
Theory of Stochastic Process

Vol.0 (00), no.0 ,2001, pp.00-00

THOMAS HELLSTR�OM and KENNETH HOLMSTR�OM1

GLOBAL OPTIMIZATION OF COSTLY NONCONVEX
FUNCTIONS, WITH FINANCIAL APPLICATIONS2

The paper considers global optimization of costly objective functions, i.e. the

problem of �nding the global minimum when there are several local minima

and each function value takes considerable CPU time to compute. Such prob-

lems often arise in industrial and �nancial applications, where a function value

could be a result of a time-consuming computer simulation or optimization.

Derivatives are most often hard to obtain, and the algorithms discussed make

no use of such information.

Response surface methods are promising for global optimization of costly non-

convex objective functions. We discuss our implementation of an algorithm

by Powell and Gutmann based on the use of radial basis functions (RBF). An-

other interesting response surface method is the EÆcient Global Optimization

(EGO) method by Jones et al. We have implemented these two methods, to-

gether with the DIRECT and constrained DIRECT method by Jones in the

TOMLAB optimization environment (Holmstr�om (1999)). We discuss the

application of these global optimization methods for parameter estimation in

trading algorithms and in models for time series prediction.

AMS 2000 subject classi�cations. 90C26,90C56,91B28.

Key words and phrases. Mathematical Programming, Nonlinear Pro-

gramming, Matlab, Mathematical Software, Algorithms, Nonconvex Op-

timization, Global Optimization, Time Series Predictions, Financial time

series.

1Invited speaker
2Invited talk

1

1. INTRODUCTION

The task of global optimization is to �nd the set of parameters x in the feasible

region
 � Rd for which the objective function f(x) obtains its smallest value. In

other words, a point x� is a global optimizer to f(x) on
, if f(x�) � f(x) for all

x 2
. On the other hand, a point x̂ is a local optimizer to f(x), if f(x̂) � f(x)

for all x in some neighborhood around x̂. Obviously, when the objective function

has several local minima, there could be solutions that are locally optimal but not

globally optimal and standard local optimization techniques are likely to get stuck

before the global minimum is reached. Therefore, some kind of global search is

needed to �nd the global minimum with some reliability.

The global optimization page (http://solon.cma.univie.ac.at/~neum/glopt.html),

maintained by Arnold Neumaier, contains many commented links to online informa-

tion relevant to global optimization. There is also an online survey of di�erent global

optimization methods at http://www.cs.sandia.gov/opt/survey/. The emphasis in

this paper is on problems with costly objective functions.

In our Applied Optimization and Modeling group at M�alardalen University we

work in several applied areas with a need for global optimization techniques. One

example is the problem of designing a passenger train, where the objective is to

minimize the total mass with constraints on ride quality measures. The design

parameters are the carbody mass and frequencies, the bogie frame mass and yaw

damper attachment positions. In this problem, a single function value is computed

by running an expensive (time-consuming) computer simulation. With a simpli�ed

model, one simulation takes more than three minutes and with an accurate model,

about half an hour. In computational �nance, we study the prediction of various

kinds of quantities related to stock markets, like stock prices, stock volatility and

ranking measures. These are noisy problems with several local minima. With the

increasing use of high-frequency data, simulated trading and time series analysis of

multiple data series results in costly global optimization problems as presented in

Hellstr�om and Holmstr�om (1999), and further discussed in Section 4.

Previously we have made Matlab implementations of the DIRECT (Jones, Pert-

tunen and Stuckman 1993), the new constrained DIRECT (Jones 2001), and the Ef-

�cient Global Optimization (EGO) (Jones, Schonlau, Welch 1998) algorithms. The

implementations are part of the TOMLAB optimization environment, described in

Holmstr�om (1999a, 1999b, 1999c). The implementation of the DIRECT algorithm

is further discussed and analyzed in Bj�orkman and Holmstr�om (1999). Recently

Powell (1999) and Gutmann (1999) presented an algorithm of response surface type

based on radial basis function approximation. The idea of the RBF algorithm is to

use radial basis function interpolation to de�ne a utility function (Powell 1999). The

next point, where the original objective function should be evaluated, is determined

2

by optimizing on this utility function.

In Section 2 we describe the basic RBF algorithm and discuss some special fea-

tures of the implementation. The other global optimization algorithms considered

are brie
y described in Section 3. In Section 4 the application of global optimization

methods on �nancial problems are discussed.

2. THE RBF ALGORITHM

Our RBF algorithm is based on the ideas presented by Gutmann (1999), with

some extensions and further development. The algorithm is implemented in the

Matlab routine rbfSolve and described in more detail in Bj�orkman and Holmstr�om

(2001). The RBF algorithm deals with box-bounded global optimization problems

of the form
min
x

f(x)

s=t
�1 < xL � x � xU <1;

(1)

where f(x) 2 R and x; xL; xU 2 Rd. We assume that no derivative information

is available and that each function evaluation is very expensive. For example, the

function value could be the result of a time-consuming experiment or computer sim-

ulation.

2.1. Description of the Algorithm. We now consider the question of choos-

ing the next point where the objective function should be evaluated. The idea of

the RBF algorithm is to use radial basis function interpolation and a measure of

'bumpiness' of a radial function, � say. A target value f �
n
is chosen that is an esti-

mate of the global minimum of f . For each y =2 fx1; : : : ; xng there exists a radial

basis function sy that satis�es the interpolation conditions

sy(xi) = f(xi); i = 1; : : : ; n;

sy(y) = f
�

n
: (2)

The next point xn+1 is calculated as the value of y in the feasible region that mini-

mizes �(sy). It turns out that the function y 7! �(sy) is much cheaper to compute

than the original function.

Here, the radial basis function interpolant sn has the form

sn(x) =
nX
i=1

�i� (kx� xik2) + b
T
x+ a; (3)

3

with �1; : : : ; �n 2 R, b 2 Rd, a 2 R and � is either cubic with �(r) = r
3 or the thin

plate spline �(r) = r
2 log r. Gutmann (1999) considers other choices of � and of the

additional polynomial, see the table below. Later in Gutmann (2000) he concludes

that the situation in the multiquadric and Gaussian cases is disappointing.

RBF �(r) > 0 p(x)

cubic r
3

a
T � x + b

thin plate spline r
2 log r a

T � x + b

linear r b

multiquadric
q
(r2 +

2)

Gaussian exp(�
r2)

The unknown parameters �i, b and a are obtained as the solution of the system

of linear equations
� P

P
T 0

!
�

c

!
=

F

0

!
; (4)

where � is the n� n matrix with �ij = �

�
kxi � xjk2

�
and

P =

0
BBBBBB@

x
T

1 1

x
T

2 1

: :

: :

x
T

n
1

1
CCCCCCA
; � =

0
BBBBBB@

�1

�2

:

:

�n

1
CCCCCCA
; c =

0
BBBBBBBB@

b1

b2

:

:

bd

a

1
CCCCCCCCA
; F =

0
BBBBBB@

f(x1)

f(x2)

:

:

f(xn)

1
CCCCCCA
: (5)

sy could be obtained accordingly, but there is no need to do that as one is only

interested in �(sy). Powell (1992) shows that if the rank of P is d + 1, then the

matrix
� P

P
T 0

!
(6)

is nonsingular and the linear system (4) has a unique solution.

� is de�ned in Gutmann (2000). For sn in (3) it is

�(sn) =
nX
i=1

�isn(xi): (7)

Further, it is shown that �(sy) is

�(sy) = �(sn) + �n(y) [sn(y)� f
�

n
]
2
; y =2 fx1; : : : ; xng: (8)

4

Thus minimizing �(sy) subject to constraints is equivalent to minimizing gn de�ned

as

gn(y) = �n(y) [sn(y)� f
�

n
]
2
; y 2
 n fx1; : : : ; xng ; (9)

where �n(y) is the coeÆcient corresponding to y of the Lagrangian function L that

satis�es L(xi) = 0, i = 1; : : : ; n and L(y) = 1. It can be computed as follows. � is

extended to

�y =

� �y

�
T

y
0

!
; (10)

where (�y)i = �(ky � xik2), i = 1; : : : ; n, and P is extended to

Py =

P

y
T 1

!
: (11)

Then �n(y) is the (n+ 1)-th component of v 2 Rn+d+2 that solves the system

�y Py

P
T

y
0

!
v =

0
B@

0n
1

0d+1

1
CA : (12)

We use the notation 0n and 0d+1 for column vectors with all entries equal to zero

and with dimension n and (d + 1), respectively. The computation of �n(y) is done

for many di�erent y when minimizing gn(y). This requires O(n
3) operations if not

exploiting the structure of �y and Py. Hence it does not make sense to solve the full

system each time. A better alternative is to factorize the interpolation matrix and

update the factorization for each y. An algorithm that requires O(n2) operations is

described in Bj�orkman and Holmstr�om (2001).

When there are large di�erences between function values, the interpolant has a

tendency to oscillate strongly. It might also happen min sn(y) is much lower than

the best known function value, which leads to a choice of f �
n
that overemphasizes

global search. To handle these problems, large function values are in each iteration

replaced by the median of all computed function values.

Note that �n and gn are not de�ned at x1; : : : ; xn and

lim
y!xi

�n(y) =1; i = 1; : : : ; n: (13)

This will cause problems when �n is evaluated at a point close to one of the known

points. The function hn(x) de�ned by

hn(x) =

(
1

gn(x)
; x =2 fx1; : : : ; xng

0; x 2 fx1; : : : ; xng
(14)

5

is di�erentiable everywhere on
, and is thus a better choice as objective function.

Instead of minimizing gn(y) in (9) one may minimize�hn(y). In our implementation

we instead minimize � log(hn(y)). By this we avoid a
at minimum and numerial

trouble when hn(y) is very small.

2.2. The Choice of f �
n
. For the value of f �

n
it should hold that

f
�

n
2

�
�1;min

y2

sn(y)

�
: (15)

The case f �
n
= min

y2

sn(y) is only admissible if min

y2

sn(y) < sn(xi), i = 1; : : : ; n. There

are two special cases for the choice of f �
n
. In the case when f

�

n
= min

y2

sn(y), then

minimizing (9) is equivalent to

min
y2

sn(y): (16)

In the case when f
�

n
= �1, then minimizing (9) is equivalent to

min
y2
nfx1;:::;xng

�n(y): (17)

So how should f
�

n
be chosen? If f �

n
= �1, then the algorithm will choose the new

point in an unexplored region, which is good from a global search point of view, but

the objective function will not be exploited at all. If f �
n
= min

y2

sn(y), the algorithm

will show good local behaviour, but the global minimummight be missed. Therefore,

there is a need for a mixture of values for f �
n
close to and far away from min

y2

sn(y).

Gutmann (1999) describes two di�erent strategies for the choice of f �
n
. In this paper

we study one of the strategies.

The strategy, denoted idea 1, is to perform a cycle of length N + 1 and choose

f
�

n
as

f
�

n
= min

y2

sn(y)�W �

�
max

i

f(xi)�min
y2

sn(y)

�
; (18)

with

W =

"
(N � (n� ninit))mod(N + 1)

N

#2
; (19)

where ninit is the number of initial points. Here, N = 5 is �xed and max
i

f(xi) is not

taken over all points, except for the �rst step of the cycle. In each of the subsequent

steps the n� nmax points with largest function value are removed (not considered)

when taking the maximum. Hence the quantity max
i

f(xi) is decreasing until the

6

cycle is over. Then all points are considered again and the cycle starts from the

beginning. More formally, if (n� ninit)mod(N + 1) = 0, nmax = n, otherwise

nmax = max f2; nmax �
oor((n� ninit)=N)g : (20)

A check is performed when (n� ninit)mod(N+1) = N. This is the stage when a

purely local search is performed, so it is important to make sure that the minimizer

of sn is not one of the interpolation points or too close to one. The test used is

fmin �min
y2

sn(y) � 10�4max f1; jfminjg ; (21)

where fmin is the best function value found so far, i.e. min
i

f(xi), i = 1; : : : ; n. If

(21) is true, then

f
�

n
= min

y2

sn(y)� 10�2max f1; jfminjg ; (22)

otherwise f �
n
is set to 0.

2.3. A Compact RBF Algorithm Description. In the previous sections the

basic RBF algorithm implemented in our Matlab routine rbfSolve were described in

detail. We now summarize the RBF algorithm in the compact description below.

� Choose n initial points X = fxi; i = 1; :::; ng.

Use 2d corner points or at least d+ 1 points.

� Compute fi = f(xi); i = 1; :::; n, set ninit = n.

� Compute Radial basis interpolation minimizing semi-norm and interpolating

points
sn = argmin

s
< s; s >

s=t s(xi) = f(xi); i = 1; :::; n

(23)

The optimal solution is the solution to (4).

� While n < MaxFuncEval

Repeat Cycle k = 0; :::; N (Local and global search, N = 5)

1. If k = 0 solve the minimization problem min
y2

sn(y).

2. Compute f �
n
in (18) dependent on position k in the cycle.

3. xnew = argminy� loghn(y), hn(y) de�ned in (14).

7

4. If new point xnew acceptable (Not too close to x1; : : : ; xn),

n = n+ 1; xnew = xn; fn = f(xnew); X = [X; xnew]; end

5. fbest = min f(xi); xi 2 X;

6. xbest = argmin f(xi); xi 2 X;

7. Update the matrix factorizations of � and P and �nd new interpolant sn
by solving (12).

� End of while

One problem is how to choose the points x1; : : : ; xninit to include in the initial

set. We only consider box constrained problems, and choose the corners of the box

as initial points, i.e. ninit = 2d. Starting with other points is likely to lead to the

corners during the iterations anyway. Having a "good" point beforehand, one can

include it in the initial set.

The subproblem
min
y2

sn(y) ; (24)

is itself a problem which could have more than one local minima. To solve (24) (at

least approximately), we start from the interpolation point with the least function

value, i.e. argminf(xi), i = 1; : : : ; n, and perform a local search. In many cases this

leads to the minimum of sn. Of course, there is no guarantee that it does. We use

analytical expressions for the derivatives of sn and perform the local optimization

using ucSolve TOMLAB running the inverse BFGS algorithm as described in Holm-

str�om and Bj�orkman (1999). As an alternative we use the NPSOL solver by Gill,

Murray, Saunders and Wright (1998) using the MEX-�le interface that is part of

TOMLAB.

To minimize � log hn(y) we use our Matlab routine glbSolve implementing the

DIRECT algorithm (see Section 3.1). We run glbSolve for 500 function evaluations

and choose xn+1 as the best point found by glbSolve. When (n�ninit)mod(N+1) = N

(when a purely local search is performed) and the minimizer of sn is not too close to

any of the interpolation points, i.e. (21) is not true, glbSolve is not used to minimize

gn(y) or f
�(y). Instead, we choose the minimizer of (24) as the new point xn+1. The

TOMLAB routine AppRowQR is used to update the QR decomposition.

Our experience so far with the RBF algorithm shows that the minimum is some-

times very sensitive for the scaling of the box constraints. To overcome this problem

we transform the search space to the unit hypercube.

In our implementation it is possible to restart the optimization with the �nal

status of all parameters from the previous run.

8

3. OTHER GLOBAL OPTIMIZATION ALGORITHMS

In the following sections, Section 3.1 - 3.3, short descriptions of the DIRECT,

constrained DIRECT and EGO algorithms are given.

3.1. DIRECT. DIRECT is an algorithm developed by Jones, Perttunen and Stuck-

man (1993) for �nding the global minimum of a multi-variate function subject to

simple bounds, using no derivative information. The algorithm is a modi�cation of

the standard Lipschitzian approach that eliminates the need to specify a Lipschitz

constant. The idea is to carry out simultaneous searches using all possible constants

from zero to in�nity. In Jones et al. (1993) they introduce a di�erent way of looking

at the Lipschitz constant. The Lipschitz constant is viewed as a weighting parameter

that indicate how much emphasis to place on global versus local search. In standard

Lipschitzian methods, this constant is usually large because it must be equal to or

exceed the maximum rate of change of the objective function. As a result, these

methods place a high emphasis on global search, which leads to slow convergence. In

contrast, the DIRECT algorithm carries out simultaneous searches using all possible

constants, and therefore operates on both the global and local level. DIRECT deals

with problems of the form

min
x

f(x)

s:t: xL � x � xU ;
(25)

where f 2 R and x; xL; xU 2 Rd. The �nite box de�ned by the bound constraints

is normalized to [0; 1]d. and partitioned into smaller boxes. Then it is true that the

side lengths of the boxes are 3�k for some k 2 N. It is guaranteed to converge to the

global optimal function value, if the objective function f is continuous or at least

continuous in the neighborhood of a global optimum. This could be guaranteed

since, as the number of iterations goes to in�nity, the set of points sampled by

DIRECT form a dense subset of the unit hypercube. In other words, given any

point x in the unit hypercube and any Æ > 0, DIRECT will eventually sample a

point (compute the objective function) within a distance Æ of x. However, the use

of the midpoint in each box leads to the disadvantage that the boundary can only

be reached in the limit, and the convergence will be slow when the minimizer lies at

the boundary.

We have implemented the DIRECT algorithm in Matlab, and in Bj�orkman and

Holmstr�om (1999), we discuss the implementation details of our Matlab implemen-

tation. The eÆciency of the implementation is analyzed by a comparison to the

results of Jones's implementation on nine standard test problems for box-bounded

global optimization. In �fteen out of eighteen runs the results were in favor of our

implementation.

9

One version of the DIRECT code is available as the Matlab routine gblSolve for

download at http://www.ima.mdh.se/tom, the home page of the Applied Optimiza-

tion and Modeling group. It is free for academic use. A faster version, glbSolve, is

part of the TOMLAB v3.0 optimization environment described in Holmstr�om (2001).

3.2. Constrained DIRECT. Jones (2001) presents an extension of the DIRECT

algorithm which handles nonlinear and integer constraints, a global mixed-integer

nonlinear programming problem of the form

min
x

f(x)

s:t:

xL � x � xU

cL � c(x) � cU

xi 2 I integer

;
(26)

where f 2 R, x; xL; xU 2 Rd, c; cL; cU 2 Rm and I is the index set for the integer

variables. The constrained version of DIRECT does not explicitly handle equality

constraints and it works best when the integer variables describe an ordered quantity.

It is less e�ective when the integer variables are categorical. If no constraints are

present, this constrained version of DIRECT reduces to the box-bounded version,

with some minor di�erences.

We have implemented the constrained version of the DIRECT algorithm in Matlab

with a slightly more general problem formulation that explicitly handles linear con-

straints as

min
x

f(x)

s=t

�1 < xL � x � xU <1

bL � Ax � bU

cL � c(x) � cU ; xj 2 N 8j 2I;

(27)

where x; xL; xU 2 Rn, f(x) 2 R, A 2 Rm1�n, bL; bU 2 Rm1 and cL; c(x); cU 2 Rm2.

The variables x 2 I, the index subset of 1; :::; n, are restricted to be integers. Our

constrained DIRECT code is available as the Matlab routine glcSolve in TOMLAB.

Feedback from TOMLAB users and tests we have ran show that the solver works well.

3.3. EGO. The EGO (EÆcient Global Optimization) algorithm by Jones, Schon-

lau and Welch (1998) is also an interesting algorithm, which like the RBF algorithm

belongs the class of Response Surface Methods. These models �rst �t a model func-

tion to data collected by evaluating the objective function at a number of initial

points. Then a utility function is used to determine the new point where the objec-

tive function should be evaluated. In EGO, a nonlinear stochastic process model,

10

the DACE (Design and Analysis of Computer Experiments) predictor, is �t by use

of nonlinear regression unlike the RBF algorithm, where linear regression is used.

Then, EGO balances between global and local search by choosing the new point

where the objective function should be evaluated as the one which maximizes an

expected improvement utility function.

We have implemented the EGO algorithm in Matlab and it is available as the

Matlab routine ego in TOMLAB.

4. FINANCIAL APPLICATIONS

Trading strategies present an interesting and challenging application for global

optimization without derivatives. The object function can be de�ned as the achieved

pro�t when applying a trading system on historical data. It is clear that neither the

object function nor the derivatives are available in analytical form. Furthermore,

the function value is often the result of a simulated trading with many years of data,

and takes in the order of minutes to compute with an ordinary desk top computer.

The need for optimization routines suitable for costly object functions is therefore

clear. In this section we will use the previously described DIRECT algorithm to

optimize simple trading rules parameterized with three and four parameters. A big

problem with such optimization is the estimation of out-of-sample performance for

the obtained trading rules. In particular, it is very easy to jump into conclusions

regarding trading rules that exhibit extremely pro�table behavior, when tested on

historical data. These misjudgments are often caused by the rules covering too few

examples in the examined data. We will approach this problem with nonconvex

global optimization of trading rules with a constraint added in the problem formu-

lation. The e�ect is a regularization, where solutions covering too few examples are

rejected. The modeling is performed with a sliding-window technique and generates

di�erent parameters for the optimized trading rules in each time window. For more

details and results, refer to Hellstr�om (2000b) where another data set is analyzed

with the same approach.

4.1. Trading Rules. A general way to formulate strategies for stock trading

is to de�ne a trading rule as a time series T (t) such as

T (t) =

8><
>:

Buy : if g(t) = 1

Sell : if g(t) = �1

Do nothing : if g(t) = 0

(28)

where g is a function of the previous stock prices Close:

g : fClose(t); Close(t� 1); :::; Close(t� k)g ! f�1; 0; 1g: (29)

11

Trading rule (28) is designed to serve as decision support in actual stock trading,

as indicated by the labels Buy, Sell, and Do Nothing. Function g determines the

type of the trading rule. By extending expression (29) with the input variables High

(highest-paid price), Low (lowest-paid price), Open (�rst price) and Volume (number

of traded stocks), most standard technical indicators, such as the Stochastic Oscil-

lator, the Relative Strength Index (RSI), Moving Average Convergence/Divergence

(MACD) etc. (Kaufman (1998)), can be described in this fashion. Quite often the

buy and sell decisions are controlled by separate expressions and the trading rules

are then denoted Buy rule and Sell rule respectively. Hereinafter we use the notation
gs to denote a trading rule applied to one speci�c stock s.

Function g is normally parameterized with a few parameters that can to be deter-

mined by numerical optimization. In this paper, three trading rules for generating

Buy signals, are used to demonstrate the techniques with constrained optimization.

All three are based on standard technical indicators, well-known by the trading

community. For a thorough introduction to the subject, refer to Kaufman (1998).

However, the standard indicators have been augmented with a term that includes

the traded volume. This too is in accordance with common practice among traders.

We include the traded volume as a term in all our technical trading rules. To facil-

itate a uniform modeling for all stocks in the market, a normalized measure has to

be de�ned.

4.1.1. Gaussian Volume. The Gaussian volume Vn(t) is a transformation of

the traded volume (number of stocks) V (t) de�ned as

Vn(t) = (V (t)�mV (t))=�V (t); (30)

where the mean mV (t) and the standard deviation �V (t) for the volume are com-

puted in an n days long window up to time t. Vn expresses the number of standard

deviations, by which the volume di�ers from its running mean. The normalization

makes it possible to compare values of Vn for di�erent stocks and also for di�erent

times. In this paper the Gaussian volume V10 is used and is denoted by gvol10, since

this is the name of the ASTA (Hellstr�om (2000a)) implementation of the function.

4.1.2. Crossing Moving-Average. This is an implementation of a common

trading rule based on two moving averages of di�erent length. The trading rule

signals Buy, if a short moving-average mavx1 crosses a long moving-average mavx2
from below. A Sell signal is issued when mavx1 crosses the mavx2 from above. In

this paper we de�ne the Buy rule mav as

mav(x1; x2; x3) = Mavx(x1; x2) ^ gvol10 > x3; (31)

12

where

Mavx(x1; x2) = mavx1(t) > mavx2(t) ^mavx1(t� 1) � mavx2(t� 1) (32)

and mavx1 is a x1-day moving average of the stock prices up to time t.

4.1.3. Trading Channel Breakout. The main part of this trading rule is what

is popularly known as Bollinger Bands (see e.g. page 91 in Kaufman (1998)). The

complete trading rule is de�ned as

break(x1; x2; x3) = breakout(x1; x2) ^ gvol10 > x3; (33)

where the breakout function is de�ned as

breakout(x1; x2) = Close(t) > (mavx1(t) + x2 � �x1(t)) ^

Close(t� 1) � (mavx1(t) + x2 � �x1(t))
(34)

and mavx1(t) is is a x1-day long moving average of the stock prices up to time t.

Function �x1(t) computes the standard deviation of the Close up to time t: The idea

is to de�ne an upper boundary for a trading channel and generate a Buy signal when

the Close penetrates this boundary from below. This upper boundary is de�ned

as the sum of a moving average mavx1 and x2 times an estimate of the standard

deviation �x1 :

4.1.4. Level of Resistance. The trading rule Level of Resistance, in this paper

denoted resist, is based on a technique commonly executed by manual inspection of

the stock charts. The general idea is to identify peaks in a window backwards, where

the Close price is roughly the same. When such peaks are found, a Buy signal is

generated if the Close price crosses from below the level for the found peaks. We

de�ne the trading rule resist as

resist(x1; x2; x3; x4) = xresist(x1; x2; x3) ^ gvol10 > x4 (35)

where

xresist(x1; x2; x3) = Close(t) > plevel ^ Close(t� 1) � plevel (36)

and

plevel =

8><
>:

l :
if at least x2 peaks in Close that di�ers by less than x3% can

be identi�ed at level l in an x1-day long window backwards.

0 : otherwise

13

4.2. Performance Evaluation. Performance evaluation for a trading rule is

needed in two stages of the process. First, in the optimization phase, when pa-

rameters for the trading rule have to be determined. The second stage is when the

�nal trading rule is evaluated on the test data set previously unseen. For more

information about performance evaluation of trading algorithm refer to Hellstr�om

(1999b) or Refenes (1995). Trading-rule-based methods are normally evaluated by

trading simulation, where the trading rule controls the buying and selling of one

or several stocks over a period of time. Examples of this approach in conjunction

with optimization can be found in Hellstr�om and Holmstr�om (1999). However, it is

also possible to evaluate a trading rule with a �xed prediction horizon, of which the

advantage is that all situations where the trading rules �re (i.e.: T (t) 6= Do Nothing

in (28)) are evaluated. When performing a trading simulation, this is normally not

the case, since the simulated trader is bounded by the real-world constraint of a

limited amount of money. This prevents the trader from executing some of the Buy
signals that the trading rules produce. Since the fraction of left-out trades can be as

high as 80-90%, a scheme with randomization and repeated simulations is normally

required to produce reliable performance measures for the trading rules. Therefore

in this study we evaluate trading rules at �xed prediction horizons. The measure

of interest is the correctness of the sign of the price change from the time of the

prediction to 5 days ahead. This way of evaluating predictions has gained increased

interest in recent years as an alternative to the more conventional way of minimizing

the error of the level prediction. A comparative study of sign and level methods can

be found in Leung, Daouk and Chen (2000) where the presented experiments suggest

that methods predicting the sign provide higher pro�ts than methods predicting the

level for a number of investigated stock indexes.

For a time period [1; :::; T] and a set of stocks S, the h-day positive hit rate for

a Buy rule g is de�ned as

H
+
g
=

cardf(t; s)jRs

h
(t+ h) > 0; gs(t) = 1; 1 � t � T � h; s 2 Sg

card f(t; s)jRs

h
(t+ h) 6= 0; gs(t) = 1; 1 � t � T � h; s 2 Sg

(37)

where gs is the function specifying the trading rule as described in (28). The return

R
s

h
is the relative change in price and is de�ned as

R
s

h
(t) = 100 �

Closes(t)� Closes(t� h)

Closes(t� h)
(38)

where Closes(t) is the price for a stock s at the end of day t. The hit rate H
+
g

for a Buy rule g indicates how often a Buy signal is followed by a true increase in

the stock price. The hit rate H�

g
for a Sell rule is de�ned correspondingly but with

returns Rh < 0.

14

4.3. Optimization. The function g that de�nes the trading rule is normally

parameterized with a few parameters x that have to be determined in order to

maximize the chosen performance measure on the historical data. To express this

parameterization, the notation g[x] will be used.

One big problem about trading rules in general and optimizing them in partic-

ular is the statistical signi�cance of the estimated performance. The trading rule

(28) normally issues Buy or Sell signals only for a minor part of the points in the

time series. This results in low levels of signi�cance for the produced performance

measures. It is often easy to �nd a trading rule that historically outperforms any

benchmark, as long as it does not have to produce more than a few signals per year.

However, the performance on previously unseen data is most often very bad in these

situations. We therefore formulate a constrained optimization problem for a Buy
rule g (Sell rules can be treated in a similar way) as

arg max

x

H
+
g[x]

s.t.

cardf(s; t)jgs[x](t) = 1; t � T � h; s 2 Sg � N0;

xL � x � xH

(39)

where xL and xH are lower and upper bounds for the unknown parameters and the

other constraint is the total number of Buy signals. The hit rate H+
g[x] is given by

de�nition (37). With the introduced notation, gs[x](t) denotes the trading rule g

parameterized with parameters x and applied to stock s for time t. The optimization

routine performs simulations up to time T to compute the hit rate and number of

trading signals for a given g[x]. The purpose is to maximize the hit rate H+
g[x] by

altering the variables x that parameterize the function g. The �nal performance

measure is the out-of-sample hit rate H
+
g[x], computed for time t > T with the

optimal estimated parameters x.

Using a `hard' constraint in the optimization problem in (39) leads to a non-

smooth problem. Because of the uncertainty in the choice of the `most' suitable

value of N0, it is reasonable to reformulate the problem using a `soft' constraint

approach that generates a smooth problem. The approach uses a sigmoid func-

tion to smoothly model the behavior of the added constraint and is inspired by the

membership-function concept used in fuzzy logic (see e.g. Klir and Yuan (1995)).

The new problem formulation, in which the objective function in (39) is weighted

15

with the output of a sigmoid, is

arg max

x

H
+
g[x]� supportN0

(cardf(s; t)jgs[x](t) = 1; t � T � h; s 2 Sg)

s.t.

xL � x � xH

(40)

where supportN0
is given by the sigmoid function

supportN0
(n) =

1

1 + e��(n��)
: (41)

The parameters � and � are computed to ful�ll the equations supportN0
(N0) = 0:99

and supportN0
(N0 � 0:5) = 0:01: This ensures a smooth penalty for trading rules

that generate less than N0 trading signals. If more than N0 trading signals are

generated, the supportN0
function returns essentially 1 and hence does not a�ect

the search for an optimal function g. The constraint acts like a regularizer, since the

search space for the function g is reduced by requiring a minimum number of trading

signals. This improves the statistical signi�cance of the estimated performance and

the generalizability of the found solution (i.e. the achieved hit rate on previously

unseen data). The choice of the cut-o� value N0 is a trade-o� between the achieved

hit rate on the training data and the generalizability.

The optimization problem (40) is a box-bounded nonconvex global optimization

problem. It is suitable to use derivative free methods, since no analytical expressions

for g[x] and H
+
g[x] are available. In our tests we are using the DIRECT algorithm

described in Section 3.1.

4.4. Experimental Design. Technical analysis of stocks is normally based on

the premise that the market's behavior does not change much over time. While

future movements in stock prices are never copies of the past, the market's way of

responding to new situations is assumed to be similar to the way it has handled

them in the past (Gencay, Stengos (1998)). Since this is not necessarily a valid

assumption the optimization will be performed with a sliding window technique.

The hit rateH+
g
in the object function (39) is computed using the non-interactive

version of the ASTA system, which performs market simulations of trading rules

given in symbolic form. The ASTA system is written in Matlab and has a large

number of technical indicators implemented. The system is thoroughly described in

Hellstr�om (2000a). Examples of usage is found in Hellstr�om (1999a).

The test is utilizing a sliding-window technique with a 2-year training data pe-

riod followed by a 1-year test period. The starting point of the training period is

16

moved between 1990 and 1995 in 1-year steps. This results in six separate mod-

eling/test periods. The presented performance is the total for the six test periods

(1992,...,1997). The purpose of using sliding windows in the optimization is twofold.

First, the stability in the performance can be studied since we get six performance

measures instead of one. Second, the trading rules are allowed to adapt to time-

varying market conditions such as volatility, long-term trends etc. Eighty of the

largest Swedish stocks are included in the test, which provides a total number of

data points of around 111000 (not all stocks have data for the entire period). The

trading rules select a small fraction of these points (date and stock) as suggested

opportunities to buy stocks.

The results for 5-day prediction horizon are presented in Table 1 , with positive

hit rate H+ and number of points N where a trading signal is generated. Sepa-

rate measures for training data and test data are presented in the columns labeled

Htr; Ntr; Hte and Nte. The rightmost column shows the lower 90% con�dence limit1

for the hit rate Hte. The cut-o� value N0, used for the regularization, is set to 100.

Each of the eight rows represents a prediction method. The �rst three rows show

the results for the trading rules resist100, break100 and mav100 described in Section

4.1. The parameters x1; x2; ::: are optimized for best performance on the training

data, using the regularization described above (N0 = 100). The following three

rows show the same trading rules as above, but with no regularization to control

the number of generated trading signals (N0 = 1): resist1, break1 and mav1. Per-

formance for the benchmark methods Naive-5+ and Naive-" are also reported. The

Naive-5+ predictor of the returns for a stock s asserts today's return R
s

5(t) (price

increase since t� 5) as the prediction of R
s

5(t+5). The Naive-" prediction of prices

for a stock s asserts today's price Closes(t) as the best estimate of Closes(t + 5).

To enable comparison of hit rate predictions, the naive predictor is modi�ed so the

best estimate of today's price is assumed to be Closes(t + 5) + ". This means that

the predicted returns Rs

5 are always positive. This naive predictor is denoted below

Naive-�.
The computed optimal parameters for a speci�c Buy rule vary for the six test

periods. The ones computed for test period 1992 are presented in Table 2.

4.5. Results. As expected, the optimized trading rules perform much better

for the training data than for the test data. This e�ect is much more emphasized

for the non-regularized trading rules than for the regularized ones. The di�erence

can be understood as over-�tting of data that can be controlled by the regulariza-

tion. The out-of-sample hit rates Hte show no systematic di�erence between the

two kinds of predictors. The small observed di�erences should be seen rather as

1The lower boundary for a 90% con�dence interval.

17

Table 1: Hit rate and number of selected points for optimized trading rules. Totals

from 6 1-year test periods (1992-1997) with the preceding 2 years for training. 5

days prediction horizon.

Method Htr Ntr Hte Nte 90%�low Hte

resist100 65.82 746 63.44 454 59.55

break100 63.07 1075 55.64 692 52.44

mav100 61.96 715 50.40 371 46.01

resist1 76.84 177 59.83 117 51.82

break1 64.89 786 52.04 417 47.89

mav1 71.55 239 53.75 160 46.94

Naive� e 48.33 196470 50.06 102651 49.80

Naive� 5+ 48.83 84054 49.53 46202 49.14

Table 2: Optimized trading rules for 1992. 5 days prediction horizon.

Method Optimized expression

resist100 xresist(84; 4; 4:06) ^ gvol10 > 0:67

break100 breakout(38; 1:5) > 0 ^ gvol10 > 2:94

mav100 Mavx(5; 83) ^ gvol10 > 0:33

resist1 xresist(42; 6; 1:83) ^ gvol10 > 3:78

break1 breakout(117; 2:5) > 0 ^ gvol10 > 2:5

mav1 Mavx(11; 112) ^ gvol10 > 1:3

18

stochastic
uctuations caused by the low accuracy in the estimation of the hit rates

for the non-regularized trading rules. The lower 90% con�dence limit reveals how

uncertain the hit rates Hte are for these rules. This uncertainty comes from the

low number of predictions generated. None of the non-regularized trading rules can

be said to signi�cantly outperform the benchmark predictors, while the regularized

resist predictor has 63% hit rate, which is signi�cantly higher than the benchmarks.

4.6. Stability of the Found Optima. The experimental setup with sliding

windows gives a stable evaluation of the trading rules. In this section an additional

test of the stability and relevance of the optimized trading rules is performed. In

Table 3, the three regularized trading rules optimized with data from 1990-1991 are

applied not only for 1992 but also for the following years up to 1997. This means

that the optimized rules are regarded as globally valid instead of valid only for the

year following the optimization period. Performance for the benchmark predictors

are also presented for comparison. The results show that the average hit rate for

the trading rules for the six years, is clearly lower than the one achieved by the

sliding-window approach, as shown in Table 1 (the relevant value for comparison is

shown in column Hte). Furthermore, the individual results for each year show no

clear tendency and can be regarded as random variations. These observations give

further credibility to the sliding-window results and show that the optimizations

really are catching patterns and regularities in the data and not only spurious local

optima in random and noisy object functions.

4.7. Summary of the Results. The constrained optimization that avoids too few

selected points is essential, both for practical reasons (since we want to get assistance

in our buy and sell decisions more than a few times per year), and for a reasonably

safe estimate of the expected hit rate out-of-sample. Without safeguarding against

too few points, the found optima gives excellent performance on the training data,

but no signi�cant improvement relative to pure chance on the test data. Further-

more, the results show that the high hit rate achieved with the resist trading rule,

to a large extent is a result of the adaptive modeling with sliding windows.

5. CONCLUSIONS AND FURTHER WORK

Global optimization techniques can be used to improve the performance of trad-

ing algorithms and time series predictions. When the problems are costly to com-

pute, the use of surrogate modeling techniques like the RBF algorithm is promising

and should be further exploited.

In the RBF algorithm, work is needed to avoid too large condition number on the

interpolation matrix for increasing number of sampled points. Also better choices

19

Table 3: Hit rate for trading rules optimized with data from 1990-1991. 5-day

prediction horizon.

Method 92 93 94 95 96 97 Average Hte

resist100 55.1 66.9 59.1 52.8 57.4 56.6 57.6 63.44

break100 54.8 65.1 48.3 46.5 55.8 52.1 54.5 55.64

mav100 45.8 59.8 39.3 44.3 58.7 57.1 50.3 50.40

Naive� e 44.1 55.6 46.7 47.4 53.8 52.1 50.1 50.06

Naive� 5+ 46.7 56.2 45.1 46.0 52.2 49.3 49.5 49.53

of initial set must be investigated, when n is not small. Our goal is to implement a

robust and fast RBF algorithm in both Matlab and Fortran.

We will further test the use of surrogate model techniques for the optimization

of trading algorithms and time series model predictions. It is interesting to use

the regularization techniques described for more advanced prediction methods, e.g.

EXPAR (Exponential Autoregressive) models and for high frequency data.

BIBLIOGRAPHY

1. Bj�orkman, M. and Holmstr�om, K., Global Optimization with the DIRECT Algorithm

in Matlab, Advanced Modeling and Optimization, 1(2), (1999), 17-37.

2. Bj�orkman, M. and Holmstr�om, K., Global Optimization of Costly Nonconvex Func-

tions using Radial Basis Functions, Optimization and Engineering, 2, (2001), To be

published.

3. Blume, L., Easley, D. and O'Hara, M., Market statistics and technical analysis: The

role of volume, Journal of Finance, 49, (1994), 153{181.

4. Brock, W., Lakonishok, J. and LeBaron, B., Simple technical rules and the stochastic

propertites of stock returns, Journal of Finance, 47, (1992), 1731{1764.

5. Campbell, J. Y., Grossman, S. J. and Wang, J., Trading volume and serial correla-

tion in stock returns, Quarterly Journal of Economics, 108, (1993), 905{940.

6. Gencay, R. and Stengos, T., Moving average rules, volume and the predictability of

security returns with feedforward networks, Journal of Forecasting, (1998), 401{414.

7. Gill, P. E., Murray, W., Saunders, M. A. andWright, M. H., User's guide for NPSOL

5.0: A Fortran package for nonlinear programming, Technical Report SOL 86-2,

Revised July 30, 1998, Systems Optimization Laboratory, Department of Operations

Research, Stanford University, Stanford, California 94305-4022, (1998).

20

8. Gutmann, H-M., A radial basis function method for global optimization, Technical

Report DAMTP 1999/NA22, Department of Applied Mathematics and Theoretical

Physics, University of Cambridge, England, (1999).

9. Gutmann, H-M., On the semi-norm of radial basis function interpolants. , Technical

Report DAMTP 2000/NA04, Department of Applied Mathematics, and Theoretical

Physics, University of Cambridge, England, (2000).

10. Hellstr�om, T., A Random Walk through the Stock Market, Licentiate thesis, Ume�a

University, Ume�a Sweden, (1998).

11. Hellstr�om, T., ASTA - a Tool for Development of Stock Prediction Algortihms,

Theory of Stochastic Processes, 5(21), (1999a), 22{32.

12. Hellstr�om, T., Data Snooping in the Stock Market, Theory of Stochastic Processes,

5(21), (1999b), 33{50.

13. Hellstr�om, T., ASTA - User's Reference Guide, Technical Report UMINF-00.16

ISSN-0348-0542, Department of Computing Science Ume�a University, Ume�a Swe-

den, (2000a).

14. Hellstr�om, T., Optimization of Trading Rules with a Penalty Term for Increased

Risk-Adjusted Performance, Advanced Modeling and Optimization, (2000b), 2(3).

15. Hellstr�om, T. and Holmstr�om, K., Parameter Tuning in Trading Algorithms using

ASTA, In Abu-Mostafa, Y. S. , LeBaron, B., Lo, A. W. and Weigend, A. S., (ed),

Computational Finance 1999, Cambridge, MA., MIT Press, (1999).

16. Holmstr�om, K., The TOMLAB Optimization Environment in Matlab, Advanced

Modeling and Optimization, 1(1), (1999a), 47{69.

17. Holmstr�om, K., New Optimization Algorithms and Software., Theory of Stochastic

Processes, 5(21)(1-2), (1999b), 55{63.

18. Holmstr�om, K., The TOMLAB v2.0 Optimization Environment, In K. Holmstr�om

and E. Dotzauer, editors, Proceedings from the 6th Meeting of the Nordic Section

of the Mathematical Programming Society, V�aster�as, 1999. Department of Mathe-

matics and Physics, M�alardalen University, Sweden, (1999c).

19. Holmstr�om, K., TOMLAB v3.0 User's Guide, Technical Report IMa-TOM-2001-01,

Department of Mathematics and Physics, M�alardalen University, Sweden, (2001).

20. Holmstr�om, K. and Bj�orkman, M., The TOMLAB NLPLIB Toolbox for Nonlinear

Programming, Advanced Modeling and Optimization, 1(1), (1999), 70{86.

21

21. Iglehart, D. L. and Voessner, S., Optimization of a trading system using global search

techniques and local optimization, Journal of Computational Intelligence in Finance,

6, (1998), 36{46.

22. Jones, D. R., DIRECT, Encyclopedia of Optimization, (2001). To be published.

23. Jones, D. R., Perttunen, C. D. and Stuckman, B. E., Lipschitzian optimization

without the Lipschitz constant, Journal of Optimization Theory and Applications,

79(1), (1993), 157{181.

24. Jones, D. R., Schonlau, M. and Welch, W. J., EÆcient global optimization of expen-

sive Black-Box functions, Journal of Global Optimization, 13 (1998), 455{492.

25. Karpov, J. M., The relation between price changes and traded volume, Journal of

Financial and Quantitative Analysis, 22, (1987), 109{126.

26. Kaufman, P. J., Trading Systems and Methods, John Wiley and Sons, New York,

(1998).

27. Klir, G.J. and Yuan, B., Fuzzy Sets and Fuzzy Logic. Theory and Applications,

Prentice-Hall, Inc, New Jersey, USA, (1995).

28. Kuo, G. W., Some exact results for moving-average trading rules with applications

to UK indices, In E. Acar and S. Satchell, editors, Advanced Trading Rules, But-

terworth Heinemann, Oxford,(1998), 81{102.

29. Leung, M. T., Daouk, H. and Chen, A.-S., Forecasting stock indices: a comparison

of classi�cation and level estimation methods, International Journal of Forecasting,

16:1,(2000), 73{190.

30. Levich, R. M. and Thomas, L. R., The signi�cance of technical trading-rule pro�ts in

the foreign exchange market: a bootstrap approach, Journal of International Money

and Finance, 12, (1993), 451{474.

31. Powell, M. J. D., The theory of radial basis function approximation in 1990, In W.A.

Light, editor, Advances in Numerical Analysis, Volume 2, Wavelets, Subdivision

Algorithms and Radial Basis Functions, Oxford University Press, (1992), 105{210.

32. Powell, M. J. D., Recent research at Cambridge on radial basis functions, In M. D.

Buhmann, M. Felten, D. Mache, and M. W. M�uller, editors, New Developments in

Approximation Theory, Birkh�auser, Basel, (1999), 215{232.

33. Refenes, A.-P., Testing strategies and metrics, In Refenes, A.-P., editor, Neural

Networks in the Capital Markets, John Wiley & Sons, Chichester, England, (1995),

67{76.

22

34. Zar, J. H., Biostatistical Analysis, Prentice-Hall, Inc, New Jersey, USA, (1999).

Department of Computing Science,

Ume�a University, SE-901 87 Ume�a, Sweden

E-mail: thomash@cs.umu.se

http://www.cs.umu.se/ thomash

Center for Mathematical Modeling, Department of Mathematics and Physics,

M�alardalen University, P.O. Box 883, SE-721 23 V�aster�as, Sweden

E-mail: hkh@mdh.se

http://www.ima.mdh.se/tom

23

