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Abstract. An overlooked problem in Learning From Demonstration is anbi-
guity that arises, for instance, when the robot is equippid more sensors than
necessary for a certain task. Simply trying to repeat aketspof a demonstration
is seldom what the human teacher wants, and without additioformation, it is
hard for the robot to know which features are relevant andlwbhould be ignored.
This means that a single demonstration maps to severataifféehaviours the
teacher might have intended. This one-to-many (or manyday) mapping from a
demonstration (or several demonstrations) into possitdmded behaviours is the
ambiguity that is the topic of this paper. Ambiguity is defirees the size of the cur-
rent hypothesis space. We investigate the nature of thegaityofor different kinds
of hypothesis spaces and how it is reduced by a new conceptrigaalgorithm.
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Introduction

Learning from Demonstratio(LfD) is a well established robot learning technique (see
forinstance [1] for an excellent overview). Within LfD a hamteacher provides demon-
strations which reflect the behaviour necessary for thetrabaccomplish a specific
task. The robot observes and identifies the demonstratimhsahen supposed to learn
such that it can repeat the behaviour in new, similar but eceasarily identical, situa-
tions. In order to simplify LfD, the robot often has a numb&pre-programmed param-
eterised behaviour primitives [2,3,4,5]. An example of ghhievel behaviour primitive
is a robot’s ability to grip an object, where the parametetté behaviour primitivgrip
specify the object to be gripped. A primitive lilggip would contain programme code
that enables the robot to locate an object, navigate towaedsl grip it. A major part
of LfD is the identification of a primitive and its associatggrameter values, given one
or several demonstrations. This process is often denotbdfssviour recognitiormnd a
number of different techniques may be used (see for inst@e,8]). In what follows
we assume that behaviour recognition is satisfactorilpagaished. Our interest lies in
the connection between the demonstrations and the teaghtmtion. The problem is
illustrated by the following simplified scenario in whichemther demonstrates a wanted
robot behaviour by remote-controlling the robot. The rdbglaced in a room with two
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types of objectsballs and cubes With its camera the robot can determine the relative
location and type of objects and it can distinguish betwéerthree object colourgd,
blue andgreen The teacher’s aim is to teach the robot to collect the ballsé room and
shows this by a demonstration. The teacher remote-contrelsobot towards a green
ball and grips it. How should the robot behave in order to a¢plee demonstrated be-
haviour? By gripping a green ball (and ignoring the blue adlilalls)? By gripping a
ball of any colour? By gripping a green object of any type? Bpping a ball or a cube
of any colour? Without any type of bias or additional infotioa there is no reason for
the robot to prefer any of these alternatives for the othEras, a single demonstration
maps to several different behaviours the teacher might in@naded. This one-to-many
(or many-to-many) mapping from a demonstration (or sew@galonstrations) into pos-
sibly intended behaviours is the ambiguity that is the tapihis paper. It is quite evident
that ambiguity can prevent a robot from performing its taslaisatisfactory way. We
investigate the nature of the ambiguity arising from the-tmenany mapping illustrated
above and how it is reduced in the learning process.

The paper is organised as follows. In Section 1 we go throalgted research and
different notions of ambiguity. In Section 2 we define amlitigas investigated in this
paper, formulate restricted hypothesis spaces and prasew concept learning algo-
rithm. In Section 3 we analyse how ambiguity for differemtds of hypothesis spaces is
reduced during the learning process. Section 4 gives agsinal of the investigations in
this paper and future research tasks.

1. Related research

In the literature the problem of ambiguity in LfD is acknowtged but to the best of
our knowledge there has been no explicit investigationgtbieMost often, sensors and
perception are tailored to specific tasks, and ambiguityasdfore most often not a real
issue. In the example given in the introduction, the colamser is irrelevant for the
intended task of collecting balls of any colour, and remguime colour sensor would
indeed make the discussion about ambiguity unnecessageyrdiiot may successfully
repeat the intended behaviour by consideafigperceived aspects (i.e. thgpepercept)
of the demonstration. However, a robot capable of learnitegge number of different
tasks has to be equipped with a large number of sensors aceppien abilities. Simply
copying as many aspects of a demonstration as possiblestipnotwhat the human
teacher wants the robot to do.

It is important to distinguish the used meaning of the wordguity from other
uses in robot learning. Ambiguity is sometimes used to detiw problems that appear
due to insufficient sensing or perception. Bad colour pareepnay for instance result
in a one-to-many mapping from demonstrations to intendd@eurs. A similar am-
biguity may appear due to differences in teacher and robspeetives during demon-
strations (see [12]). For example, a visual occlusion cbiddk the teacher’s view of a
shared workspace such that several demonstrations aiffsrom the teacher’s point of
view, look identical from the robot’s point of view. The terambiguity is also used to
describe the phenomenon that one natural language ser#@mbave several meanings,
which can be problematic also in verbal human robot intéacinother source of un-
certainty which is sometimes denoted ambiguity (e.g. iff)[ls3caused by inconsisten-



cies between several demonstrations. One common appwdehltwith such ambiguity
is to provide several demonstrations and let the robot detheecommon denominators
such that the ambiguity is reduced or eliminated. Howewer ambiguity we deal with
in this paper would not be solved by improved perception ofgady consistent demon-
strations. Not even a human being with superior perceptionfor certain determine
the intention of a teacher who grips a green ball. The ind@nis simply not uniquely
described by the demonstration.

2. Concept Learning for LfD

Concept learning is a machine learning technique in whiehdgfinition of a concept is

acquired through positive and negative training examplekai concept (see [9]). Al-

though concept learning is not commonly used in practicadhimee learning, it provides

insight into the characteristics of hypothesis selectind & useful for our analysis of
ambiguity. The learning process is formulated as a problesearching through a pre-
defined space of potential hypotheses for the hypothedid#st matches the training
examples. We adopt this problem formulation to LfD with teadher's demonstrations
taking the role as positive training examples and all thesipbsintended behaviours tak-
ing the role as all potential hypotheses. In the followindfing give some preliminaries
and define the necessary notions and later give an illustrakiample.

Let A and B be two sets. The inclusion of in B is denoted byd C B, while the
strict inclusion is denoted hyf C B. The empty setis denoted ByBy A\ B we denote
the set difference ofl andB. By 24 we denote the power set df, that is, the set of alll
subsets ofd. The Cartesian product of a finite family of sets, A, ..., A,,, denoted by
Ay x Ay x ... x A, isdefined ag (a1, as,...,a,) | a; € A;;1 <i <n}. Asingleton
is a setA with a single element; if4 = {a} we simply writea. The cardinality of a set
Ais denoted byA|.

Let Vi,...,V, be a family of finite value sets. A value sBtmay contain colour
values, such a®d, blue, greenfor example.

Definition 1. For a given family of finite value sefs,, .. ., Vi, aninstanceis ak-tuple
(a1,...,ax), where eaclu; is a singleton fronV;, 1 <i < k.

That is, an instance is a tuple of values from the corresponeilue sets. In LD,
the parameter values to a behaviour primitive can be reptedas an instance. Conse-
quently, a demonstration is represented by an instancendine of the behaviour primi-
tive may be viewed as an extra parameter, but is in this papetdrity reasons assumed
to be already identified.

Definition 2. For a family of finite value set¥, ..., V}, theinstance spacd is the
Cartesian product of all value sets, thatlisy V7 x V5 X ... x V.

That is, the instance spaces the set of all instances over the value déts . ., Vj.
The size ofl is
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Definition 3. For a given instance spade a hypothesish is a subset of the instance
space, thatis) C 1.

A hypothesis corresponds to a possible intention of theénerad hehypothesis space
is the set of all possible hypotheses.

Definition 4. For a given instance spaéetheunrestricted hypothesis spaisegiven by
H=2"\0.

Thatis, the unrestricted hypothesis space comprisessiipie non-empty hypothe-
ses. The size off is

|H| =21l —1.

Different kinds of hypothesis spaces can be defined foriceatgplications. In what
follows we simply writehypothesis spac# if the considered hypothesis space can be
of any type.

In terms of concept learning, the purpose of LD is to learmaoceptC' which is a
subset of the instance spakeghat is,C C I, and which matches the teacher’s intention
as shown by the demonstrations. Given a set of training ebesofiC, the problem faced
by the robot is to hypothesige. The conceptto be learned can also be seen as a Boolean
valued function defined over the instance spgge:I — {0,1}, wheref.(:) = 1 for all
instances € I that belong to the conceptarid:) = 0 for all other instances. A concept
learning algorithm finds a hypothesis functiin: 7 — {0, 1} by searching through the
hypothesis spac# . For a successfully learned hypothesis, we hawe) = f.(:) for
all . in I. That is, a successfully learned hypothesis comprisesstthinces for which
fe(t) =1.

Let us consider the example given in the introduction agaire two parameters
to the behaviour primitivegrip, a; (representing the type of the object) amg (rep-
resenting the colour of the object) take values from theevaletsl; = {cube, ball}
andVa = {red,blue, green}, respectively. The teacher’s demonstration of gripping
a green ball is represented by the instadce- (ball, green). The instance space is
I = {(cube,red), (cube,blue), (cube, green), (ball, red), (ball, blue), (ball, green)}.
The intention of the teacher “grip a ball of any colour” capends to the subset
C = {(ball, red), (ball, blue), (ball, green)}, which is the concept to be learned. When
any of the instances i6' are parameters to ttggip behaviour primitive, the robot will
“repeat” the demonstrated behaviour.

Figure 1 depicts the instance spacef our example, consisting of six instances.
Furthermore, four hypothesés, hs, hs andh, are illustrated (there are in total 63 hy-
potheses in the unrestricted hypothesis spdgewhere each hypothesis corresponds
to a possible intention of the teacher. Hypothésisorresponds to the intention “grip
a green ball” h, corresponds to “grip a ball of any colouriz corresponds to “grip a
green object”, and, corresponds to “grip an object of any type and colour”. Hjesis
hs represents the behaviour to be learned in this example.&duhér's demonstration
d = (ball, green) is an element of all four hypothesks, ho, hs andhy. That s, the sin-
gle demonstratiod is ambiguous in the sense that it maps one-to-maty.tdhe robot
cannot determine one unigue hypothesis but is left withredyp®@ssible hypotheses.

We define ambiguity as the size of a given hypothesis space.
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Figure 1. Relationships between the instance spheaad the hypothesés , ha, h3, h4 given the demonstra-
tion d of gripping a green ball.

Definition 5. For a given hypothesis spaég ambiguityA of H is given by the size of
H,thatis,A = |H|.

Without any demonstrations the hypotheses in a hypothpaised? represent all
possibly intended behaviours of a teacher, that is, thiaimiypothesis spacH is max-
imal ambiguous. In Section 3 we analyse the ambiguity dutfigglearning process as
demonstrations are given and the hypothesis space suadgsstirinks. In the exam-
ple above, the ambiguity of the initial unrestricted hymstis spacé? computes to a
modest2® = 64. However,| | suffers from combinatorial explosion when the num-
ber of parameters to a behaviour primitive increases arnldéonumber of the elements
in a value set increases. By simply adding a third parametevith 4 possible values
from a value set/, the size of the initial unrestricted hypothesis spﬁﬁeincreases to
224 — 1 =16777215.

2.1. Restricted Hypothesis Spaces

In this subsection we define restricted hypothesis spaegtsth not the powerset of a
given instance set. This restricts the size of the hypathsgsice and thus ambiguity.

Definition 6. For given value set¥1,...,V}, the cart setsCy, ..., C} are given by
C; C2Vi\ ), forl <i<k.

Definition 7. For given cart set§’;, ..., Cy, therestricted hypothesis spadé is the
Cartesian product of all cart sets, thatis,= C; x Co x ... x C.

Any hypothesis spacH that is the Cartesian product of some cart sets is referred to
asCartesian hypothesis spaéé. The size of a Cartesian hypothesis spacis
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Let us consider again our example in the introduction withu@asetsV; =
{cube,ball} and Vo = {red, blue, green} (in the following red, blue, green are ab-
breviated as, b, g, respectively). Let the cart sets b8 = {cube, ball, {cube, ball}}
andCy = {r,b,g,{r,b},{r,9},{b,g},{r,b,g}}. The restricted hypothesis space is
H' = {(cube,r), (cube,b), (cube, g), (cube, {r,b}), (cube, {r, g}), (cube, {b, g}), (cube,
{r,b,g}), (ball,r), (ball,b), (ball, g), (ball, {r,b}), (ball,{r, g}), (ball,{b, g}), (ball,
{r,b,g}), ({cube, ball},r), ({cube, ball},b), ({cube, ball}, g), ({cube, ball}, {r,b}),
({cube, ball}, {r, g}), ({cube, ball}, {b, g}), ({cube, ball},{r,b,g})}.

As can be seen, the hypotheseglinmay contain sets of values. This should be seen
as a shorthand notation for all possible instances that eafiorimed by combinations
of values in a hypothesis. For example, hypothéside, {red, blue}) is a shorthand
for {(cube, red), (cube, blue) }. Just as in the case with the unrestricted hypothesis space
H (see Definition 4), applying this hypothesis to thep primitive makes the robot
look for and grip a red or blue cube, whichever it finds firsteTiypotheses in the
restricted hypothesis spaée may represent intentions like “grip a ball of any colour”
(i.e. (ball, {red, blue, green})), “grip a green object” (i.e({cube, ball}, green)), and
“grip a blue or green ball” (i.e(ball, {blue, green})). Note that some intentions that can
be expressed in the unrestricted hypothesis spacannot be expressed in the restricted
hypothesis spacH’, e.g. “grip a blue cube or a red ball”.

The author in [9] deals with less detailed hypotheses, asses the short no-
tation ? for a set containing all elements in a corresponding valde Ber exam-
ple, the hypothesi$?, green) is a shorthand fof (cube, green), (ball, green)}. Us-
ing the 7 notation gives us an even more restricted hypothesis spga@ying the
cart sets in Definition 6 to the approach in [9] leads to thdofdihg cart sets
C1 = {cube,ball,?} and Cy = {red,blue, green,?} and the associated Carte-
sian hypothesis space B = {(cube,red), (cube,blue), (cube, green), (cube,?),
(ball,red), (ball, blue), (ball, green), (ball, ?), (?,red), (7, blue), (?, green), (?,7)}.

With H we may express intentions like “grip a ball of any colouré(i(ball, 7)),
and “grip a green object” (i.€7, green)). The intentions “grip a blue or green ball” and
“grip a blue cube or a red ball” cannot be expressed with Hygsis spacé!” . These
limitations are the price we have to pay for reducing the sfzbe hypothesis space and
thereby making the learning problem easier.

2.2. A Concept Learning Algorithm

A general algorithm for concept learning is thandidate eliminatioralgorithm (see
[9]). While being applicable to our LfD scenario, we propasehe following a new
algorithm tailored to our focus on ambiguity. In the alglonit, the demonstrations serve
as positive examples of the concept to be learned (the iatehdhaviour) and are used
to successively shrink the hypothesis space [Bywe denote a hypothesis spabeat
time j, for j > 0. The initial hypothesis spadé, is the set of all possible instances (e.g.
H,H' or H" as defined above). At each time step demonstration is given and a new
(smaller) hypothesis spacg; ,; is constructed.

Definition 8. Let the current hypothesis space He and let(d, ..., d,,) be the demon-
stration at time steg, j > 0. The successor hypothesis spaég_; is given by
Hjy1 = Hj \ M, whereM = {(eq, ...,ex) € H; | thereexistsd; ¢ e;,1 <i <k}.



l.e., H;+1 is H; minus all hypotheses for which at least one parameter does no
contain the corresponding parameter in the demonstrdliefinition 8 is easily turned
into a straightforward algorithm.

As we have seen, the hypothesis spaces often are enormaluexplicit compu-
tation of the (successor) hypothesis spaces is seldom iblieatternative. The candi-
date elimination algorithm circumvents explicit compidatby relying on a generality-
ordering of hypotheses. If such an ordering exists, it ificeht to update two boundary
sets for the hypothesis space. We give an alternative #hgothat usegsuccessor) cart
setsto implicitly define the successor hypothesis spaces at tiehstep. The primary
advantage compared to the candidate elimination algoiigthat the size of the hypoth-
esis space at each time step is easily computed. This is abspeerest since we define
the ambiguity as the size of the current hypothesis spaeel{sénition 5).

Definition 9. Let C1, ..., Cy be cart sets (see Definition 6). The cart sets at time 0 are
denoted byC o, ..., Ck0, WhereC; o = C;, 1 <i < k.
For a given demonstratiofdly, . .., dy) at timej, j > 0, the successor cart sets

Cij+1, 1 <i<karegivenbyC; ;11 ={e€C;;|dice, 1 <i<k,j >0}

Theorem 1 states that we can compute the (successor) hgotipaces from the
given (successor) cart sets.

Theorem 1. a) For given cart setg”; o, 1 < i < k, the Cartesian hypothesis spafg
is given byHy = Ci o x ... x Cio.

b) For given cart set€”; ;11,1 < i < k,j > 0, the Cartesian hypothesis space
Hj+1 is given bij+1 = Cl,j+1 X Cg,j+1 X ... X Cn,j+1-

Proof. Part a) of the theorem follows from Definition 7 and@; = C;,1 < i < k).
For part b) let(ds,...,d,) be a demonstration at timg Definition 7 of a Cartesian
hypothesis space can be rewritter¥as= {(e1, ...,e,)|e; € W, ;,1 <i <k,j > 0}.
Definition 8 of the successor hypotheses space can be mwrs H; ., =
{(e1,..,en) € H; | di € e;,1 < i < k}. This can be combined téf;;, =
{( ...,en) S {(61, ...,en)|ei S Wi,ja 1<i <k, 5> 0} | di €e;,1 <1< k/’} =
{(e1,....,en) | &s € W, and d; € e;,1 <1i < k,j > 0} = (insert Definition 9)
{( ...,en) | e; € Wi7j+1, 1<+ < k/’,j > 0} = Wl,j+1 X W27j+1 X ... X Wn,j+1. O

Theorem 1 can be used to construct a simple algorithm thagngi current hypoth-
esis space and a demonstration, generates an updated ésipapace. The algorithm
can be applied repeatedly for several demonstrationsn@iveartesian hypothesis space
H; and a demonstration at timje Algorithm 1 computesi; ;.

Algorithm 1
Input: H; given by the cart setS; ;,1 < i < n and a demonstratiof, . .., d,)
Output:H ;4
Method:C’mH = {6 S Ci_’j | d; € 6},1 <i<n.
Hj+1 = Cl,j+1 X Cg7j+1 X ... X Cn,j+1-



3. Reduction of Ambiguity for Different Hypothesis Spaces

In this section we illustrate how an LfD process, performgdAbgorithm 1, gradu-
ally reduces ambiguity as new demonstrations are pres¢émtée robot. We will com-
pare the reduction of ambiguity for four different hypotisespaces: the unrestricted
hypothesis spacél (see Definition 4), the two Cartesian hypothesis spad¢esand
H" (see Definition 7 and Subsection 2.1) and another Cartesipothesis spacé”’
whose cart sets are identical to the value sets(l.e- V. The assumed learning sce-
nario contains four value set¥y = {cube,ball}, Vo = {red, green,blue}, V5 =
{s,m,l,zl},Vy = {a,b,c,d,e, f}. Instance spacd is the Cartesian product of
these four value sets and has 144 elements, for exathplg green, s, a). Hypoth-
esis spacel/ is given by 2’ \ (. One of the2' — 1 ~ 10% elements of 4

is {(ball, green, s, a), (cube, green, s,b), (cube, blue, s,b)}. For H', we haveC; =
{cube, ball, {cube, ball}},Co = {red, green, {red, green},blue, {red, blue}, {green,
blue}, {red, green,blue}}, Cs = {s,m,{s,m},,{s,1},{m, 1}, {s,m,l},xl,{s, xl},
{m,al}, {s,m,xl},{l, xl}, {s, 1, xl},{m,, xl}, {s,m,l,zl}}. Cy comprises all 63
combinations of values frovy. H' is defined as the Cartesian product of these four
cart sets. One of the 19845 elementsibf is {cube, {red, blue}, zl,b}. For H', we
haveC; = {cube, ball, {cube,ball}}, Co = {red, green,blue, {red, green,blue}},
Cs = {s,m,l,xl,{s,m,l,zl}}, Cy = {a,b,c,d,e, f,{a,b,c,d e, f}}. To simplify
notation, the last element of each cart set (the “wild cais'Jenoted by?. H” is the
Cartesian product of the four cart sets. One of the 420 elewd” is (ball,?, zl, a).
For H", we haveC; = {cube,ball}, Cy = {red, green,blue}, Cs = {s,m,l,xzl},
Cy = {a,b,c,d, e, f}. One of the 144 elements &f " is (ball, red, xl, c).

For each presented demonstration, Algorithm 1 is appliédfamsize of the hypoth-
esis space is reduced. The nature of this reduction depentie dype of the hypothesis
space. In Figure 2, the result of learning with 12 fixed dertratisns is shown. Fof/,
each demonstration reducH§j|, j > 0, almost exactly by a factor 2 (a discrepancy
obviously occurs Whefﬁj| is an odd number). Any, not already rejected, element of the
instance spacé is at any moment element of half of the total number of hypstisen
the current hypothesis space. A demonstration will thessébways result in a rejection
of half of the hypotheses. With a logarithmic scale, thisvehap as a straight line in
the graph in Figure 2 (to increase readability, 100 is sabtchfrom the values plotted
for H). The hypothesis spacés, H andH' are altogether denoted in the following
by H*. The reduction of /| is more complex. The initiglfg| (shown to the far left
in the diagram folDemonstratior#=0) is smaller then fol, which is obvious since
H are all strict subsets dfl,. Furthermore, the reduction is better than linear, which
is related to the generalisation ability that comes withrieted hypothesis spaces. For
H there is no generalisation such that a demonstration daésfhence the preference
of instances that are similar to the current demonstrafibis corresponds to rote learn-
ing (see [10]). For the restricted hypothesis spad¢s; > 0, one demonstration may
match different number of hypotheses and the reductiondspéevary. For H', a sin-
gle demonstration is sufficient to uniquely identify one affesis, which is identical to
the demonstration. The size of the hypothesis space coestygdrops to 1 already after
one demonstration.
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Figure 2. sze of th(/e/ hypoth{({a{sis space as 12 demonstration sucdgsaiegoresented to the robot. From top
to bottom,H, H', H andH .

4. Summary and Conclusions

We have given a formal description of ambiguity in LfD. Ambity is defined as the size
of the current hypothesis space. Concept learning can littaseduce the size, prefer-
ably down to size 1 which means that the robot has no doubthdghaviour the human
teacher wants the robot to repeat. Learning algorithms as@lgorithm 1, construct an
updated hypothesis space by removing hypotheses thatcanesistent with the demon-
strations. However, there are fundamental limitationgtiee way of reducing ambiguity
with unrestricted hypothesis spaces. A demonstration cnremove hypotheses that
are inconsistent with the demonstration. This leads to dlentg/pothesis space, but the
remaining hypotheses are more general than the ones remaveihctice this means
that it is impossible to learn to ignore a parameter or ceiparameter values. Consider
for example trying to teach a robot to grip a green ball, ikicapable of distinguish-
ing between 100 different colours. There is no way to rembeed9 incorrect colours
from the hypotheses in the hypothesis space by using deratioss of the wanted be-
haviour only. The standard approach in machine learning isttoducebiasinto the
learning. One major type of bias iestricted hypothesis space bigee [11]), such as
the usage off ', H" andH" in the previous section. Restricted hypothesis spaces are
valuable not only because they are smaller in size and lefaster search but they also
rule out certain hypotheses already in the definition of tygolthesis space. For exam-
ple, with H” it is only possible to express intentions to grip balls of epecific colour,
e.g. (ball, green), or to ignore the colour property altogether, €fg:ll, ?). This rules
out complex hypothesis such @&ll, {red, green, blue, purple}) already in the defini-
tion of the hypothesis space. Restricted hypothesis sgdsesntroduce a dependency
between instances such that the learning process will gksedata. A related type of
bias is the mechanism by which hypotheses spaces are thfevra the demonstrations.
The deductive concept learning algorithms may for instdeceeplaced by an inductive
decision tree learning algorithm (see for instance [14,THjis would make it possible
to reject the 99 incorrect colours if all (or most) of the dersimations have green as



colour value. Irrelevant parameters such as size and tetysemmay in the same way be
left outside the generated hypothesis. Another major tyéas ispreference biasOne
example is the heuristic principle Occam'’s razor (see [1fi§tates that one should pick
the simplest hypothesis if several hypotheses match ttze @hats would mean keeping
(ball, green) while removing hypotheses such(@s!l, {red, green, blue, purple}) and
(ball, {green, white, blue, brown}) from the hypothesis space.

Future research will investigate how prior knowledge canded as preference bias

in the LfD process. Preferences or prior probabilities fargmeter types (e.typeand
colour) and values (e.g.ed, green, andblue) can be stored in and extracted from mem-
ory structures such as semantic networks, and utiliseddibr teduction of the hypothe-
sis space and as guidance when the robot tries to repeatriiend#rated behaviour. We
will also extend Algorithm 1 such that human feedback to thitet’s attempts to repeat
a learned behaviour can be included in the learning. Thisesékpossible to learn to
ignore a parameter or certain parameter values. Other e®wifcinformation, such as
verbal commands will also be considered.
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