
Behavior Recognition for Learning from
Demonstration

Erik A. Billing
Department of Computing Science

Umeå University
Umeå, Sweden

Email: billing@cs.umu.se

Thomas Hellström
Department of Computing Science

Umeå University
Umeå, Sweden

Email: thomash@cs.umu.se

Lars-Erik Janlert
Department of Computing Science

Umeå University
Umeå, Sweden

Email: lej@cs.umu.se

Abstract—Two methods for behavior recognition are pre-
sented and evaluated. Both methods are based on the dynamic
temporal difference algorithm Predictive Sequence Learning
(PSL) which has previously been proposed as a learning
algorithm for robot control. One strength of the proposed
recognition methods is that the model PSL builds to recognize
behaviors is identical to that used for control, implying that
the controller (inverse model) and the recognition algorithm
(forward model) can be implemented as two aspects of the
same model. The two proposed methods, PSLE-Comparison and
PSLH-Comparison, are evaluated in a Learning from Demon-
stration setting, where each algorithm should recognize a known
skill in a demonstration performed via teleoperation. PSLH-
Comparison produced the smallest recognition error. The results
indicate that PSLH-Comparison could be a suitable algorithm
for integration in a hierarchical control system consistent with
recent models of human perception and motor control.

Index Terms—Learning and Adaptive Systems, Neuro-
robotics, Autonomous Agents

I. INTRODUCTION

In previous work [1], we present the dynamic temporal
difference algorithm Predictive Sequence Learning (PSL) and
apply it to a Learning from Demonstration (LFD) problem.
In this application, PSL builds a model from a set of
demonstrations, i.e., sequences of sensor and motor events
recorded while a human teacher performs the desired task
by teleoperating the robot. After training, PSL can be used
to control the robot by continually predicting the next action
based on the sequence of passed sensor and motor events.

PSL has many interesting properties seen as a learning
algorithm for robots. It is model and parameter free, meaning
that it introduces very few assumptions into learning and does
not need any task specific configuration. Knowledge is stored
in a hypothesis library H , where each hypothesis h ∈ H
describes a relation between a sequence of events X =(
et−|h|+1, et−|h|+2, . . . , et

)
and a target event Y = et+1. |h|

denotes the length of h as the number of elements in X . PSL
treats control as a prediction problem, and creates longer h
when it fails to predict the next event. This corresponds to a
dynamically growing state space similar to a Variable order
Markov Model (VMM). Hypotheses are only created when
predictions fail, meaning that the learning rate is proportional

to the prediction error and PSL will stop to learn in domains
where it can predict future events perfectly.

Our evaluation of PSL indicates that the algorithm is
suitable for learning problems up to a certain complexity.
However, PSL is subject to combinatorial explosion and fails
to reproduce more complex behavior properly. Specifically,
PSL has problems capturing long-term variations within a
behavior and some kind of higher level coordination is clearly
necessary in these situations.

The design of PSL is inspired by several computational
models of the human brain, MOSAIC [2], [3], [4], Predictive
Coding [5], [6], [7], and Hierarchical Temporal Memory
[8], [9]. These models propose a hierarchical organization
of perception and control. Specifically, MOSAIC presents a
modular view of central nervous system, where each module
implements one forward model and one inverse model. The
forward model predicts the sensory consequences as a result
of a motor command, while the inverse model calculates the
motor command that, in the current state, leads to the goal
[4]. Each module works under a certain context, or bias,
provided by higher ordinate modules in the hierarchy. One
purpose of the forward model is to create a responsibility
signal λβ representing a measure of how well the present
activity corresponds to the module’s context. If the prediction
error is small, the activity is familiar and λβ is high.
However, if the prediction error is large, the activity does
not correspond to the module’s context, and actions produced
by the inverse model may be inappropriate. An overview of
these approaches to intertwined control and perception for
LFD is found in our previous work [10].

Placing PSL as a module in this kind of hierarchical
structure could constitute one way to solve the problems
with combinatorial explosion. In such an architecture, each
PSL module would work under a certain context and only
model the system variables that change quickly, while slower
temporal dynamics are handled higher up in the hierarchy.
However, this requires not only that PSL is useful as an
inverse model, but also that it can constitute a forward model,
able to compute λβ . On the way to propose a fully developed
hierarchical system based on the PSL algorithm, the present
work proposes two ways of applying PSL as a forward model

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 866

and evaluates how well each approach is able to recognize
a certain activity, a problem that within LFD is known as
behavior recognition.

One of the few robot control architectures that employs
this kind of organization is HAMMER [11], [12], [13], which
focuses on direction of attention during action recognition.
While HAMMER is in many respects further developed that
the work presented here, it implements hard-coded forward
models paired with inverse models. In the present work, both
forward and inverse models are generated from demonstrated
data in a model-free way.

The rest of this paper is organized as follows. Section
II presents a short background to behavior recognition and
introduces some of our earlier research relevant for the
present work. Section III gives a detailed description of PSL,
which is developed into the proposed methods for behavior
recognition, presented in Section IV. Experimental setup
and results from the conducted evaluation is presented in
Section V. Finally, conclusions, limitations and future work
are discussed in Section VI.

II. BEHAVIOR RECOGNITION FOR LFD

Recent work in LFD is often concerned with identification
and selection of behavior primitives, or skills, which can be
seen as simple controllers and correspond to larger parts of
the demonstration [14]. Behavior primitives implement hard-
coded or previously learned behaviors that the robot can
execute. By matching these primitives with a demonstration,
selected primitives can be compiled into a new, more com-
plex, controller that will be able to repeat the demonstrated
behavior under varying environmental conditions [15], [14].

This approach transforms the general LFD process into the
three activities of behavior segmentation, behavior recogni-
tion and behavior coordination [16]. Behavior segmentation
refers to the process of dividing the observed event sequence
into segments which can be explained by a single primitive.
Behavior recognition is the process of matching each segment
with a primitive. Finally, behavior coordination involves
identifying switching criteria that control when the robot
should switch between different primitives. Identification of
switching criteria corresponds to finding sub-goals in the
demonstrated behavior.

The behavior recognition problem is closely related to the
creation of a metric of imitation performance which is a
common concept in the literature on LFD and imitation learn-
ing, e.g. [17], [18], [15]. The metric acts as a cost function
for imitation of a skill and is in this sense very similar to
the computation of a responsibility signal. Identification of a
metric of imitation performance is often focused on finding
the critical components of a skill by identifying invariants
within a set of demonstrations. One promising approach
to construct such a metric is to use the demonstrations
to impose constraints in a dynamical system [19], [20].
However, we take an alternative approach: Using forward
models to compute a measure of how well observed events
correspond to respective controller. Both behavior recognition
algorithms presented here compute λβ as a direct or indirect

function of prediction error. We believe that this approach
has larger potential to provide a generalizable solution to the
behavior recognition problem and it also has many interesting
connections to neurological models. A longer discussion of
these issues can be found in [21].

Another important aspect of the metric of imitation per-
formance is to solve the correspondence problem, i.e., com-
paring actions when the body of the teacher is different from
that of the student. This problem does not exist in LFD using
teleoperation and is not considered in the present work.

There are many possible ways to demonstrate new behavior
to a robot. Good overviews can be found in [15], [17]. In the
present work, we focus on demonstrations performed by con-
trolling the robot via teleoperation such that it performs the
desired behavior. In this case, a demonstration is a sequence
of sensor and motor events η = (u1, y1, u2, y2 . . . , uκ, yκ),
where κ denotes the most recent stage. An observation
yk ∈ Y is defined as the combination of all sensors readings
and an action uk ∈ U is defined as the combination of the
motor commands sent to the robot. The observation space Y
and action space U constitute the complete set of possible
events, known as an event alphabet

∑
= Y ∪ U . A stage

(uk, yk) comprises one action and the directly following
observation. In some situations we do not distinguish be-
tween observations and actions and define an event sequence
η = (e1, e2, . . . , et) as a sequence of discrete events e ∈

∑
up to the current time t.

In earlier work, we have developed and evaluated three
methods for behavior recognition [1]. The focus of the work
was to propose methods for constructing several interpreta-
tions from a single sequence of events, using the set of known
skills. Seen as a pure classification problem, one skill would
have to be selected as the one best representing that segment
in η. However, in our methods, all recognition algorithms
produces activity level λβ for each skill β. The activity level
is in this context identical to the notion of a responsibility
signal λβ , as discussed in the introduction.

While one of the evaluated recognition techniques showed
clear limitations, the other two, known as AANN-Comparison
and S-Comparison, showed promising results. AANN-
Comparison is based on a set of Auto-Associative Neural
Networks, one for each skill β. The network’s reconstruction
error for each stage (uk, yk) from the demonstration η is used
as a measure of λβ (k).

S-Comparison is based on S-Learning, a prediction-based
control algorithm inspired by the human neuro-motor system
[22], [23]. S-Learning is a dynamic temporal difference (TD)
algorithm able to extract temporal patterns ρ in presented
data. S-Comparison computes a similarity measure δρ (k)
for each pattern ρ, and uses the highest similarity value
δmax (k) to compute λβ (k). Details of both S-Comparison
and AANN-Comparison are found in [1].

III. PREDICTIVE SEQUENCE LEARNING

PSL is trained on an event sequence η = (e1, e2, . . . , et),
where each event e is a member of an alphabet

∑
. η is

867

defined up to the current time t from where the next event
et+1 is to be predicted.

PSL stores its knowledge as a set of hypotheses, known
as a hypothesis library H . A hypothesis h ∈ H ex-
presses a dependence between an event sequence X =
(et−n, et−n+1, . . . , et) and a target event I = et+1:

h : X ⇒ I (1)

Xh is referred to as the body of h and Ih denotes the
head. Each h is associated with a confidence c reflecting
the conditional probability P (I|X). For a given η, c is
defined as c (X ⇒ I) = s (X, I) /s (X), where the support
s (X) is the proportion of transactions in η that contains X .
(X, I) denotes the concatenation of X and I . A transaction
is defined as a sub-sequence of the same size as X , occurring
after the creation of h. The length of h, denoted |h|, is
defined as the number of elements in Xh. Hypotheses are
also referred to as states, since a hypothesis of length |h|
corresponds to VMM state of order |h|.

A. Detailed description of PSL

Let the library H be the empty set of hypotheses. During
learning, described in Algorithm 1, PSL tries to predict the
future event et+1, based on the observed event sequence η.
If the prediction is wrong, a new hypothesis hnew is created
and added to H . hnew is one element longer than the longest
hypothesis hc ∈ H that would have produced a correct
prediction (see Algorithm 1 for an exact description of how
hc is selected). In this way, PSL grows the library only when
it produces incorrect predictions.

For example, consider the event sequence η =
ABCCABCC. Let t = 1. PSL will search for a hypothesis
with a body matching A. H is initially empty and conse-
quently PSL will not be able to perform a prediction. Instead,
PSL creates a new hypothesis (A)⇒ B which is added to H .
The same procedure will be executed at t = 2 and t = 3 so
that H = {(A)⇒ B; (B)⇒ C; (C)⇒ C}. At t = 4, PSL
will find a matching hypothesis hmax : (C)⇒ C producing
the wrong prediction C. Consequently, a new hypothesis
(C)⇒ A is added to H . The predictions at t = 5 and t = 6
will be successful while h : (C) ⇒ A will be selected at
t = 7 and produce the wrong prediction. As a consequence,
PSL will create a new hypothesis hnew : (B,C) ⇒ C.
PSL has now learned the pattern and will not add any
more hypotheses to H until it observes another η containing
elements that do not follow this pattern.

IV. METHODS FOR BEHAVIOR RECOGNITION

Two methods based on the PSL algorithm are here pre-
sented. The first method, PSLE-Comparison, is inspired by
the HMOSAIC architecture [2] and computes the responsi-
bility signal λβ as an inverse function of the normalized pre-
diction error, produced by PSL. The second method, PSLH-
Comparison, is more closely built on the PSL algorithm. λ
is in this method a function of hypothesis activation match.

Algorithm 1 Predictive Sequence Learning (PSL)
Require: an event sequence η = (e1, e2, . . . , en)

1: t← 1
2: H ← ∅
3: M ←

{
h ∈ H | Xh =

(
et−|h|+1, et−|h|+2, . . . , et

)}
4: if M = ∅ then
5: let hnew : (et)⇒ et+1

6: add hnew to H
7: goto 20
8: end if
9: M̂ ← {h ∈M | |h| ≥ |h′| for all h′ ∈M}

10: let hmax ∈
{
h ∈ M̂ | c (h) ≥ c (h′) for all h′ ∈ M̂

}
11: if et+1 6= Ihmax then
12: let hc be the longest hypothesis

{h ∈M | Ih = et+1}
13: if hc = null then
14: let hnew : (et)⇒ et+1

15: else
16: let hnew :

(
et−|hc|, et−|hc|+1, . . . , et

)
⇒ et+1

17: end if
18: add hnew to H
19: end if
20: update the confidence for hmax and hcorrect as

described in Section III
21: t← t+ 1
22: if t < n then
23: goto 2
24: end if

A. PSLE-Comparison

The responsibility signal λβ (t) of skill β at time t is given
by:

λβ (t) =

t∑
i=t−ν

1−∆β
i

ν
(2)

where ν is a constant describing the temporal extension of
the behavior, i.e., λβ is defined as an average of prediction
performance over ν time steps. The prediction error ∆β

i is
given by:

∆β
i =

{
0 if ei = êβi
1 otherwise

(3)

where êβi is the output of the forward model at position i in
ηβ .

By training a PSL library Hβ on each event sequence ηβ ,
one forward model for each skill β is created. The precise
training procedure is described in Algorithm 1. The event
sequence ηβ used for training is a demonstration of skill β. In
practice, several demonstrations of each skill may of course
be used, but for simplicity we here consider them to be a
single sequence of events.

After training, Hβ is used for prediction as described in
Algorithm 2. In principle, any discrete prediction algorithm

868

Algorithm 2 Making predictions using PSL
Require: an event sequence η = (e1, e2, . . . , et−1)
Require: the trained library H =

(
h1, h2, . . . , h|H|

)
1: M ←

{
h ∈ H | Xh =

(
et−|h|, et−|h|+1, . . . , et−1

)}
2: M̂ ← {h ∈M | |h| ≥ |h′| for all h′ ∈M}
3: let hmax ∈

{
h ∈ M̂ | c (h) ≥ c (h′) for all h′ ∈ M̂

}
4: return the prediction êt = Ihmax

could be used as forward model, but an advantage of PSL is
that the same algorithm constitutes both forward and inverse
model. As enforced by the MOSAIC framework [24], [3], the
forward and inverse models should be paired, meaning that
the forward model should be able to predict the consequences
of actions produced by the inverse model. This pairing is
built into PSL, since the prediction and control is actually
performed by the same model.

B. PSLH-Comparison

One problem with comparison methods based directly on
prediction error was observed during our previous investiga-
tion of methods for behavior recognition [1]. Prediction error
can be seen as a measure of how consistent an event sequence
η is with some skill β. However, the prediction error does
not tell whether η demonstrates all aspects of β, or only a
fraction of these aspects.

In an attempt to approach this problem, PSLH-Comparison
was designed. PSL is here used to create a single library H
from skill demonstrations ηβ of all β. λβ (t) is defined as
the intersection between the hypotheses activated during the
demonstrations of β, and the hypotheses activated by η within
the time span t− ν to t:

λβ (t) =

∑
h∈H

min
(
a
ηβ
h , a

ηt
h

)
∑
h∈H

ath
(4)

where aηβh = hAct(ηβ , H , hη , 1, |ηβ |) and aηth = hAct(η, H ,
hη , t−ν, t). Equation 4 is the Bayes Pe, the minimum error
probability between the two hypothesis activation distribu-
tions [25]. The hypothesis activation function hAct is defined
in Algorithm 3, calculating the prediction contribution for
a specific hypothesis hη , given a certain time interval in η.
Similarly to PSLE-Comparison, ν is a constant describing
the temporal extension of the skill. The minimum error
probability gives reward for hypotheses that are activated in
both behaviors (similar to inverted prediction error), but also
gives penalty for hypotheses that are only activated by one
of the event sequences η or ηβ .

V. EVALUATION

The two proposed methods for behavior recognition,
PSLE-Comparison and PSLH-Comparison, are here tested
in an LFD setting using a Khepera II miniature robot [26].
A load-transport-unload task is defined, consisting of three
sub-behaviors or skills. Skill 1 involves the robot moving

Algorithm 3 Hypothesis activation
function hAct(η, H , hη , tstart, tstop)

1: t← tstart
2: ah ← 0
3: M ←

{
h ∈ H | Xh =

(
et−|hη|, et−|hη|+1, . . . , et−1

)}
4: M ′ ← {h ∈M | Ih = et}
5: M̂ ← {h ∈M ′ | |h| ≥ |h′| for all h′ ∈M ′}
6: let hmax ∈

{
h ∈ M̂ | c (h) ≥ c (h′) for all h′ ∈ M̂

}
7: if hmax = h then
8: ah ← ah + 1

tstop−tstart
9: end if

10: t← t+ 1
11: if t ≤ tstop then
12: goto 3
13: end if

forward in a corridor approaching an object (cylindrical wood
block). When the robot gets close to the object, it should
stop and wait for the human teacher to “load” the object,
i.e., place it upon the robot. After loading, the robot turns
around and goes back along the corridor. Skill 2 involves
general corridor driving, taking turns in the right way without
hitting the walls and so on. Skill 3 constitutes the “unloading”
procedure, where the robot stops in a corner and waits for the
teacher to remove the object and place it to the right of the
robot. Then the robot turns and pushes the cylinder straight
forward for about 10 centimeters, backs away and turns to
go for another object. The sequence of actions expected by
the robot is illustrated in Figure 1 and the experimental setup
can be seen in Figure 2. Even though the setup was roughly
the same in all experiments, the starting positions and exact
placement of the walls varied between demonstration and
repetition.

The robot was given no previous knowledge about itself or
its surroundings. The only obvious design bias is the thresh-
olding of proximity sensors into three levels, far, medium
and close, corresponding to distances of a few centimeters.
This thresholding was introduced to decrease the size of the
observation space Y , limiting the amount of training required.
An observation y ∈ Y is defined as the combination of
the eight proximity sensors, producing a total of 38 possible
observations. An action u ∈ U is defined as the combination
of the speed commands sent to the two motors.

To put the performance of PSLE-Comparison and PSLH-
Comparison in a larger context, two of our previously pro-
posed methods for behavior recognition, AANN-Comparison
and S-Comparison [1], are included in the evaluation.

All four comparison methods are trained on the same set
of demonstrations. Skill 1 is demonstrated seven times for a
total of about 2.6 minutes. Skill 2 is demonstrated for about
8.7 minutes and Skill 3 is demonstrated nine times, in total
4.6 minutes. For Task 4, the demonstrations from all three
partial tasks were used, plus a single 2 min demonstration
of the entire task. Exactly the same set of demonstrations
have previously been used for evaluating the PSL algorithm

869

wait for loading,

then turn and go back

turnstart

unload

push object

Figure 1. Schematic overview of the load-transport-unload task. Light gray
rectangles mark walls, dark gray circles mark the objects and dashed circles
mark a number of key positions for the robot. The robot starts by driving
upwards in the figure, following the dashed line. until it reaches the object
at the loading position. After loading, the robot turns around and follows the
dashed line back until it reaches the unload position. When the cylinder has
been unloaded (placed to the left of the robot), the robot turns and pushes
the object. Finally, it backs away from the pile and awaits more instructions.

Figure 2. Experimental setup.

as a controller [21]. PSL is then able to repeat each of
the three skills successfully, but unable to reproduce the
complete load-transport-unload task. The reason PSL was
unable to repeat the complete behavior is that knowledge
from the three skills interfered. The algorithm is unable to
separate the unloading activity from the turning, loading from
pushing and so on. In these situations, some kind of higher
level coordination is needed to prevent knowledge about the
wrong activity from interfering. If PSL, when used as an
algorithm for behavior recognition, is able to identify the
present activity, it should constitute a good basis for building
a coordination system separating the different activities into
skills, preventing knowledge interference.

Ten demonstrations of the full load-transport-unload task
are used for testing. A responsibility signal template is
defined for each of the demonstrations, specifying which
parts of the demonstration that corresponds to respective skill.
See Figure 3 for an example template. The templates are
manually constructed, based on time-synced video recordings
of each demonstration. Parts of the templates contained over-

0 10 20 30 40 50 60 70 80 90
0

0.5

1

λ
’
fo

r
L

o
a

d

0 10 20 30 40 50 60 70 80 90
0

0.5

1

λ
’ f

o
r

C
o

rr
id

o
r

0 10 20 30 40 50 60 70 80 90
0

0.5

1

λ
’ f

o
r

U
n

lo
a

d

Figure 3. Example template for a single demonstration of the load-
transport-unload task. The tick black line in top, middle and bottom plots
indicates λ′ for the Skill 1, 2 and 3, respectively. The green area below the
line indicates the parts of the demonstration where respective skill should
gain high responsibility. Overlapping periods are normalized such that the
sum of activity levels for all skills equals 1.

Table I
AVERAGE RECOGNITION ERRORS AND λ VARIANCE ON THE

load-transport-unload TASK.

Algorithm λ̃ σ2
λ λ̃Load λ̃Corr λ̃Unload

AANN-Comparison 0.405 0.027 0.350 0.423 0.442
S-Comparison 0.228 0.030 0.231 0.298 0.155

PSLE-Comparison 0.217 0.050 0.234 0.310 0.107
PSLH-Comparison 0.147 0.036 0.198 0.212 0.032

lapping skills, implying that these segments could have been
produced by more than one skill. While manually constructed
interpretations of the demonstrations may not constitute the
ideal environment for an absolute performance measure,
they should still constitute a good frame for comparing the
behavior recognition algorithms.

A. Results

Recognition errors for each of the four evaluated algo-
rithms are presented in Table I. λ̃β (t) =

∣∣∣λβ (t)− λ′β (t)
∣∣∣ is

the recognition error at time t, where λβ (t) is the computed
responsibility signal for skill β. λ′β (t) is the desired respon-
sibility signal for β defined by the template. Both λβ (t) and
λ′β (t) are normalized over all three skills.

In Table I, λ̃ is the total mean recognition error over all
skills. σ2

λ is the total variance over λ. λ̃Load, λ̃Corr and
λ̃Unload is the mean recognition error for each of the three
skills. All values are normalized averages over 10 demonstra-
tions. A standard t-test shows that both PSLE-Comparison
and PSLH-Comparison have significantly smaller λ̃ than the
other algorithms (p < 0.005) and that PSLH-Comparison is
significantly better than PSLE-Comparison (p < 0.005).

Figure 4, 5 and 6 display the responsibility signals for
skill 1, 2 and 3, respectively. Each figure shows both the
desired responsibility signal λ′, and the signals computed
by each of the four recognition algorithms. Displayed values
are from the same demonstration as the template signal in
Figure 3 (and is consequently not an average over all ten

870

demonstrations, as opposed to values in Table I).

VI. DISCUSSION

In the present work, two methods for behavior recognition
are presented and evaluated. Both methods are based on the
dynamic temporal difference algorithm Predictive Sequence
Learning (PSL). PSL is both parameter-free and model-free
in the sense that no ontological information about the robot or
conditions in the world is pre-defined in the system. Instead,
PSL creates a state space (hypothesis library) in order to
predict the demonstrated data optimally.

The first method, PSLE-Comparison, takes inspiration
from the MOSAIC architecture [2], [24] and computes the
responsibility signal λβ based on prediction error. The second
method, PSLH-Comparison, is based on the minimum error
probability between activation distributions over model H .
PSLH-Comparison was designed to not only compute λβ as
a function of skill match (inverse prediction error) but also
include a penalty for aspects of the skill not present in the
demonstration.

The two algorithms are compared to two other methods for
behavior recognition, AANN-Comparison and S-Comparison
[1]. Performance is measured as the average recognition
error. Both PSLE-Comparison and PSLH-Comparison shows
significantly smaller recognition error than the other methods.
However, the difference between PSLE-Comparison and S-
Comparison is small. Overall, PSLH-Comparison is the win-
ner with significantly smaller recognition errors than the other
algorithms.

The present evaluation is based on ten demonstrations of
a load-transport-unload task using a Khepera II robot [26].
This task is selected since the same data has previously been
used to evaluate PSL as a controller [21]. In the previous
evaluation, it was concluded that the PSL could learn each
of the three skills (load, corridor and unload) but PSL was
unable to repeat the overall task. The load-transport-unload
task should consequently constitute a setting where some
higher level coordination is necessary. Being able to identify
each of the three skills in a demonstration of the whole
behavior is one step towards creating such a coordination
mechanism, allowing PSL to be placed within a hierarchical
control architecture such as HMOSAIC [2].

The results show that the proposed recognition methods
are significantly better than the benchmark methods used
in the evaluation. An overall recognition error of less than
0.15 for PSLH-Comparison is in fact much better than
expected. How well the algorithms would do in an on-line
situation is however still an open question. The template
signal λ′β (t) defined as the “correct” responsibility signal
for skill β at time t merely reflects the teacher’s high-
level understanding of the demonstrated behavior, and is not
necessarily the best way to separate the overall behavior into
skills. It should also be mentioned that the algorithms are
tested under conditions with relatively low noise levels. Even
though S-Learning has been evaluated under noisy conditions
with good results [23], it is expected that the PSL-based
recognition methods is affected by noise in similar ways

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

R
e

sp
o

n
si

b
ili

ty
 s

ig
n

a
l (

λ)

λ’

AANN-Comp.

S-Comp.

PSLE-Comp.

PSLH-Comp.

Figure 4. Responsibility signals for Skill 1 - Load. AANN-Comp, S-Comp,
PSLE-Comp and PSLH-Comp indicates the responsibility signal computed
with respective method.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

R
e

sp
o

n
si

b
ili

ty
 s

ig
n

a
l (

λ)

λ’

AANN-Comp.

S-Comp.

PSLE-Comp.

PSLH-Comp.

Figure 5. Responsibility signals for Skill 2 - Corridor. AANN-Comp,
S-Comp, PSLE-Comp and PSLH-Comp indicates the responsibility signal
computed with respective method.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

R
e

sp
o

n
si

b
ili

ty
 s

ig
n

a
l (

λ)

λ’

AANN-Comp.

S-Comp.

PSLE-Comp.

PSLH-Comp.

Figure 6. Responsibility signals for Skill 3 - Unload. AANN-Comp, S-Comp,
PSLE-Comp and PSLH-Comp indicates the responsibility signal computed
with respective method.

871

as PSL is subject to combinatorial explosion in large state
spaces. Furthermore, both proposed algorithms compute the
responsibility signal over a temporal extension ν, meaning
that λβ (t) corresponds to how well β explains the events
(et−ν , et−ν+1, . . . , et). I.e., we only know if the controller
defined by β is the right choice for the present situation
after these events have already occurred. Wolpert and co-
workers [3] have also observed this problem, and introduce
a responsibility predictor that estimates future responsibility
signals. A corresponding mechanism is probably necessary
when integrating the PSL based recognition methods with a
controller.

A. Conclusions and future work

The results show that Bayes Pe (minimum error probabil-
ity) over the activation pattern in the forward model (PSLH-
Comparison) is a better method for behavior recognition than
the prediction error (PSLE-Comparison), in the evaluated
setting. While a more extensive study is necessary to draw
any conclusions about the general performance of these
algorithms, we find these results to be promising and intend
to extend this evaluation to behavior recognition in other
domains, and possibly to other types of data.

A big advantage of using PSL both for control (as de-
scribed in [21]) and behavior recognition is that the forward
and inverse computations are in fact based on the same
model, i.e., the PSL library. This approach has several
theoretical connections to the view of human perception and
control as two heavily intertwined processes.

The present work should be seen as one step towards a
hierarchical control architecture that can learn and coordinate
itself, based on the PSL algorithm. The model-free design
of PSL introduces very few assumptions into learning, and
should constitute a good basis for many types of learning
and control problems. Integrating PSLE-Comparison with a
PSL-based control algorithm, to achieve a two-layer modular
control system, is the next step in this process and will be
part of our future work.

REFERENCES

[1] E. A. Billing and T. Hellström, “Behavior recognition for segmentation
of demonstrated tasks,” in IEEE SMC International Conference on
Distributed Human-Machine Systems, Athens, Greece, March 2008,
pp. 228 – 234.

[2] M. Haruno, D. M. Wolpert, and M. Kawato, “Hierarchical MOSAIC
for movement generation,” in International Congress Series 1250.
Elsevier Science B.V., 2003, pp. 575– 590.

[3] D. M. Wolpert and M. Kawato, “Multiple paired forward and inverse
models for motor control,” Neural Networks, vol. 11, no. 7–8, pp.
1317—1329, 1998.

[4] D. M. Wolpert, “A unifying computational framework for motor control
and social interaction,” Phil. Trans. R. Soc. Lond., vol. B, no. 358, pp.
593–602, Mar. 2003.

[5] K. J. Friston, “Functional integration and inference in the brain,”
Progress in Neurobiology, vol. 68, no. 2, pp. 113–143, Oct. 2002.

[6] ——, “Learning and inference in the brain,” Neural Networks: The
Official Journal of the International Neural Network Society, vol. 16,
no. 9, pp. 1325–52, 2003, PMID: 14622888.

[7] J. M. Kilner, K. J. Friston, and C. D. Frith, “Predictive coding: an
account of the mirror neuron system,” Cogn Process, vol. 8, pp. 159–
166, 2007.

[8] D. George, “How the brain might work: A hierarchical and temporal
model for learning and recognition,” Ph.D. dissertation, Stanford
University, Department of Electrical Engineering, 2008.

[9] D. George and J. Hawkins, “A hierarchical bayesian model of invariant
pattern recognition in the visual cortex,” in Proceedings of IEEE
International Joint Conference on Neural Networks (IJCNN’05), vol. 3,
2005, pp. 1812–1817 vol. 3.

[10] E. Billing, “Cognition reversed - robot learning from demonstration,”
Ph.D. dissertation, Umeå University, Department of Computing Sci-
ence, Umeå, Sweden, December 2009.

[11] Y. Demiris and M. Johnson, “Distributed, predictive perception of
actions: a biologically inspired robotics architecture for imitation and
learning,” Connection Science, vol. 15, no. 4, pp. 231–243, 2003.

[12] Y. Demiris and A. Dearden, “From motor babbling to hierarchical
learning by imitation: a robot developmental pathway,” in Proceedings
of the 5th International Workshop on Epigenetic Robotics, 2005, pp.
31—37.

[13] Y. Demiris and B. Khadhouri, “Hierarchical attentive multiple models
for execution and recognition of actions,” Robotics and Autonomous
Systems, vol. 54, no. 5, pp. 361–369, May 2006.

[14] M. Nicolescu, “A framework for learning from demonstration, gener-
alization and practice in Human-Robot domains,” Ph.D. dissertation,
University of Southern California, 2003.

[15] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-
ming by demonstration,” in Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Springer, 2008.

[16] E. A. Billing and T. Hellström, “A formalism for learning from demon-
stration,” in Cognition Reversed - Robot Learning from Demonstration.
Umeå, Sweden: Print & Media, Umeå University, 2009, pp. 73–102.

[17] C. L. Nehaniv and K. Dautenhahn, “Of hummingbirds and helicopters:
An algebraic framework for interdisciplinary studies of imitation and
its applications,” in Learning Robots: An Interdisciplinary Approach,
J. Demiris and A. Birk, Eds. World Scientific Press, 2000, vol. 24,
pp. 136–161.

[18] A. Alissandrakis, C. L. Nehaniv, and K. Dautenhahn, “Action, state
and effect metrics for robot imitation,” in 15th IEEE International
Symposium on Robot and Human Interactive Communication (ROMAN
2006), Hatfield, Sep. 2006, pp. 232–237.

[19] F. Guenter, M. Hersch, S. Calinon, and A. Billard, “Reinforcement
learning for imitating constrained reaching movements,” RSJ Advanced
Robotics, Special Issue on Imitative Robots, vol. 21, no. 13, pp. 1521–
1544, 2007.

[20] S. Calinon, F. Guenter, and A. Billard, “On learning, representing
and generalizing a task in a humanoid robot,” IEEE Transactions on
Systems, Man and Cybernetics, Part B. Special issue on robot learning
by observation, demonstration and imitation, vol. 37, no. 2, pp. 286–
298, 2007.

[21] E. A. Billing, T. Hellström, and L. E. Janlert, “Model free learning
from demonstration,” in Proceedings of 2nd International Conference
on Agents and Artificial Intelligence (ICAART), J. Filipe, A. Fred, and
B. Sharp, Eds. Valencia, Spain: INSTICC, January 2010, pp. 62–71.

[22] B. Rohrer and S. Hulet, “BECCA - a brain emulating cognition
and control architecture,” Cybernetic Systems Integration Department,
Univeristy of Sandria National Laboratories, Alberquerque, NM, USA,
Tech. Rep., 2006.

[23] ——, “A learning and control approach based on the human neuro-
motor system,” in Proceedings of Biomedical Robotics and Biomecha-
tronics, BioRob, 2006.

[24] M. Haruno, D. M. Wolpert, and M. M. Kawato, “MOSAIC model for
sensorimotor learning and control,” Neural Comput., vol. 13, no. 10,
pp. 2201–2220, 2001.

[25] S. Cha and S. N. Srihari, “On measuring the distance between
histograms,” Pattern Recognition, vol. 35, no. 6, pp. 1355–1370, Jun.
2002.

[26] K-Team, “Khepera robot,” http://www.k-team.com, 2007. [Online].
Available: http://www.k-team.com

872

