I.e.:
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Pr =
Pn

Pb
: (20)

For Pr < 1 the predictor's net pro�t is worse than the Buy-and-Hold alternative,

while Pr > 1 implies that the predictor is making higher pro�ts. This measure tests

whether the net pro�t is due to real predictions or merely due to a general market

trend.

5.3 Conclusions on evaluation

The evaluation of a prediction based on the Time Series Approach should be

presented with annual �gures for the following entities:

� If absolute prices Close are predicted: the Theil coeÆcient of inequality Ty

(or RMSEy and RMSEyN separately)

� If returns R are predicted: the Theil coeÆcient for returns Tr (or RMSEr and

RMSErN separately)

� The hit rate relative to the �-increase predictorHR� (orHR andH� separately)

� The hit rate relative to the Naive Prediction of Returns HRN (or HR and HN

separately)

� The number of predictions

� The Pro�t Relative to Buy-and-Hold Pr (or Pn and Pb separately)

In addition to the annual values, mean values for the entire time period are also

useful for fast comparison of methods.

The time series formulation based on the minimized RMSE measure is not always

ideal for useful predictions of �nancial time series. Some reasons are:

1. The �xed prediction horizon h does not re
ect the way in which �nancial

predictions are being used. The ability of a model to predict should not be

evaluated at one single �xed point in the future. A big increase in a stock

value 14 days into the future is as good as the same increase 15 days into the

future.
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2. The RMSE treats all predictions, small and large, as equal. This is not always

appropriate. Prediction points that would never be used for actual trading

(i.e. price changes too small to be interesting) may cause higher residuals at

the other points of more interest, to minimize the global RMSE.

3. A small predicted change in price, followed by a large real change in the same

direction, is penalized by the RMSE measure. A trader is normally happy in

this case, at least if, say, the small positive prediction was large enough to give

a buy signal.

4. Several papers, e.g. Leitch and Tanner (1991) and Bengio (1997), report a

poor correlation between the RMSE measure and the pro�t made by apply-

ing a prediction algorithm. A strategy that separates the modeling from the

decision-taking rule is less optimal than modeling the decision taking directly

(Moody (1992)). Both arguments 2 and 3 provide some explanations to these

results.

6. THE TRADING RULE APPROACH

The other major type of prediction algorithms de�nes a trading rule as a time

series T (t) as

T (t) =

8><
>:

Buy : if g(t) = 1

Sell : if g(t) = �1

Do nothing : if g(t) = 0

(21)

where g is a function f of the stock prices Close or stock returns R (4) up to

time t. E.g.:

g(t) = f(Close(t); Close(t� 1); :::; Close(t� k)) (22)

The function f determines the type of trading rule. Standard technical indicators

such as the Stochastic Oscillator, the Relative Strength Index (RSI) or the Moving

Average Convergence/Divergence (MACD) can all be described in this fashion. The

task for the learning process in The Trading Rule Approach is to �nd the function f

that maximizes the pro�t, when applying the rule on real data. Note the di�erence

between this and The Time Series Approach, where the learning task is to �nd a

function g that minimizes the RMSE error (6) for the entire time series.

Example:

The function g is de�ned as:
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g(t) =

8><
>:

1 : if mavS(t) > mavL(t) AND mavS(t� 1) � mavL(t� 1)

�1 : if mavS(t) < mavL(t) AND mavS(t� 1) � mavL(t� 1)

0 : otherwise

(23)

where mavk(t) is a moving average of length k. I.e.:

mavk(t) =
1

k

k�1X
m=0

Close(t�m) (24)

The trading rule is illustrated in Figure 1. The learning in this example consists

of �nding optimal values to specify the function g, i.e.: the length variables in the

moving averages mavL and mavS . The trading rule (21) signals \Buy," if the short

moving average mavS crosses the long moving average mavL from below. A \Sell"

signal is issued when mavS crosses the mavL from above. The optimal settings for

S and L are determined by the learning process.

The Trading Rule Approach avoids many of the problems previously described

of the Time Series Approach but does indeed have problems of its own, primarily

that of statistical signi�cance. The trading rule T (t) normally issues Buy or Sell

signals only for a minor part of the points in the time series. While being one of the

big advantages, it also presents serious statistical problems when computing levels

of signi�cance for the produced performance. It is easy to �nd a trading rule that

historically outperforms any stock index, as long as it does not have to produce

more than a few signals.

6.1 Performance Metrics

Trading-rule-based methods are normally evaluated by a trading simulation

where the trading rule controls the buying and selling of one or several stocks for

a period of time. It is however also possible to evaluate trading rules by treating

them as a �xed horizon prediction.

Hit rate at a �xed horizon

By viewing the Buy and Sell rules separately, a trading rule can be evaluated

in a fashion similar to the Time Series Approach. The hit rate HB of a Buy rule

indicates how often a buy signal is followed by a true increase in the stock price.

We de�ne HB as

HB =

���fg(t) = 1 AND Rh(t+ h) > 0g
N�h

1

������fg(t) = 1g
N�h

1

��� (25)
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where g is the function specifying the trade rule as described in (21).

The hit rate HS of a Sell rule indicates how often a sell signal is followed by a

true decrease in the stock price. We de�ne HS as

HS =

���fg(t) = �1 AND Rh(t + h) < 0g
N�h

1

������fg(t) = �1g
N�h

1

��� : (26)

The prediction horizon h is in this case set arbitrarily and the performance is

evaluated for the Buy and Sell part separately. The problem with this metric is the

lack of an objective benchmark. By choosing a long enough prediction horizon h,

most buy signals "result" in an increase in stock price and therefore in a very high

hit rate HB. The large h however also causes a correspondingly low hit rate HS for

the sell signals. By demanding both a high HB and a high HS; a good estimate of

the overall performance is often possible. HS and HS are also useful for comparison

between di�erent prediction algorithms.

Pro�t at a �xed horizon

We can also compute the mean pro�t for the buy and sell signals instead of just

the hit rate. The mean pro�t achieved if the Buy rule is obeyed is computed as

PB =
1

jfg(t) = 1gj

X
g(t)=1

Rh(t + h): (27)

The mean pro�t for the sell rule PS is de�ned correspondingly. A well-performing

algorithm should give a large positive PB and a large negative PS. The lack of an

objective benchmark is however obvious even for these pro�t measures. As in the

case with hitrates, comparing PB and PS can often give a useful estimate of the

overall performance for the algorithm.

Trading Simulation

A trading simulation implements a trading-rule-based prediction algorithm (as

de�ned in (21),) in a system, where real trading is simulated as closely as possible.

This means that the trading rule's Buy part initiates buy actions, and the Sell part

initiates sell actions. In this way a more realistic situation is achieved than the pre-

viously described one of having a �xed horizon. Transaction costs for the trades can

be also easily incorporated. Trading simulation can be either done stock by stock or

multi-stock, in which case portfolio management also becomes an important issue.

This approach is implemented in the ASTA system which is described in Hellstr�om

(1998a). The following metrics are relevant when evaluating trading rules both in

stock-by-stock and multi-stock simulations.
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Total Pro�t

An intuitively appealing and very common measure is the total wealth achieved

by the trader, when simulating trading over the available training data period. In

the case of multi-stock predictions the wealth is often presented as a function of

time in a so-called equity diagram.

Pro�t per Year

Compute the annual pro�t achieved by applying the trading algorithm. The

mean annual pro�t could be used as total measure for the entire time period. How-

ever, it is also important to pay attention to the performance in each individual year.

Fraction Pro�table Trades

Even if a benchmark for this entity is hard to �nd (buying a stock in the be-

ginning of the simulation and selling it 10 years later may generate for example an

impressive fraction of 100% pro�table trades,) this �gure gives a very good feeling

for how the system would work in reality. It can also provide information about

where the trading result actually occurred. If we for example get a huge overall

pro�t but a very low fraction of pro�table trades, we should suspect a few lucky

trades to be responsible for the good simulation result. Annual computation of the

fraction pro�table trades is therefore a very important part of the evaluation.

Number of Trades

The estimated pro�t from a Trading-Rule-based system has a very weak statisti-

cal signi�cance, if the number of trades produced during the simulation is low. The

number of trades is therefore of central importance, and should be presented along

with the trading results.

6.2 Benchmarks

In the previous section the lack of proper benchmarks for the �xed horizon met-

rics in combination with Trading-Rule-based predictions were discussed. What re-

mains is therefore a benchmark for the Trading Simulation metrics. We need dif-

ferent benchmarks for a multi-stock trading system and for a system that predicts

and evaluates each stock separately.

Index

The natural benchmark for a multi-stock trading simulation is some kind of

stock index, which is also the method most often used by professional brokers. It

is a reasonable benchmark because it compares the performance to a very available

alternative: that of buying a mutual fund instead of doing the trading ourselves.
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It can be argued, that the change in the index underestimates the average pro�t

achieved for the stocks that constitute that index. The reason for this would be

that the dividends for the stocks are not taken into account in the calculation of

the index2. On the other hand, the dividends are not included in the pro�t calcula-

tions for the tested prediction algorithms either, which means, that it is subject to

the same underestimation. Therefore, the change in index is considered a relevant

benchmark when comparing di�erent prediction methods by simulated trading.

The result of a trading simulation should be presented as annual pro�ts together

with the increase in index. The mean di�erence between these two �gures consti-

tutes the net performance of the system. The results may be presented in table

form or as a histogram as shown in the lower part of Figure 2. The pro�t may also

be displayed in so-called equity diagrams, as shown in the upper part of Figure 2.

The stock index is presented in the same diagram for comparison. The curves are

scaled, so the leftmost point has a wealth of 1 for both the trader and the index.

The values for other points along the date axis can be then interpreted as wealth

relative to the one at the starting point. A value 2.10 means, for example, that the

start capital has grown to 210% of its original value. Therefore, the �nal value at

the very right side of the diagram is the net result after the trading for the entire

time period has been completed. The major drawback of this method is that the

trades in the beginning of the time period a�ect the end result more than the ones

in the end of the time period. This is a consequence of the cumulative nature of the

simulation. The pro�ts in the beginning of the time period are being reinvested, and

therefore appear \several times" in the total wealth resulting from trading during

the entire time period. A histogram with annual pro�ts for the algorithm and the

index should therefore be used instead. The number of trades for each year is also

highly important for the statistical signi�cance of the results.

Buy-and-Hold When doing single stock predictions (or multi-stock predictions

stock by stock) the stock itself should be used as benchmark instead of a global

index. In this case we consider the price development for the stock much like we

do for the Buy-and-Hold benchmark described for the Time Series Approach. The

comparison and presentation of the performance can be done in the same way as in

the multi-stock situation described in the previous section.
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Figure 1: Example of a trading rule based on moving averages.

Jan93 Jan94 Jan95 Jan96 Jan97
0.5

1

1.5

2

2.5

3

3.5
Equity curves for Trading (221%) and Index (160%)

Trading
Index  

93 94 95 96
0

20

40

60

80

100

120
Mean annual profits Trading:38% Index:28%

T
ra

di
ng

 (
le

ft)
 In

de
x 

(r
ig

ht
)

Buy: mavx(’Clos’,50,’Clos’,100)>0   Sell: mavx(’Clos’,100,’Clos’,50)>0

Figure 2: Presentation of performance for a trading-rule based system.
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