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Introduction 
 
A mobile robot, or vehicle, has 6 degrees of freedom (DOF) expressed by the pose:  
(x, y, z, Roll, Pitch, Yaw).  It is composed of two parts: the position = (x,y,z) and the 
attitude = (Roll, Pitch, Yaw). Informally, Roll can be said to be to the sidewise rotation 
and Pitch the rotation forward or backwards. Yaw, commonly also denoted Heading or 
Orientation, refers to the direction in which the robot moves in the x-y plane. 
For a robot on a two dimensional surface, the 2D pose (x,y,θ), where θ denotes the 
heading, is sufficient to describe its motion. It is normally defined in a global coordinate 
system as illustrated below. Note that θ is NOT an angular polar coordinate for the 
position, instead it points in the forward direction of the robot.  

 

 
Figure 1. The robot’s pose (x,y,θ), given in a global coordinate system 
 
For a robot with differential drive, the direction of motion is controlled by separately 
controlling speeds vl  and vr of the left and right wheels respectively. Many such robots 
have two wheels connected directly to motors, and in addition some kind of support 
wheel to keep the robot upright. Common examples of robot with differential drive are 
the Khepera robot and the Roomba vacuum-cleaning robot shown in Figure 2. 
  

   
Figure 2. A Khepera robot and a Roomba vacuum-cleaning robot, both with two wheels 
and differential drive 
 
The forward kinematics equations for a robot (or other vehicle) with differential drive are 
used to solve the following problem: 
 
Standing in the pose (x, y, θ) at time t, determine the pose (x’, y’, θ’) at time t + δ t  
given the control parameters vl and vr . 
 
The solution is typically used for automatic control of a robot such that it follows a 
wanted trajectory. 

 y 

 x 
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Derivation of the forward kinematics equations 
 
We start by looking at how a single rotating wheel moves. In Figure 3, a wheel, seen 
from above, is illustrated together with a local coordinate system. Motion along the Y 
axis is known as roll, everything else is known as slip. In the following we will assume 
that no slip occurs. 
 

 
Figure 3. A single rotating wheel rolls along the local Y axis 
 
For one full turn of the wheel, the center moves a distance 2πrw where rw is the radius of 
the wheel. The implicit assumption is that no slip occurs and also that the motion is truly 
2-dimensional. This means that the surface is flat and even.  
  
For a robot with many rolling wheels, each wheel must roll along its own Y axis, and a 
common center point for rotation must exist, as illustrated in Figure 4. This point is 
called ICC (Instantaneous Center of Curvature) or ICR (Instantaneous Center of 
Rotation). The speed of each wheel has to be consistent with a rigid rotation of the 
vehicle in the sense that the wheels do not move relative to each other. 
 

  
Figure 4. Two rotating wheels must share a common point of rotation 
 
For a robot with differential drive, a pair of wheels is mounted on a common axis, see 
Figure 5. If the wheels are rotating on ground (i.e. there is no slipping), then there is a 
point ICC  (provided vr ≠vl ) around which both wheels rotate. By varying vr and vl, ICC 
moves and different trajectories for the robot are chosen. 
 
A central concept for the derivation of the kinematics equations is the Angular velocity ω 
of the robot. It is defined as follows: Each wheel rotates around ICC along a circle with 
radius r.   

local Y axis  

ICC 

local X axis  
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Figure 5. Wheel configuration for a robot with differential drive 
 
 
The wheel speed v = 2πr / T where T is the time it would take to complete one full turn 
around ICC. The angular velocity ω is defined as 2π / T and typically has the unit radians 
(or degrees) per second. Combing the equations for v and ω yields ω = 2π / T = 2πr /rT  = 
v/r and consequently 
 
                                                             ω r = v.            1) 
 
Note that plugging in r and v for both left and right wheel result in the same ω (otherwise 
the wheels would move relative to each other). Hence, the following equations hold: 
 

ω (R+l/2) = vr               2) 
ω (R - l/2) = vl              3) 

 
where R is the distance between ICC and the midpoint of the wheel axis, and l is the 
length of the wheel axis (see Figure 6). Solving for ω and R yields 
 

R= l/2(vl +vr) / (vr- vl)             4) 
ω = (vr – vl) / l              5) 
 

 
Figure 6. When left and right wheel rotate with different speeds, the robot rotates around 
a common point denoted ICC 
 
 
These expressions for radius R and angular velocity ω contain most necessary 
information to solve the forward kinematics problem. Assume that the robot rotates 

θ 

vr  

vl  l/2 

(x,y) 

ω 
ICC 

R 

vr
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ω
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around ICC with angular velocity ω for δt seconds (see Figure 7). This will change the 
heading according to:  
 

θ’=  ωδt + θ              6) 
 
where the center of rotation ICC is given by basic trigonometry as: 
 

ICC = [ICCx, ICCy] = [ x-R sinθ, y+R cosθ].           7) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Rotating the robot ωδt degrees around ICC 
 
Given a starting position (x, y), the new position (x’, y’) can be computed using a 2D 
rotational matrix. Rotation around ICC with angular velocity ω for δt seconds yields the 
following position at time t + δt: 
 

              8) 
 
Hence, the new pose (x’, y’, θ’) can be computed from equations 6) and 8) given ω, δt, R. 
ω is given by Equation 5, but wheel speeds vl and vr are often hard to measure accurately. 
Instead, the rotation of each wheel can be measured, for instance by so called wheel 
encoders. These sensors are mounted on the wheel axes and deliver a binary signal for 
each step the wheels rotate (for an indoor robot, step is typically in the order of 0.1 mm). 
The signals are fed to digital counters such that vδt,  the distances travelled from time t to 
t + δt, can be derived from the increase in counter value n: n step = vδt. From this, v can 
be computed as: 
 

v = n step/δt.             9) 
 
Insertion in 3) and 4) yields: 
 

          R= l/2 (vl + vr ) / (vr – vl ) = l/2(nl + nr ) / (nr – nl )           10) 
        ωδt = (vr – vl ) δt / l = (nr – nl ) step  / l            11) 

 
 x’        cos(ωδt)     -sin(ωδt)        x-ICCx          ICCx 
 y’  =   sin(ωδt)       cos(ωδt)        y-ICCy    +   ICCy    . 
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where nl  and nr, and vl  and vr are the encoder counts and speeds for left and right wheels 
respectively. Thus, if the robot is standing in pose (x,y,θ) and moves nl and nr counts 
during a time step δt, the new pose (x’,y’,θ’) is given by 
 
 

       12) 
 
where 
 
R = l/2 (nl + nr ) / (nr – nl )              13) 
ωδt = (nr – nl ) step  / l               14)  
ICC = [ x-R sinθ, y+R cosθ ].                 15)
  
 
Note that equations 12)-15) are independent of δt (which is normally hard to estimate 
accurately). 
 
The derived kinematics equations depend heavily on the design and geometry of the 
robot or vehicle. Different types of designs lead to entirely different equations. In 
Appendix 1, forward kinematics equations for a vehicle with articulated steering are 
derived. 

 

x’        cos(ωδt)       - sin(ωδt)      0       x-ICCx             ICCx 
y’   =  sin(ωδt)          cos(ωδt)      0       y-ICCy    +      ICCy 
θ’              0                     0            1           θ                  ωδt  
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Inverse kinematics 
 
While the forward kinematics equations provide an updated pose given certain wheel 
speeds (or encoder counts), we can also formulate an inverse problem: 
 
Standing in pose (x,y,θ) at time t, determine control parameters vl and vr such that 
the pose at time t + δ t is (x’,y’,θ’). 
 
This problem most often has no solution, in the sense that the robot can not reach an 
arbitrary pose by simply setting appropriate values for wheels speeds vl and vr  and let the 
motors run for a while. For some robots and vehicles it IS possible, and these vehicles are 
called Holonomic. However, most vehicles and robots are non-holonomic. For instance, a 
car is non-holonomic and this is why pocket parking is so hard. 
 
For a non-holonomic robot, there are ways to increase the constrained mobility. If we 
allow a sequence of different (vl , vr), there are normally infinitely many ways to move 
from one pose to another. We will study the special case with a robot controlled by a 
differential drive. By inserting values in Equations 12-15, we can identify two special 
cases of control: 
 
1.  
vr = vl  ⇒ nr = nl  ⇒ R = ∞, ωδt =0 ⇒ The robot moves in a straight line and θ remains 
the same. 
 
2.  
vr = – vl  ⇒  nr = – nl  ⇒ R= 0, ωδt = 2nl step  / l  and  ICC = [ICCx, ICCy] = [x, y] ⇒ 
x’ = x, y’ = y, θ’ = θ + ωδt ⇒ The robot rotates in place about ICC. I.e.: any θ is 
reachable while (x,y) is unchanged. 
 
By combining these two operations, the following algorithm can be used to reach any 
target pose from any starting pose: 
 
1. Rotate until the robot’s orientation coincides with the line from the starting position to 
the target position:  
vr = – vl = vrot 2. Drive straight until the robot’s position coincides with the target position: 
vr = vl = vahead  3. Rotate until  the robot’s orientation coincides with the target orientation: 
vr = – vl = vrot  
where vrot and vahead can be chosen arbitrarily. 
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Appendix 1: Forward kinematics equations for an 
articulated vehicle 
 
In this section forward kinematics equations for an articulated vehicle are derived. Such a 
vehicle consists of two separate sections connected by an articulated joint. Steering is 
accomplished by controlling the angle of this joint. Articulated vehicles are most 
common in heavy working vehicles such as dumpers and forest machines (Figure 1). 
 

 
 
Figure 1: Forest machine with articulated steering 
 
For slip free motion, all wheels roll in full contact with the ground, in a direction 
perpendicular to its axis of rotation. The distance covered can be computed from the size 
and rotational speed of the wheel. For many reasons, this is an idealized situation. Slip is 
often significant and furthermore hard to model. For this reason, slip free motion is often 
assumed when solving the kind of problems stated above. 
 
For a multi-wheel vehicle with no slip, the intersection of the wheel axes is the center 
point for rotation when the vehicle moves. This point is called ICC (Instantaneous 
Center of Curvature) or ICR (Instantaneous Center of Rotation). In many cases, totally 
slip free motion is not geometrically possible. The situation for an articulated vehicle 
with four wheel axes is illustrated in Figure 2.  
 
The varying steering angle φ makes it impossible to construct the vehicle such that the 
axes intersect in one point. To avoid modeling slip, a common approach is to assume two 
virtual axes located in between the real axes in the front and rear part of the vehicle. 
Another complication is the width of the wheels. The outer part of a wheel is bound to 
travel a longer distance than the inner part in all curves. Hence, they will slip. 
Furthermore, the speeds of all wheels have to be controlled such that slip free motion is 
at least approximately possible. The outermost wheels have to rotate faster than the 
innermost ones, and the rear wheels have to rotate slower than the front wheels 
(assuming a longer rear part as in Figure 2). Depending on the mechanical construction 
and the control system of the vehicle, this is a more or less valid assumption. The 
following kinematics equations are derived with all above mentioned idealized 
assumptions. 
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Figure 2. Derivation of radius of rotation for an articulated vehicle with steering angle φ, 
front length a and rear length b. 
 
The center of each (virtual) axis rotates around ICC along a circle with radius r. For an 
articulated vehicle, r is given by the geometry of the vehicle and the steering angle as 
illustrated in Figure 2. For the front axis, radius rf is given by 
 
rf = (a+b/cosφ) / tanφ.               [1] 
 
For the rear axis, radius rr is given by       
 
rr = (a+b/cosφ) / sinφ – b tanφ.             [2] 
 
Under the assumptions above, it suffices to study the motion of the front part of the 
vehicle, since the motion of the rear part is given by the geometry of the vehicle. Given a 
vehicle pose (x,y,θ) measured at the middle of the virtual front axis at time t, coordinates 
(XICC, YICC) for ICC is given by 
 
(XICC, YICC) = ( x–r sinθ, y+r cosθ ),             [3] 
 
where r for simplicity of notation denotes the radius rf. A motion from pose (x,y,θ) at 
time t to pose (x’,y’,θ’) at time t + δt is illustrated in Figure 3. 
Since the vehicle moves along a circle, it will be useful to have an expression for the 
angular velocity ω defined as 2π / T (unit: radians/second), where T is the time it would 
take to complete one full turn around ICC.  
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The known vehicle speed v is assumed to be the speed at which the midpoint of the front 
axis moves (this is an additional assumption that may or may not be sufficiently valid). It 
can thus be expressed as 2πr / T, which gives the following expression for ω: 
 
ω = v/r.                [4] 
    
The new heading θ’ at t + δt is given by 
 
θ’=  ωδt + θ.                           [5] 
 
 
 

 
Figure 3. Rotation around ICC by an angle ωδt. The vehicle pose changes from (x,y,θ) to 
(x’,y’,θ’) expressed in a global coordinate system (top left). The coordinates of ICC are  
(x – r sinθ, y + r cosθ).  

 
 
The new position (x’,y’) at t + δt is computed by a 2D rotation of the point (x,y) by ωδt 
degrees around the point ICC: 
 
x’= cos(ωδt)(x – XICC) – sin(ωδt)(y – YICC) + XICC             [6] 
y’= sin(ωδt)(x – XICC)  + cos(ωδt)(y – YICC) + YICC.            [7] 
 
To summarize and return to the original problem for the articulated vehicle in Figure 2: 
Given an initial pose (x,y,θ), a reported vehicle speed v and a steering angle φ at time t,  
the pose (x’,y’,θ’) at time t + δt can be estimated by the following algorithm: 
1. r = (a + b/cosφ) / tanφ  
2. ω = v/r 
3. [XICC, YICC] = [ x–r sinθ, y+r cosθ] 
4. θ’ =  ωδt + θ 
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5. x’ = cos(ωδt)(x – XICC) – sin(ωδt)(y – YICC) + XICC  
6. y’ = sin(ωδt)(x – XICC) + cos(ωδt)(y – YICC) + YICC  
 
As mentioned above, the derivation of the new pose makes several assumptions: 
1. Assuming slip free motion (ignoring geometrical impossibilities, tires with finite  

width, inconsistent front and rear wheel speed,  and slippery ground conditions). 
2. The derivation of the equations uses two virtual wheel axes located in between the  

real wheel axes. 
3. The value v is assumed to be the speed of the front part of the vehicle. Often, the    
          available speed value is the estimated vehicle speed, based on the engine speed and  
          the transmission. This value is not necessarily the same as the speed of the front  
          part. 


