
NUMERICAL METHODS FOR

LARGE LYAPUNOV EQUATIONS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Carl Christian Kjelgaard Mikkelsen

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2009

Purdue University

West Lafayette, Indiana

ii

To Birgitte

iii

ACKNOWLEDGMENTS

I am grateful for the continued support of my advisor, Ahmed Sameh. Above all,

Ahmed helped restore my confidence, when I had none of my own. Ahmed carefully

read my manuscript and helped me improve the presentation.

I would like to thank Jie Shen, Robert Skeel, and Arshak Petrosyan for serving

on my committee.

I would like to thank my two friends and colleagues Maxim Naumov and Murat

Manguoglo. We have had many discussions which I have found very useful.

A number of people have assisted me in one way or another. Ole Østerby (U. of

Aarhus, Denmark) and Zahari Zlatev (DMU, Denmark) made it possible for me to

come to Purdue, when there was no funding to be found in Denmark. Peter Spelluci

(TU, Darmstadt, Germany) and Robert Israel (UBC, Vancouver, Canada) have an-

swered a couple of my questions on Gaussian elimination with partial pivoting and

Lyapunov operators. Zvonimir Bothe (U. of Ljubljana, Slovenia), Marko Petkovsek

(U. of Ljubljana, Slovenia) and Nicolas J. Higham (U. of Manchester, England) have

answered some questions on Gaussian elimination and the Cholesky factorization.

Petkovsek scanned and sent me several papers which could only be found in the

library at Ljubljana. Bent Ørsted (U. of Aarhus, Denmark) provided me with an ele-

gant proof for a theorem on the Cayley transform. Bernard Philippe (IRISA, France)

and Paul van Dooren (CU, Louvain, Belgium) both suggested that I use the Lanczos

biorthogonalization procedure in order to run BCG on a pair of Lyapunov matrix

equations in the Kronecker product form. Philippe sent me several manuscripts on

linear systems and Lyapunov equations. Imad Jaimoukha (IC, London, England) an-

swered some specific questions on his GMRES method for Lyapunov equations. We

ran several examples until my output was consistent with his. Y. Zhou (SMU, Dallas,

Texas, US) kindly provided me a MATLAB version of D. C. Sorensen’s solver for tall

iv

Sylvester equations. A. S. Hodel (U. of. Auburn, Alabama, US) and B. Tenison have

been very helpful answering some questions on their algorithms for solving Lyapunov

equations. Marlis Hochbruck verified a couple of my questions on preconditioned

Krylov subspace methods for Lyapunov equations in the Kronecker product form.

David Drasin, Tzuong-Tsieng Moh, Jiu-Kang Yu, Ayhan Irfanoglu, all from Purdue

University, helped me to solve a variety of problems.

Renate Mallus, Amy J. Ingram and William J. Gorman of the CS graduate office

at Purdue have been very helpful and always had time to talk. Tammy S. Muthig

of the CS business office handled my paperwork in a very competent and friendly

manner.

Finally, I would like to thank my girlfriend Birgitte Brydsø without whom I would

not have life and my work would not be possible.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xii

1 Introduction . 1

2 Elementary theory of Lyapunov equations 5
2.1 Introduction . 5
2.2 The Kronecker product . 5
2.3 Existence and uniqueness theorems 7
2.4 The equivalence of the two classes of Lyapunov equations 8
2.5 Solution formulae . 9
2.6 The structure of solutions . 12
2.7 The low rank phenomenon . 17

3 Linear time invariant dynamical systems 21
3.1 Introduction . 21
3.2 Elementary results and definitions 25
3.3 Model reduction by balanced truncation 28
3.4 The eigenvalue problem for the products PQ and QP 32

4 Subspace iteration . 45
4.1 Introduction . 45
4.2 The power method . 45
4.3 The subspace iteration . 47
4.4 Ritz acceleration . 49

5 Krylov subspace methods for standard linear equations 51
5.1 Introduction . 51
5.2 Krylov subspaces . 51
5.3 The Arnoldi algorithm . 54
5.4 Standard Krylov subspace methods 57

5.4.1 GMRES . 57
5.4.2 CG . 63
5.4.3 CGNR . 66
5.4.4 BCG . 67

5.5 Preconditioning . 68

vi

Page

6 Current numerical methods for the Lyapunov equation 71
6.1 Introduction . 71
6.2 Methods for small dense problems 71

6.2.1 Bartels-Stewart’s method . 71
6.2.2 The Hessenberg-Schur method 73
6.2.3 Hammarling’s method . 74
6.2.4 Matrix sign function iteration 74

6.3 Methods for large sparse problems 77
6.3.1 The block Arnoldi algorithm 77
6.3.2 The Arnoldi method . 80
6.3.3 The GMRES method . 94
6.3.4 Other Krylov methods and variations 95
6.3.5 ADI-methods . 96

7 The Approximate Power Iteration . 103
7.1 Introduction . 103
7.2 The algorithm . 103
7.3 Numerical experiments . 107
7.4 Modifications of the original algorithm 108
7.5 Theoretical results . 110

8 The Approximate Subspace Iteration . 115
8.1 The new algorithm . 115
8.2 Analysis of the new algorithm . 116
8.3 Solving the Sylvester equation . 119
8.4 Practical stopping criteria . 122
8.5 Solving the corresponding Lyapunov equation 122
8.6 Applications to the discrete time Lyapunov equation 123
8.7 Numerical experiments . 124
8.8 Conclusion and future work . 139

9 The AISIAD algorithm . 141
9.1 The algorithm . 141
9.2 Elementary analysis . 143
9.3 Conclusion . 147

10 Lyapunov equations in Kronecker product form 149
10.1 Introduction . 149
10.2 The Arnoldi process for Ã . 150
10.3 The main result . 153
10.4 GMRES . 158
10.5 CG . 160
10.6 An experiment . 164
10.7 BCG . 166

vii

Page

10.8 CGNR . 174
10.9 Conclusion . 184

11 Preconditioning . 187
11.1 Introduction . 187
11.2 Enabling preconditioning . 187
11.3 Preconditioners . 192

11.3.1 Preconditioners based on splittings of A 193
11.3.2 Preconditioners based on structural simplification of A . . . 194

11.4 Conclusion . 199

12 The SPIKE algorithms . 201
12.1 Introduction . 201
12.2 The explicit SPIKE algorithm . 204
12.3 The truncated SPIKE algorithm . 209
12.4 The matrices S, R, and T . 210

12.4.1 The truncation error . 214
12.4.2 The general case . 222
12.4.3 The roundoff errors . 224

12.5 Numerical experiments . 230
12.5.1 The matrices S, R, and T 230
12.5.2 The truncation error . 232
12.5.3 The roundoff errors . 232
12.5.4 Comparisons with ScaLAPACK 233

12.6 Conclusions for SPIKE . 240
12.7 Extensions of the SPIKE algorithm 240

12.7.1 Overlapping partition method 241
12.7.2 Solving linear systems with a single communication 246

13 Conclusion . 253
13.1 Summary of contributions . 253
13.2 Future work . 257

LIST OF REFERENCES . 258

A The Cayley transform . 263
A.1 Introduction . 263
A.2 Properties of the Cayley transform 263

B Drawings of the SPIKE partitioning . 267

VITA . 272

viii

LIST OF TABLES

Table Page

12.1 A comparison of certain measurable quantities and their bounds for 10
different matrices distinguished by their degree of diagonal dominance . 234

12.2 A comparison of certain measurable quantities and their bounds for 10
different matrices distinguished by their degree of diagonal dominance . 235

12.3 The 2-norm of the absolute error for ScaLAPACK (Sca) (PDDBTRF and
PDDBTRS) and the truncated SPIKE (T.S.) algorithm for four different
banded matrices and different numbers of partitions. The results from
LAPACK (DGBTRF/DGBTRS) are listed at the bottom of the table. 237

12.4 The 2-norm of the absolute error for nine different matrices from Matrix
Market. The results are given for LAPACK (dgbtrf/dgbtrs) and ScaLA-
PACK (PDDBTRF/PDDBTRS). The results are given for 2, 4, and 8
partitions. 238

12.5 The 2-norm of the absolute error for nine different matrices from Ma-
trix Market. The results are given for our implementation (T.S) of the
truncated SPIKE algorithm, as well as the current implementation of the
SPIKE package (TU0). The results are given for 2, 4, and 8 partitions. 239

ix

LIST OF FIGURES

Figure Page

3.1 Two instances of the standard subspace iteration. The starting indices are
different by deliberate choice. 39

6.1 With ǫj = −1 and a very particular choice of αj we can force the Arnoldi
method to have the given residual history. 89

6.2 Singular value decay and residual history for the Lyapunov equation (6.7). 91

6.3 Singular value decay and residual history for the Lyapunov equation (6.8). 93

7.1 API: The subspace identification error for different values of the number
of Arnoldi iterations. 108

7.2 The effect of including B in the Arnoldi processes of Algorithm 15. . . 109

8.1 The decay of the singular values for the matrices X̂1 (left) and X̂2 (right). 126

8.2 The results of applying subspace iteration directly to the matrices X̂1

(left), and X̂2 (right), which are explicitly available. 126

8.3 The results of applying Hodel’s original algorithm to the equations defining
X1 (left) and X2 (right). 127

8.4 The results of applying the original API to the equations defining X1 (left)
and X2 (right). 128

8.5 The effect of including the symmetrization step (solid lines), as opposed
to no symmetrization (dashed curves). The logarithm (base 10) of the
Frobenius norm of the subspace identification error is plotted against the
number of iterations. The results for matrices X̂1 (on the left) and X̂2 (on
the right). The number of vectors is indicated at the top of each diagram.
It varies from r = 10 vectors (top row), to r = 50 vectors (bottom row). 129

8.6 The performance of our algorithm applied to X1 as a function of the num-
ber of vectors r. 130

8.7 The performance of our algorithm applied to matrix X2 as a function of
the number of vectors r. 131

8.8 The performance of our algorithm applied to the matrix X̂ ′
1, as a function

of the number of vectors r. Matrix X̂ ′
1 has a smaller residual than X̂1. . 132

x

Figure Page

8.9 The parameters and the time needed to identify the rank k = 5 dominant
eigenspace U

(i)
k for Xi, i = 1, 2 with an error less than 10−6. 133

8.10 Summary of matrices used from Matrix Market. 133

8.11 The results of applying our algorithm as a solver to the Lyapunov equation
defined by matrix bcsttk17, and an inhomogeneous term consisting of
ones. 135

8.12 The results of applying our algorithm as a solver to the Lyapunov equation
defined by matrix bcsttk18, and an inhomogeneous term consisting of
ones. 136

8.13 The results of applying our algorithm as a solver to the Lyapunov equation
defined by matrix memplus, and an inhomogeneous term consisting of
ones. 137

8.14 The results of applying our algorithm as a solver to the Lyapunov equation
defined by matrix af23560, and an inhomogeneous term consisting of ones. 138

8.15 Summary of the results of applying our algorithm to the matrices used
from Matrix Market. 138

10.1 Residual history for different Krylov methods applied to equivalent Lya-
punov equations . 167

10.2 Residual history and memory consumption for CGNR applied to a non-
stable Lyapunov equation. 185

11.1 The residual history and the numerical rank of the approximate solutions
for preconditioned CG applied to a simple Lyapunov equation 189

12.1 The degree of diagonal dominance for the matrix S(k) as a function of the
degree of diagonal dominance of the original matrices: A(k) (left), and B(k)

(right). The matrices are defined by equation (12.26). The red dotted line
is the experimental result and the solid blue line is the theoretical lower
bound. 231

12.2 The condition number of the truncated reduced system as a function of
the degree of diagonal dominance of the original system matrices: A(k)

(left), and B(k) (right). The matrices are defined by equation (12.26).
The dotted red line is the experimental result and the solid blue line is the
theoretical upper bound. 231

12.3 The infinity norm of the truncation error as a function of the number
of partitions. The solid blue line is the theoretical upper bound, while
red dots are experimental results. The matrix has degree of diagonal
dominance d = 1.01 and is tridiagonal. 232

xi

Figure Page

12.4 The original, non-overlapping partitioning of the narrow banded matrix. 241

12.5 The overlapping partitioning of the matrix, with the original partitioning
drawn using dotted lines. Each partition has been extended by lk in all
possible directions. 242

12.6 The auxiliary partitioning needed for the proof of Theorem 1. We are
interested in the variables corresponding to the original diagonal block
which is drawn using dotted lines. 244

B.1 The partitioning of the original system for the SPIKE algorithms, p = 3
partitions. 268

B.2 The SPIKE system corresponding to p = 3 partitions. 269

B.3 The SPIKE system corresponding to p = 3 partitions with special empha-
sis on the reduced system. 270

B.4 The reduced system corresponding to p = 3 partitions. The reduced
system matrix has dimension 4k. 270

B.5 The truncated reduced system responding to p = 3 partitions. 271

xii

ABSTRACT

Mikkelsen, Carl Christian Kjelgaard Ph.D., Purdue University, May, 2009. Numerical
methods for Large Lyapunov equations. Major Professor: Ahmed Sameh.

Balanced truncation is a standard technique for model reduction of linear time

invariant dynamical systems. The most expensive step is the numerical solution of a

pair of Lyapunov matrix equations.

We consider the direct computation of the dominant invariant subspace of a sym-

metric positive semidefinite matrix, which is given implicitly as the solution of a

Lyapunov matrix equation. We show how to apply subspace iteration with Ritz

acceleration in this setting.

An n by n Lyapunov matrix equation is equivalent to a standard linear system with

n2 unknowns. Theoretically, it is possible to apply any Krylov subspace method to

this linear system, but this option has not really been explored, because of the O(n2)

flops and storage requirement. In this dissertation we show that it is possible to reduce

these requirement to O(n) for Lyapunov equations with a low rank inhomogeneous

right-hand side. We show how to accomplish the reduction for a variety of methods

including GMRES, CG, BCG and CGNR. In each case the key observation is a special

relationship between certain Krylov subspaces in Rn and Rn2

.

It is theoretically possible to precondition a Lyapunov matrix equation which is

written as a standard linear system. However, our investigation has revealed that the

choice of preconditioners is extremely limited, if we are to keep the storage and flops

count at O(n).

Above all we have found that while it is certainly possible to reduce the resource

requirements to O(n), the constants are too large to be competitive. The fundamental

xiii

problem is that Krylov subspace methods are not taking advantage of the low rank

phenomenon for Lyapunov matrix equations.

Currently, the most successful Lyapunov matrix equations solver is the low rank

cyclic Smith method. Central to this method is the automatic selection of certain

shift parameters, preconditioners and the solution of certain linear systems. This is

extremely difficult to accomplish in general, and the problem simplifies considerably

in the special case in which the defining matrices can be reordered as narrow banded

matrices. Currently, it is the solution of these narrow banded linear systems which

is the bottleneck in an efficient parallel implementation of the low rank cyclic Smith

method.

In the final part of this dissertation we consider the parallel solution of narrow-

banded linear systems. We do an error analysis of the truncated SPIKE algorithm

which applies to systems which are strictly diagonally dominant by rows. Above all,

we establish bounds on the decay rate of the spikes and the truncation error which

are tight. We explain why this analysis only carries partially to the general case.

Our analysis of the truncated SPIKE algorithm has immediate implications for the

overlapping partition method (OPM). Finally we consider the question of reducing

the amount of interprocessor communication during the solve phase for a general

narrow banded linear system. The final conclusion is that such a system is essentially

block diagonal in a sense which can be made very precise.

xiv

1

1. Introduction

This is a dissertation on numerical methods for solving the Lyapunov matrix equation

AX + XAT + Q = 0,

where A and Q are known real n by n matrices and X is a real n by n matrix, which

is unknown.

Lyapunov matrix equations occur in a variety of situations, but we are primarily

interested in model reduction by balanced truncation, which requires the solution of

a pair of Lyapunov equations,

AP + PAT + BBT = 0,

AT Q + QA + CT C = 0,

where B and CT are tall matrices, such that AB, and AT CT are defined.

Frequently, the solution of a Lyapunov matrix equation admits a good low rank

approximation. This is the low rank phenomenon for Lyapunov equations. It is

not universal, but occurs frequently enough to have serious practical implications.

The central question for Lyapunov equations is how to compute a good low rank

approximation of the solution, without forming the solution explicitly.

The dissertation is organized as follows: Chapters 2 through 7 contain the neces-

sary background material. Our original contributions are concentrated in Chapters 8

through 12.

• Chapter 2 contains a list of elementary results on Lyapunov matrix equations,

including existence and uniqueness theorems, solutions and their structures, as

well as a brief account of the low rank phenomenon.

2

• Chapter 3 explains the importance of Lyapunov equations in the field of model

reduction. We discuss stable linear systems, define the transfer function, intro-

duce the concept of balancing and explain the relationship between a balancing

transformation and certain eigenvalue problems.

• Chapter 4 contains a brief description of the standard subspace iteration and

the Ritz acceleration scheme.

• Chapter 5 contains an elementary discussion of Krylov subspace methods for

standard linear systems. However, this chapter contains a new result, Theorem

5.4.3, which is a simple extension of a recent result by Gamti and Philippe [12]

on the convergence of GMRES.

• Chapter 6 surveys the current solvers for Lyapunov equations, including Bartels-

Stewart’s method, the Hessenberg-Schur method, the matrix sign function it-

eration, the Arnoldi and the GMRES method, as well as the ADI family of

methods. We prove a new result, namely the fact that the Arnoldi method for

Lyapunov equations can have an arbitrary positive residual history.

• Chapter 7 contains a description of the approximate power iteration by A. S.

Hodel [24].

The main contributions are organized as follows:

• Chapter 8 describes how to apply the standard subspace iteration with Ritz

acceleration to an operator which is given only implicitly as the solution to a

Lyapunov matrix equation.

• Chapter 9 explores a consequence of Chapter 8 for the problem of computing

the dominant eigenspace for the product PQ.

• Chapter 10 is concerned with the application of Krylov subspace methods to

Lyapunov equations in Kronecker product form. The main result is Theorem

3

10.3.1 which establishes a simple relationship between a pair of Krylov subspaces

in Rn and Rn2

. This allows for a very compact representation of the necessary

vectors in R
n2

and it is the key step in reducing the resource requirements from

O(n2) to O(n). Unfortunately, this representation is so specialized that it does

not permit a general preconditioning strategy.

• In Chapter 11 we explain that it is possible to precondition Krylov subspace

methods for Lyapunov equations in the Kronecker product form using O(n)

resources. However, because of size considerations, the standard preconditioners

for linear systems can not be applied. The choice of preconditioners appear to

be extremely limited.

• Chapter 12 deals with the SPIKE algorithms for solving narrow banded linear

systems. Almost every solver of Lyapunov equations requires the solution of

linear systems, and they are frequently either narrow banded or admit a good

narrow banded preconditioner.

Our analysis of the truncated SPIKE algorithm has immediate implications for

another method for solving narrow banded linear systems, namely the overlap-

ping partition method (OPM).

We also consider the nature of a general narrow banded linear system. We show

that it is possible to rearrange the calculations, so that the solve phase can be

carried out with a single one to all communication.

• Chapter 13 contains a summary of our findings and research contributions.

The dissertation can be read sequentially, beginning with Chapter 2, but there

are also three distinct paths. The first consists of Chapters 2, 3, 4, 7, 8, and

9 and deals with the problem of computing a dominant subspace of P or of a

product PQ, where P and Q are solutions of a pair of Lyapunov equations. The

second path begins with Chapter 2 and continues with Chapters 5, 6, 10, and

11. The central theme is Krylov subspace methods for Lyapunov equations in

4

the Kronecker product form. The third and final path begins with Chapter 2,

skips to Chapter 6, and concludes with Chapters 12. The theme is the solution

of narrow banded linear systems, a topic which is interesting in its own right,

but which is also essential for the solution of Lyapunov matrix equations.

5

2. Elementary theory of Lyapunov equations

2.1 Introduction

Let A and Q be real n by n matrices. The continuous time Lyapunov equation is

given by

AX + XAT + Q = 0, (2.1)

and the discrete time Lyapunov equation is given by

AXAT − A + Q = 0, (2.2)

where the solution X is an n by n matrix.

This chapter contains a list of well known results on Lyapunov equations. We dis-

cuss the existence and uniqueness question for Lyapunov equations, different solution

formulae, the structure of solutions, as well as the low rank phenomenon.

2.2 The Kronecker product

Let A be a real n by m matrix and let B be a real k by l matrix. The Kronecker

product of A and B is the nk by ml matrix A ⊗ B given by

A ⊗ B =














a11B a12B . . . a1mB

a21B a22B
. . . a2mB

...
. . .

. . .
...

...
. . .

...

an1B an2B anmB














. (2.3)

If X is a real n by m matrix, then vec(X) is the vector in Rnm formed by stacking

the columns of X on top of each other, specifically

vec(X)i+(j−1)n = xij , i = 1, 2, . . . , n, j = 1, 2, . . . , m. (2.4)

6

This is exactly the manner in which the programming language FORTRAN stores a

dense matrix.

The Kronecker product satisfies the following proposition.

Proposition 2.2.1 Let A, B, C, and D be real matrices.

• In general

(A ⊗ B)T = AT ⊗ BT .

• If the products AC and BD are defined, then

(A ⊗ B)(C ⊗ D) = AC ⊗ BD.

• If the product ABC is defined, then

vec(ABC) = (A ⊗ CT)vec(B).

• If A and B are nonsingular matrices, then A ⊗ B is nonsingular, and

(A ⊗ B)−1 = A−1 ⊗ B−1.

Additional properties of the Kronecker product are given in Horn and Johnsen [26].

By applying the vec operator to both sides of the continuous time Lyapunov

matrix equation we see that it is equivalent to the following standard linear system

Ãx̃ + q̃ = 0, (2.5)

where

Ã = A ⊗ I + I ⊗ A, q̃ = vec(Q), (2.6)

and

x̃ = vec(X). (2.7)

We emphasize that the real matrix Ã is n2 by n2 and that both q̃ and x̃ are vectors

in Rn2

.

7

In this dissertation we are primarily interested in the special case where Q is a

real symmetric positive semidefinite matrix with very low rank, i.e.

Q = BBT , (2.8)

where B is a real tall matrix with relatively few columns. This special case is very

important in order reduction of dynamical systems [1, 68].

2.3 Existence and uniqueness theorems

Let A be a real n by n matrix, and let σ(A) ⊂ C be the set of eigenvalues of A.

We have the following theorem.

Theorem 2.3.1 The continuous time Lyapunov equation (2.1) has a unique solution

X for every choice of the inhomogeneous term Q if and only if

λ + µ 6= 0, (2.9)

for all λ, µ ∈ σ(A).

Proof The Lyapunov matrix equation is equivalent to the standard linear system

(2.5). It therefore suffices to show that the matrix

Ã = I ⊗ A + A ⊗ I,

is nonsingular if and only if

λ + µ 6= 0,

for all λ, µ ∈ σ(A).

By Schur’s lemma there exists a unitary n by n matrix U such that

R = U∗AU,

is upper triangular and the diagonal entries of R are equal to the eigenvalues of A.

Now, the matrix

(U ⊗ U)∗(I ⊗ A + A ⊗ I)(U ⊗ U) = (I ⊗ U∗AU + U∗AU ⊗ I)

= (I ⊗ R + R ⊗ I),

8

is obviously similar to Ã = I ⊗ A + A ⊗ I, and is also upper triangular. We see that

α is an eigenvalue of Ã if and only if α = λ + µ, where λ and µ are eigenvalues of A.

It follows that Ã is nonsingular if and only if λ + µ 6= 0 for all λ, µ ∈ σ(A).

Theorem 2.3.2 The discrete time Lyapunov equation (2.2) has a unique solution X

for every choice of the inhomogeneous term Q if and only if

λµ 6= 1, (2.10)

for all λ, µ ∈ σ(A).

Proof The proof is similar to that of Theorem 2.3.1 and is omitted.

2.4 The equivalence of the two classes of Lyapunov equations

It is not difficult to see that the two classes of Lyapunov equations are equivalent.

Let A be a real square matrix and let σ(A) denote the set of eigenvalues of A. Let S
denote the set of matrices given by

A ∈ S ⇔ 1 6∈ σ(A).

Let A ∈ (S), then the Cayley transform C(A) of A is given by

C(A) = (A + I)(A − I)−1.

The Cayley transform may be viewed as an extension of the complex function

φ(z) =
z + 1

z − 1
,

which maps C− {1} one to one and onto itself, with φ(φ(z)) = z for all z ∈ C− {1}.

Theorem 2.4.1 The following statements are true.

1. The Cayley transform maps S one to one and onto itself with

C(C(A)) = A.

9

2. If A ∈ S, then λ ∈ σ(A) if and only if φ(λ) ∈ σ(C(A)).

3. A is stable if and only if C(A) is convergent.

4. A is negative definite if and only if ‖C(A)‖2 < 1.

Proof The proofs are given in appendix A.

The Cayley transform establishes the connection between continuous and discrete

time Lyapunov equations. Specifically, we have the following theorem.

Theorem 2.4.2 Let A ∈ S, then X solves the continuous time Lyapunov equation

AX + XAT + Q = 0, (2.11)

if and only if X solves the discrete time Lyapunov equation

C(A)XC(A)T − X + Q0 = 0, (2.12)

where Q0 is given by

Q0 = 2(A − I)−1Q(A − I)−T . (2.13)

Proof The proof is elementary and is omitted.

This theorem is important to us because it shows that the two classes of equations

are equally difficult. We believe that it is simpler to explain the so called low rank

phenomenon for Lyapunov equations in the discrete case. First, we give a pair of

solution formulae and comment on the structure of solutions.

2.5 Solution formulae

Let A be a real n by n matrix and let σ(A) denote the set of eigenvalues of A.

We say that A is a stable matrix if and only if

Re λ < 0, ∀ λ ∈ σ(A), (2.14)

10

and we say that A is convergent if and only if

Aj → 0, j → ∞ (2.15)

or equivalently

|λ| < 1, ∀ λ ∈ σ(A). (2.16)

It is clear that if A is a real stable matrix, then

λ + µ 6= 0,

for all λ, µ ∈ σ(A) and the continuous time Lyapunov equation has a unique solution

for every choice of the inhomogeneous term. Similarly, it is clear that if A is a real

convergent matrix, then

λµ 6= 1,

for all λ, µ ∈ σ(A) and the discrete time Lyapunov equation has a unique solution for

every choice of the inhomogeneous term.

Theorem 2.5.1 If A is a real stable matrix, then the solution of the continuous time

Lyapunov equation (2.1) can be written in the form

X =

∫ ∞

0

etAQetAT

dt. (2.17)

Proof The stability of A implies that the improper integral exists, and if X(τ) is

given by

X(τ) =

∫ τ

0

etAQetAT

dt,

then

X(τ) → X, τ → ∞,

By continuity,

AX(τ) + X(τ)AT + Q → AX + XAT + Q.

However, we also have

AX(τ) + X(τ)AT + Q =

∫ τ

0

(

AetAQetAT

+ etAQetAT

AT
)

dt + Q

=

∫ τ

0

d

dt

(

etAQetAT
)

dt + Q = eτAQeτAT → 0, τ → ∞,

11

from which it follows,

AX + XAT + Q = 0,

which completes the proof.

Theorem 2.5.2 If A is a real convergent matrix, then the solution of the discrete

time Lyapunov equation (2.2) can be written in the form

X =
∞∑

j=0

AjQ(AT)j. (2.18)

Proof Let Xn be given by

Xn =

n−1∑

j=0

AjQ(AT)j.

Then, it is clear that

AXnA
T − Xn + Q = AnQ(AT)n → 0, n → 0,

however it remains to be seen that the sequences {Xn}∞n=0 is convergent! It is enough

to show that the series
∞∑

j=0

AjQ(AT)j,

converges absolutely, i.e.
∞∑

j=0

‖AjQ(AT)j‖2 < ∞.

This is a standard result from the theory of normed linear spaces, see Proposition

6.3.5 [47]. If ‖A‖ < 1, then this would be simple, however we only know that A is

convergent, i.e ρ(A) < 1. Now, in general

‖Aj‖
1

j

2 → ρ(A), j → ∞,

which implies there exists an integer N , such that

ρ − 1 − ρ

2
< ‖An‖

1

n

2 < ρ +
1 − ρ

2
< 1, n ≥ N.

12

This is a standard result from the spectral theory of unital Banach algebras, see

Theorem 4.1.13 [39]. Let ǫ = ‖AN‖2 < 1 and let

C = max{‖Ar‖2 : r = 0, 1, 2, . . . , N − 1} < ∞.

Then we can estimate

∞∑

j=0

‖AjQ(AT)j‖2 ≤ ‖Q‖2

∞∑

j=0

‖Aj‖2
2

= ‖Q‖2

∞∑

q=0

N−1∑

r=0

‖AqN+r‖2
2 ≤ ‖Q‖2

∞∑

q=0

N−1∑

r=0

ǫ2q‖Ar‖2
2

≤ C2N‖Q‖2

∞∑

q=0

ǫ2q = C2N‖Q‖2
1

1 − ǫ2
< ∞.

We conclude that

X =

∞∑

j=0

AjQ(AT)j,

is well defined and satisfies

AXAT − X + Q = 0.

2.6 The structure of solutions

Theorem 2.6.1 Let A be a real square matrix such that λ+µ 6= 0, for all λ, µ ∈ σ(A),

and let X be the solution of the continuous time Lyapunov equation (2.1). Then the

following statements are true:

• If Q is symmetric, then X is symmetric.

• If A is stable, and if Q is symmetric positive (semi)definite, then X is symmetric

positive (semi)definite,

Proof By transposing the Lyapunov equation we discover that X and XT satisfy

the same equation. The uniqueness Theorem 2.3.1 now implies that X = XT . The

second statement follows by applying the solution formula (2.17).

13

Theorem 2.6.2 Let A be a real square matrix such that λµ 6= 1, for all λ, µ ∈ σ(A),

and let X be the solution of the discrete time Lyapunov equation (2.2). Then the

following statements are true:

• If Q is symmetric, then X is symmetric.

• If A is convergent, and if Q is symmetric positive (semi)definite, then X is

symmetric positive (semi)definite.

Proof By transposing the Lyapunov equation we discover that X and XT satisfy

the same equation. The uniqueness Theorem 2.5.2 now implies that X = XT . The

second statement follows by applying the solution formula (2.18).

In this dissertation we focus almost exclusively on the special case in which A is

a real stable (convergent) matrix and

Q = BBT ,

where B is a real tall matrix. If A is any real square matrix such that AB is defined,

then the Krylov subspace Kl(A, B) is given by

Kl(A, B) = Ran
[

B AB A2B . . . Al−1B
]

⊆ R
n, l = 1, 2, . . . , (2.19)

It is clear, that

Kl(A, B) ⊆ Kl+1(A, B)

for l = 1, 2, . . . , and there exists a smallest integer m such that

Km(A, B) = Kl(A, B)

for all l ≥ m. The number m is called the grade of B with respect to A. The Krylov

subspace

K(A, B) = Km(A, B), (2.20)

is the smallest A invariant subspace which contains Ran B.

14

Theorem 2.6.3 Let A be a real square matrix such that λ+µ 6= 0 for all λ, µ ∈ σ(A),

let B be a real tall matrix such that AB is defined, and let X be the solution of the

continuous time Lyapunov equation

AX + XAT + BBT = 0. (2.21)

Let V be a matrix with orthonormal columns, such that RanV = K(A, B). Then

X = V Y V T , (2.22)

where Y is the unique solution of the reduced order equation

HY + Y HT + V T BBT V = 0, (2.23)

where H = V T AV .

The proof of this theorem is elementary, but since it contains several important ideas,

we present it below.

Proof By definition RanV = K(A, B) is A invariant, which implies

AV = V H,

where H = V T AV . We claim that σ(H) ⊂ σ(A), which in turn implies that the

reduced order equation (2.23) has a unique solution Y . Let (α, x) be an eigenpair for

H . Then αx = Hx, which implies

αV x = V Hx = AV x,

from which it is apparent that (α, V x) is an eigenpair for A. Now, let Y be the unique

solution of equation (2.23). Then we claim that V Y V T is a solution of the original

Lyapunov equation (2.21). We have

AV Y V T + V Y V T AT + BBT = V HY V T + V Y HTV T + V V T BBT V V T

= V
(
HY + Y HT + V T BBT V

)
V T = 0,

because RanB ⊆ RanV , and Y is a solution of equation (2.23). Finally, it follows

from the uniqueness theorem, Theorem 2.3.1, that X = V Y V T .

15

Theorem 2.6.4 Let A be a real stable matrix, let B be a real tall matrix such that

AB is defined, and let X be the solution of

AX + XAT + BBT = 0,

then

RanX = K(A, B).

Proof By Theorem 2.6.3 we have

RanX ⊆ K(A, B),

merely because λ+µ 6= 0 for all λ and µ in σ(A). However, since A is assumed stable,

Theorem 2.5.1 applies, and we have

X =

∫ ∞

0

etABBT etAT

dt.

We must show

RanX ⊇ K(A, B),

or equivalently

Ker X ⊆ K(A, B)⊥.

If Xv = 0, then

0 = vT Xv =

∫ ∞

0

vT etABBT etAT

vdt,

from which it follows

vT etAB = 0, t ≥ 0.

By repeated differentiation with respect to t we discover that

vT AjetAB = 0, t ≥ 0, j = 0, 1, 2, . . . ,

and by evaluating at t = 0 we find

vTAjB = 0, j = 0, 1, 2,

This is equivalent to v ∈ K(A, B)⊥.

16

These two theorems and the techniques used in their proofs carry to the discrete

case as well. Specifically, we have the following theorems.

Theorem 2.6.5 Let A be a real square matrix such that λµ 6= 1 for all eigenvalues

λ and µ of A. Let B be a real tall matrix such that AB is defined and let X be the

solution of the discrete time Lyapunov equation

AXAT − X + BBT = 0.

Let V be a real matrix with orthonormal columns, such that RanV = K(A, B). Then

X = V Y V T ,

where Y is the unique solution of the reduced order equation

HY HT − Y + V T BBT V = 0,

where H = V T AV .

Theorem 2.6.6 Let A be a real convergent matrix, let B be a real tall matrix such

that AB is defined and let X be the solution of the discrete time Lyapunov equation

AXAT − X + BBT = 0.

Then

RanX = K(A, B).

It is extremely important to realize that the grade of B with respect to A need

not be small and in the typical case the grade is comparable with n and the special

case of

K(A, B) = R
n

could be unavoidable. Nevertheless, these two theorems form the foundation for an

important solver which we will discuss in detail in Chapter 6.

17

2.7 The low rank phenomenon

Let A be a stable n by n matrix, let B be a real tall matrix such that AB is

defined, and consider the continuous time Lyapunov equation

AX + XAT + BBT = 0,

where, in general, the solution X is symmetric positive semidefinite (Theorem 2.6.1).

Let

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, (2.24)

be the eigenvalues of X. For many practical application the eigenvalues of X decay

extremely fast and since

λk+1 = min{‖X − Xk‖2 : Xk = XT
k , rank(Xk) ≤ k},

these are precisely the cases where X can be accurately approximated by a symmetric

matrix with very low rank. This is the low rank phenomenon for Lyapunov matrix

equations.

This phenomenon is most easily understood in term of the discrete time Lyapunov

matrix equation,

AXAT − X + BBT = 0.

Consider the special case where ‖A‖2 < 1. Since A is convergent, the exact solution

X is given by

X =

∞∑

j=0

AjBBT (AT)j.

Let Xk be given by

Xk =

k−1∑

j=0

AjBBT (AT)j , (2.25)

with rank at most k times the rank of B, and since ‖A‖2 < 1 we have

‖X − Xk‖2 ≤
‖A‖2k

2

1 − ‖A‖2
2

‖BBT‖2 → 0, k → ∞

Thus, we conclude that if ‖A‖2 ≪ 1 and B has very low rank, then X admits a good

low rank approximation.

18

The bound given by inequality (2.7) is very simple and the eigenvalues for X may

decay considerably faster than this bound would suggest.

Penzl [41] was the first to obtain a bound on the decay rate of the eigenvalues

in the stable symmetric case. Zhou and Sorensen [69] obtained a bound in the case

where A is stable and diagonalizable; see also the paper by Antoulas, Sorensen and

Zhou [2].

It is important to understand that the low rank phenomenon is not universal, and

that the decay of the eigenvalues does not depend exclusively on the spectrum of A,

but also on the choice of B.

We illustrate this with an example where A is stable, B has rank 1, and X = I

is the solution of the corresponding continuous time Lyapunov equation. Let A be

the n by n matrix given by A = T − eneT
n , where T is the n by n skew symmetric

tridiagonal Toeplitz matrix given by

T =











0 1

−1
. . .

. . .

. . . 1

−1 0











, (2.26)

and en = (0, 0, . . . , 0, 1)T is the last column in the n by n identity matrix. To see

that A is stable we proceed as follows. Let λ be an eigenvalue of A and let x =

(x1, x2, . . . , xn)T ∈ Cn be the corresponding eigenvector. Then it follows by induction

that xn 6= 0, specifically xn = 0 implies xn−j = 0 for j = 1, 2, . . . , n− 1, in that order.

In addition we have the following equality

x∗Tx − |xn|2
‖x‖2

= λ.

Now, since T is normal the numerical range of T is the convex hull of its eigenvalues.

If µ is an eigenvalue of T , then Re(µ) = 0, because T is skew symmetric. It follows

that Re(x∗Tx) = 0. We conclude that A is stable. Finally, since

A + AT = −2eneT
n ,

19

we see that X = I is the unique solution of the Lyapunov equation

AX + XAT + BBT = 0,

where B =
√

2en has rank 1. Obviously, the eigenvalues for X = I do not decay and

there are no good low rank approximations to X. We shall return to this example in

Chapter 6 where we discuss current Krylov subspace methods for solving Lyapunov

equations.

The following general theorem is due to T. Penzl [41]. His proof is constructive and

can be used to construct a Lyapunov equation for which a given symmetric positive

definite matrix X is the solution.

Theorem 2.7.1 Let Ã be a real stable n by n matrix, and let B̃ be a tall matrix such

that

K(Ã, B̃) = R
n.

Let X be any symmetric positive definite matrix, then there exists a nonsingular

matrix T , such that X is the solution of the Lyapunov equation

AX + XAT + BBT = 0,

where A = TÃT−1, and B = TB̃.

The point of this section is that while low rank phenomenon occurs frequently, it is

not universal. For discrete time Lyapunov equations the low rank phenomenon occurs

with certainty when ‖A‖2 ≪ 1, and the same occurs for continuous time Lyapunov

when λmax(A + AT) ≪ 0. However, even in the general stable case, the phenomenon

occurs frequently enough to have serious practical applications.

20

21

3. Linear time invariant dynamical systems

3.1 Introduction

In this chapter we justify our interest in investigating solution methods for Lya-

punov matrix equations as well as certain related eigenvalue problems. We begin by

introducing a few concepts from the theory of linear time invariant systems, before

moving on to model reduction by balanced truncation. We explain the importance of

the continuous time Lyapunov equation and demonstrate how to compute a balancing

transformation by solving a very specific eigenvalue problem.

A thorough introduction to linear systems has been written by Zhou, Doyle, and

Glover [68]. While Antoulas [1] also deals with this subject, he concentrates on

techniques for model reduction.

We begin with two simple examples of linear dynamical systems which will be

used throughout the dissertation.

Example 1 Consider the inhomogeneous heat equation

φt − φxx = b(x)u(t), (x, t) ∈ (0, 1) × (0,∞), (3.1)

together with the initial condition

φ(x, 0) = g(x), x ∈ (0, 1), (3.2)

and the homogeneous boundary conditions

φ(0, t) = φ(1, t) = 0, t > 0. (3.3)

Physically, φ represents the distribution of heat (energy/length) in a one dimensional

rod occupying the unit interval. The boundary conditions correspond to the fact that

the endpoints are kept at absolute zero, while the inhomogeneous term represents the

input of heat from sources external to the rod.

22

The heat equation is discretized via

v̇(t) =
vj+1(t) − 2vj(t) + vj−1(t)

h2
+ b(xj)u(t), j = 1, 2, . . . , N − 1, t > 0,

where

h = 1/N, xj = jh, j = 0, 1, . . . , N,

and vj(t) is an approximation of φ(xj , t) with

vj(0) = g(xj), j = 0, 1, 2, . . . , N, (3.4)

as well as

v0(t) = vN(t) = 0, t > 0.

These equations can be expressed as

v̇(t) = Av(t) + Bu(t),

where

v(t) = (v1(t), v2(t), . . . , vN−1(t))
T ,

and A is the N − 1 by N − 1 Toeplitz matrix given by

A = h−2











−2 1

1
. . .

. . .

. . . 1

1 −2











,

while

B = (b(x1), b(x2), . . . , b(xN−1))
T ∈ R

N−1.

Frequently, we will not care for every single component of v, especially when N is

very large. We might very well be more interested in a linear combination of the

components, such as the sum

y(t) = h
N−1∑

j=1

vj(t),

23

which is a very simple approximation of the thermal energy E(t) stored in the rod at

time t, i.e.

E(t) =

∫ 1

0

φ(x, t)dx.

It is clear that this is merely a special case of a much more general situation, which

we formalize with the following definition.

Definition 3.1.1 A continuous time invariant linear dynamical system

Σ = (A, B, C, D),

is determined by a set of differential equations

ẋ = Ax + Bu, x(0) = x0,

y = Cx + Du,

where A, B, C, D are real matrices, while x, u, and y are real vectors. They are all

assumed to be of compatible size. The vector x(t) is called the system state, x0 is the

initial condition, u(t) is called the system input, and y(t) is called the system output.

Example 2 As in Example 1 we consider the initial boundary value problem

φt − φxx = b(x)u(t), (x, t) ∈ (0, 1) × (0,∞),

together with the initial condition

φ(x, 0) = g(x), x ∈ (0, 1),

and the homogeneous boundary conditions

φ(0, t) = φ(1, t) = 0, t > 0.

In addition to the spatial discretization done in Example 1, we discretize the time by

choosing k > 0 and defining

tm = mk, m = 0, 1, 2, . . .

24

Now, let λ = k/h2, then the standard Crank-Nicholson scheme for our problem is

given by

w(0) = (f(x1), f(x2), . . . , f(xN−1))
T ,

A1w
(m+1) = A2w

(m) + kBu(m), m = 0, 1, 2, . . . ,

where A1 and A2 are the N − 1 by N − 1 Toeplitz matrices determined by

A1 =











1 + λ −λ
2

−λ
2

. . .
. . .

. . .
. . . −λ

2

−λ
2

1 + λ











,

and

A2 =











1 − λ λ
2

λ
2

. . .
. . .

. . .
. . . λ

2

λ
2

1 + λ











,

while

B = (b(x1), b(x2), . . . , b(xN−1))
T ,

and

u(m) = u(tm), m = 0, 1, 2,

The Crank-Nicholson scheme is second order accurate in both time and space, and

it is stable for all values of λ = k/h2. In this case stability means that A−1
1 A2 is a

convergent matrix.

As before, we might have good reasons to favor a weighted linear combination of

the vector w(m) and the input u(m), i.e.

y(m) = Cw(m) + Du(m), m = 0, 1, 2, . . . ,

over the potentially very large vector w(m) ∈ RN−1. It is clear that we are dealing with

a special case of a much more general situation. We make the following definition.

25

Definition 3.1.2 A discrete time invariant linear system Σ = (A, B, C, D) is deter-

mined by an equation of the form

x(m) = Ax(m−1) + Bu(m−1), x(0) = x0,

y(m) = Cx(m) + Du(m),

where A, B, C, and D are real matrices, and x(m), u(m) and y(m) are real vectors.

They are all assumed to be of compatible size. The vector x(m) is called the system

state, x0 is the initial condition, u(m) is called the system input and y(m) is called the

system output.

In this dissertation we shall focus almost exclusively on the case of continuous

time, but there will be occasional references to the case of discrete time.

3.2 Elementary results and definitions

In this section we provide a list of definitions and elementary results relevant

to continuous time invariant systems. Let Σ = (A, B, C, D) be a continuous time

invariant linear system. Let φ(u; x0; t) denote the solution of the state equation, then

φ(u; x0; t) =

∫ t

0

e(t−s)A)Bu(s)ds + etAx0.

Definition 3.2.1 The state x̄ ∈ Rn is said to reachable from the zero state if there

exists a t1 > 0 and an input u ∈ C([0, t1]), such that x̄ = φ(u; 0; t1).

The following theorem characterizes the set of reachable states.

Theorem 3.2.1 The set of reachable states is the smallest A-invariant vector space

which contains the range of B, i.e. the Krylov subspace K(A, B). If every state is

reachable, then the system is said to be reachable.

Definition 3.2.2 The state x̄ ∈ Rn is said to be unobservable if and only if the output

y(t) = Cφ(0; x̄, t) = CetAx̄,

26

corresponding to the input u(t) = 0, satisfies

y(t) = 0,

for all t ≥ 0.

Let Ω ⊆ Rn be any subset of Rn. Then the orthogonal complement Ω⊥ to Ω is

the vector space given by

Ω⊥ = {x ∈ R
n : ∀y ∈ Ω : (x, y) = 0}. (3.5)

From Definition 3.2.2 is clear that a state x̄ is unobservable if and only if

x̄ ∈ K(AT , CT)⊥,

and as result the zero state is always unobservable.

Definition 3.2.3 If the zero state is the only unobservable state, then the system is

said to be observable.

We emphasize that a linear time invariant system Σ = (A, B, C, D) is reachable

if and only if

K(A, B) = R
n,

and it is observable if and only if

K(AT , CT) = R
n.

The matrix D is not relevant to the reachability or observability of the system.

The Laplace transform is an important tool in the analysis of stable linear systems.

If x ∈ C([0,∞)) is a bounded function, then the Laplace transform X of x is given

by

X(s) =

∫ ∞

0

e−stx(t)dt,

where s is any complex number with strictly positive real part. If A is stable, and

if the input is continuous and bounded independent of t, then both the state x and

27

the output y can be bounded independent of t and their Laplace transforms are well

defined. There is a simple relationship between the Laplace transform of the input

and the Laplace transform of the output, specifically

Y (s) = T (s)U(s),

where the transfer function T is given by

T (s) = C(sI − A)−1B + D.

Let S be a nonsingular matrix and let x(t) be the solution of the state equation,

then the function x̂ defined by

x̂(t) = Sx(t),

satisfies the dynamical system

˙̂x = SAS−1x̂ + SBu, x̂(t0) = Sx0,

y = CS−1x̂ + Du.

This observation motivates the following definition

Definition 3.2.4 Let Σ = (A, B, C, D) be a stable linear time invariant system and

let S be a nonsingular matrix. Then the similarity transform of Σ with respect to S

is the stable linear time invariant system Σ̂ = (Â, B̂, Ĉ, D̂) given by

(Â, B̂, Ĉ, D̂) = (SAS−1, SA, CS−1, D).

The following theorem follows directly from Definition 3.2.4

Theorem 3.2.2 Let Σ be a stable linear time invariant system and let Σ̂ be the

similarity transform of Σ with respect to a nonsingular matrix S. Then the two

transfer functions are identical, i.e.

T (s) = T̂ (s),

for all complex numbers s with positive real part.

28

3.3 Model reduction by balanced truncation

Given a linear time invariant system

Σ = (A, B, C, D),

it is possible to integrate the differential equation and determine the state vector

x as a function of the input u. However, this can be very expensive in terms of

memory usage and number of arithmetic operations. In addition, the state vector x

is frequently of secondary importance compared with the relationship between the

input u and the output y. In the previous section we saw that the transfer function

T links the Laplace transform U of the input together with the Laplace transform Y

of the output, specifically

Y (s) = T (s)U(s).

However, this simple relationship is not as useful as it would appear to be. In reality

we are merely trading one difficult problem for another. It is a nontrivial exercise to

solve the necessary linear systems

(sI − A)Z = B, (3.6)

for Z = Z(s) in order to compute the transfer function,

T (s) = C(sI − A)−1B + D.

If A is a general sparse matrix, then we may have to use a Krylov subspace method to

solve the linear system (3.6) with a good preconditioner for every relevant choice of

s. If A is a narrow banded matrix, then we can use Gaussian elimination with partial

pivoting to solve our problem. However, a new LU factorization must be computed

for every relevant choice of s.

This raises the question of whether it is possible to construct another system

Σ̂ = (Â, B̂, Ĉ, D̂),

29

of substantially smaller dimension, which can be used to simulate the original system

Σ. This is one of the central questions in model reduction.

There are many different algorithms for model reduction of dynamical systems, but

it is desirable to preserve stability and to obtain a bound on the difference between the

transfer functions for the reduced system and the original system. Model reduction

by balanced truncation is a standard algorithm which can be used to accomplish this

goal. We require the following definition.

Definition 3.3.1 Let Σ = (A, B, C, D) be a stable linear time invariant system.

Then the reachability Gramian P and the observability Gramiam Q are defined as the

unique solutions of the Lyapunov equations

AP + PAT + BBT = 0 and AT Q + QA + CT C = 0.

The Gramians P , and Q satisfy

P =

∫ ∞

0

etABBT etAT

dt and Q =

∫ ∞

0

etAT

CT CetAdt.

It is easy to show that P and Q are both symmetric positive semidefinite, and

RanP = K(A, B) and Ran Q = K(AT , CT).

It follows immediately that the system Σ is reachable if and only if P > 0 and it is

observable if only if Q > 0.

In general, P ≥ 0 and Q ≥ 0 and the matrices PQ and QP are merely similar to

a symmetric positive semidefinite matrix. The Hankel singular values {σi}n
i=1,

σ1 ≥ σ2 ≥, . . . ,≥ σn ≥ 0,

are defined as the eigenvalues of the products PQ and QP .

Let S be a nonsingular matrix and let Σ̂ be the corresponding similarity transform

of the system Σ. The Gramians of the transformed system satisfy

P̂ = SPST and Q̂ = S−TQS−1.

30

If S is an orthogonal matrix, then the eigenvalues of P and Q are preserved, but

in general this is not the case. However, since

P̂ Q̂ = S(PQ)S−1 and Q̂P̂ = S−T (QP)ST ,

we see that the Hankel singular values are preserved by any similarity transformation.

Since the concept of a balanced system is critical in model reduction we introduce

the following definition and theorems. Notice, that it is very simple to extract a

reduced model from a balanced one.

Definition 3.3.2 Let Σ = (A, B, C, D) be a stable linear time invariant system, then

Σ is said to be balanced if the Gramians are equal and diagonal, i.e.

P = Q = Σ = diag{σ1, σ2, . . . , σn}.

Theorem 3.3.1 Let Σ = (A, B, C, D) be a stable linear time invariant system, then

there exist a nonsingular matrix S such that the similarity transform of Σ with respect

to S is balanced.

Theorem 3.3.2 Let Σ = (A, B, C, D) be a linear system which is stable and bal-

anced. Let

P = Q = Σ = diag{σ1, σ2, . . . , σn},

be the system Gramians where

σ1 ≥ σ2 ≥, . . . ,≥ σn ≥ 0,

are the Hankel singular values. If σr > σr+1, then Σ is partitioned as

Σ =




Σ1

Σ2



 ,

where

Σ1 = diag{σ1, σ2, . . . , σr},

Σ2 = diag{σr+1, σr+2, σn},

31

with A, B, and C partitioned conformally,

A =




A11 A12

A21 A22



 , B =




B1

B2



 , and C =
[

C1 C2

]

,

then the following statements are true:

1. The reduced order system (Â, B̂, Ĉ, D̂) = (A11, B1, C1, D) is stable.

2. The transfer function of the reduced order system T̂ given by

T̂ (s) = C1(sIr − A11)
−1B,

satisfies

sup{|T (iω) − T̂ (iω)| : ω ∈ R, i2 = −1} ≤ 2(σr+1 + σr+2 + · · ·+ σn).

We see that if the Hankel singular values decay sufficiently fast, then it is possible

to extract a stable reduced order model of substantially smaller dimension for which

the transfer function is a good approximation of the transfer function for the original

system.

We next consider the key question of computing a balancing transformation. We

begin with the following lemma.

Lemma 3.3.1 Let Σ = (A, B, C, D) be a stable system, and let P ≥ 0 and Q ≥ 0 be

the system Gramians. Let Σ be an n by n diagonal matrix with nonnegative diagonal

entries and let V , W be n by n matrices, such that

PW = V Σ, QV = WΣ,

and V T W = I, then the system

Σ̂ = (W TAV, W T B, CV, D),

is balanced and the transformed Gramians satisfy

P̂ = Q̂ = Σ.

32

Proof Let S = W T , then S−1 = V and we recognize the transformation as a

similarity transformation. The transformed Gramians are

P̂ = SPST = W TPW = W T (PW) = W T (V Σ) = (W T V)Σ = Σ,

and

Q̂ = S−T QS−1 = V T QV = V T (QV) = V T (WΣ) = (V T W)Σ = Σ.

But how do we compute matrices V , W , and a diagonal matrix Σ with nonnegative

entries such that

PW = V Σ, QV = WΣ,

and V T W = I? It is clear that if such a factorization exists, then

PQV = P (WΣ) = V Σ2, QPW = Q(V Σ) = WΣ2,

which explains why we must study the eigenvalue problem for the products PQ and

QP .

3.4 The eigenvalue problem for the products PQ and QP

In this section we show how to compute a balancing transformation for a linear

time invariant system. In the previous section we saw that this problem is intimately

related to the eigenvalue problem for the operators PQ and QP . We begin with the

following theorem.

Theorem 3.4.1 Let P and Q be any pair of symmetric positive semidefinite ma-

trices. Then there exist nonsingular matrices V , W and a diagonal matrix Σ with

nonnegative entries, such that

PQV = V Σ2, QPW = WΣ2.

33

By reordering the rows and columns of Σ we may assume, that

Σ = diag{Σ1, Σ2, . . . , Σk},

where Σi = σiIir , and

σ2
1 > σ2

2 > · · · > σ2
k ≥ 0,

are the distinct eigenvalues of PQ, and QP . Now partition V , and W conformally

with Σ, i.e.

V =
[

V1, V2, . . . , Vk

]

, W =
[

W1, W2, . . . , Wk

]

.

The matrices V and W given by Theorem 3.4.1 need not be mutually orthogonal.

However, we have the following lemma.

Lemma 3.4.1 Let i 6= j and let v be a column of Vi and let w be a column of Wj,

then v and w are orthogonal.

Proof Recalling that P and Q are symmetric positive semidefinite, we have

σ2
i (v, w) = (σ2

i v, w) = (PQv, w) = (v, QPw) = (v, σ2
j w) = σ2

j (v, w),

or equivalently

(σ2
i − σ2

j)(v, w) = 0,

which implies (v, w) = 0.

We conclude that the product V T W is block diagonal with respect to this par-

titioning. In particular, if the eigenvalues of PQ, and QP are distinct, then V T W

is diagonal, but V T W is not necessarily the identity matrix. However, it is easy to

ensure that V T W = I. Since V and W are nonsingular and V T W is block diagonal,

then V T
i Wi is nonsingular. Now suppose we replace W with W̃ , where

W̃ =
[

W1(V
T
1 W1)

−1, W2(V
T
2 W2)

−1, . . . , Wk(V
T
k Wk)

−1

]

,

then we force

V T W̃ = In.

34

In addition, since Σ2
i is a scaled identity matrix, then

PQW̃i = PQWi(V
T
i Wi)

−1 = WiΣ
2
i (V

T
i Wi)

−1 = Wi(V
T
i Wi)

−1Σ2
i = W̃iΣ

2
i ,

which implies

PQW̃ = W̃Σ2.

We summarize the above in the following theorem.

Theorem 3.4.2 Let (A, B, C, D) be a stable system, and let P and Q be the system

Gramians. Then there exists a pair of matrices V and W , and a diagonal matrix Σ

with nonnegative diagonal entries, such that

PQV = V Σ2, QPW = WΣ2,

and V T W = I.

We claim that it is possible to further modify V , and W to achieve

PW = V Σ,

QV = WΣ,

while retaining V T W = I, which settles the problem of computing a balancing trans-

formation.

We begin by showing that if W T PW and V T QV are partitioned conformally with

Σ, then they are block diagonal. This is a straightforward generalization of a previous

lemma.

Lemma 3.4.2 Let P , and Q be symmetric positive semidefinite matrices, let Σ be a

diagonal matrix with nonnegative entries,

Σ = diag{Σ1, Σ2, . . . , Σk},

where

Σi = σiIni
, i = 1, 2, . . . , k,

35

with

σ1 > σ2 > · · · > σk ≥ 0,

and let V and W be matrices, such that

PQV = V Σ2, QPW = WΣ2,

and V T W = I. If P and Q are partitioned conformally with Σ, then they are block

diagonal.

Proof Partition V and W conformally with Σ, i.e.

V =
[

V1, V2, . . . , Vk

]

, W =
[

W1, W2, . . .Wk,
]

.

Let i 6= j. It suffices to show that W T
i PWj = 0. The same technique can be applied

to show that V T
i QVj = 0. We have

σ2
i (W

T
i PWj) = (WiΣ

2
i)

T PWj = (QPWi)
TPWj

= W T
i PQPWj = W T

i PWjΣ
2
j = σ2

j (W
T
i PWj),

or equivalently

(σ2
i − σ2

j)(W
T
i PWj) = 0,

from which it follows, entry by entry, that W T
i PWj = 0.

We remark that the proof is identical to the proof that the eigenvectors corresponding

to distinct eigenvalues of a Hermitian matrix are mutually orthogonal.

In addition, we have the following elementary identity

(W T PW)(V T QV) = (V T QV)(W TPW) = Σ2.

or equivalently

(W T
i PWi)(V

T
i QVi) = (V T

i QVi)(W
T
i PWi) = Σ2

i ,

36

for i = 1, 2, . . . , k. Now, let

Pi = W T
i PWi and Qi = V T

i QVi,

then

PiQi = QiPi = Σ2
i ,

for i = 1, 2, . . . , k.

For the sake of simplicity we consider only the case in which P and Q are both

positive definite, which implies that the Hankel singular values are all strictly positive,

i.e. σi > 0, for i = 1, 2, . . . , k. Let us drop the subscript i, and write

P = Pi and Q = Qi,

so that

PQ = QP = σ2I.

We claim that it is possible to find V and W such that

W TPW = σI, (3.7)

V T QV = σI, (3.8)

with V T W = I. Now, since P is symmetric positive definite, there exists an orthog-

onal matrix U , such that

UT PU = Λ,

is diagonal with positive diagonal entries. It follows that if

W = UΛ−1/2σ1/2,

then

W TPW = σI.

Now, given W there is only one choice for V , because we want V T W = I, namely

V = W−T = U−T Λ1/2σ−1/2 = UΛ1/2σ−1/2,

37

and we have

V T QV = W−1σ2P−1W−T = σ2(W T PW)−1 = σI.

We summarize this entire discussion in Algorithm 1, which can be used to compute

a balancing transformation.

Input: Gramians P > 0, Q > 0.

Output: Matrices V , and W such that (W T AV, W T B, CV, D) is balanced and ready

for truncation.

1: Solve the eigenvalue problems

PQV = V Σ2, QPW = WΣ2,

where

V =
[

V1, V2, . . . , Vk

]

, and W =
[

W1, W2, . . . , Wk

]

,

are partitioned conformally with

Σ = diag{σ1In1
, σ2In2

, . . . , σkInk
},

where

σ1 > σ2 > · · · > σk > 0,

are the distinct Hankel singular values.

2: for i=1,2,. . . ,k do

3: Wi := Wi(V
T
i Wi)

−1.

4: Set Pi := W T
i PWi.

5: Compute the spectral decomposition UT
i PiUi = Λi.

6: Set Wi := WiUiΛ
−1/2
i σ

1/2
i .

7: Set Vi := ViUiΛ
1/2
i σ

−1/2
i .

8: end for

Algorithm 1: Computation of a balancing transformation

38

Now do we actually have to compute a balancing transformation, i.e. a full n by

n nonsingular matrix S? The answer is no! This is the point where we appreciate

the value of computing S−1 and S separately, as S−1 = V and S = W T , where the

columns of V and W are eigenvectors for PQ and QP , respectively. Assuming that

σk > σk+1, such that the rank k dominant eigenspaces for both PQ and QP are well

defined, we partition V and W as follows

V =
[

V1, V2

]

and W =
[

W1, W2

]

,

where V1 spans the rank k dominant eigenspace for PQ and W1 spans the rank k

dominant eigenspace for QP . The balanced system is

Σ̂ = (SAS−1, SB, CS−1, D) = (W T AV, W T B, CV, D),

where

W TAV =




W T

1 AV1 W T
1 AV2

W T
2 AV1 W T

2 AV2



 , W T B =




W T

1 B

W T
2 B



 , and CV =
[

CV1, CV2

]

.

The truncation process discards the majority of this data, retaining only the upper

left corner of W T AV , the first block row of W T B, as well as the first block column

of CV . In other words, the reduced order model is given by the system

Σ̂
r

= (W T
1 AV1, W

T
1 B, CV1, D),

where there is no reference to V2 and W2. Naturally we need an estimate of the

truncation error, i.e. an upper bound for the sum of the neglected Hankel singular

values, but there is no need to compute the columns of V2 and W2. Since we are

only interested in the cases where the Hankel singular values decay rapidly, this

significantly reduces the computational burden.

This is the reason why we are interested in finding the rank k dominant eigenspaces

of the matrices PQ and QP .

How can this be achieved? Suppose for a moment that P , and Q were explicitly

available, and the integer k was given to us in advance. Then, we might simply run

two instances of the standard subspace iteration algorithm, as specified in Figure 3.1

39

1: V T
0 V0 = Ik

2: for j = 0, 1, . . . , do

3: Set Fj+1 := (PQ)Vj

4: QR-factorization Vj+1Rj+1 = Fj+1

5: end for

1: W T
1 W1 = Ik

2: for j = 1, 2, . . . , do

3: Set Gj+1 := (QP)Wj

4: QR-factorization Wj+1Sj+1 = Gj+1

5: end for

Figure 3.1. Two instances of the standard subspace iteration. The starting
indices are different by deliberate choice.

The convergence of the standard subspace iteration as well as Ritz acceleration is

discussed in Chapter 4.

The two distinct instances of the subspace iteration can be merged into a single

iterative scheme, which we state as Algorithm 2. It is not difficult to see that

RanVj+1 = Ran (PQVj), Ran Wj+2 = Ran (QPWj+1), j = 0, 1, 2, . . . ,

and

Ran Ṽj+1 = Ran (PQṼj), and Ran W̃j+2 = Ran(QPW̃j+1), j = 0, 1, 2, . . . ,

while

Ran W̃1 = RanQṼ0.

Now, given a matrix Ṽ0 with orthonormal columns, it follows that if we choose V0 and

W1 such that

RanV0 = Ran Ṽ0, RanW1 = RanQṼ0,

then the two procedures are equivalent in the sense that

Ran Ṽj = RanVj , RanWj = Ran W̃j ,

for j = 1, 2,

In either case, there is a fundamental problem which we have yet to address,

namely that the Gramians P , and Q are not explicitly available to us, but are given

40

1: Chose V0 such that Ṽ T
0 Ṽ0 = Ik.

2: for i = 0, 1, . . . , do

3: QR-factorization: W̃i+1S̃i+1 := QṼi

4: QR-factorization: Ṽi+1T̃i+1 := PW̃i+1

5: end for

Algorithm 2: Simultaneous subspace iteration for PQ, and QP

41

implicitly as the solution of the corresponding Lyapunov equations. It follows that

we must use these equations to approximate the actions of P and Q.

Hodel [24] was the first to consider this approach. He developed the Approximate

Power Iteration (API) which can be used to compute the dominant eigenspaces for P .

This algorithm is discussed in Chapter 7. We have extended Hodel’s algorithm, and in

Chapter 8 we show how to apply subspace iteration with Ritz acceleration. Sorensen

and Zhou applied Hodel’s basic idea to the simultaneous iteration. We discuss this

approach in Chapter 9.

It is clear that the two Lyapunov equations can be solved independently. However,

we are not particularly interested in the individual Gramians P and Q, but rather in

the dominant eigenspaces for the products PQ and QP . Now, there are at least two

algorithms which occasionally can be used to compute a good low rank approximation

of P and a good low rank approximation of Q. Suppose we have succeeded beyond

our wildest imagination and extracted the optimal rank k approximation Pk for P

and the optimal rank k approximation Qk for Q. Now, is the matrix PkQk necessarily

a good approximation of PQ? The answer is no! We construct an example for which

P and Q are both symmetric positive definite, but PkQk = 0, for all k below a certain

threshold.

Example 3 Consider the following very general situation, where A, B, and C are

partitioned conformally

A =




A11

A22



 , B =




B11

B22



 , and C =




C11

C22



 . (3.9)

The dimension of Aii will be denoted by ni. In this situation the Gramians P and Q

will both be block diagonal

P =




P11

P22



 , Q =




Q11

Q22



 ,

42

where

AiiPii + PiiA
T
ii + BiiB

T
ii = 0,

AT
iiQii + QiiAii + CT

ii Cii = 0,

for i = 1, 2. Now, given any pair of stable matrices A11 and A22 we are free to

selectively scale the individual diagonal blocks of B and C, in a manner which will

ensure that the rank k dominant eigenspace for P satisfies

Dk(P) ⊆ span{e1, e2, . . . , en1
},

while the rank k dominant eigenspace for Q satisfies

Dk(Q) ⊆ span{en1+1, en1+2, . . . , en1+n2
}.

It is clear that PkQk = 0 for all k ≤ n1.

A small specific example of the phenomenon is given by the matrices

A =











−2 1

1 −2

−2 1

1 −2











, B =











100

10

10

1











, and C =




10 1

100 10



 .

This is not an isolated example and it easy to generate an entire family. Let A,

B, and C be as before, i.e. as in equation (3.9). Let U be any orthogonal matrix.

Now we apply the similarity transform defined by UT , i.e. we replace A with UT AU ,

B with UT B, and C with CU . The transformed Gramians satisfy

P̂ = UT PU and Q̂ = UT QU,

which implies the optimal rank k approximations are given by

P̂k = UT PkU and Q̂k = UT QkU,

where Pk and Qk are the optimal rank k approximations of P and Q. Therefore, we

still have the critical property

P̂kQ̂k = 0, k ≤ n1,

43

despite the fact that P̂ Q̂ = UT (PQ)U is nonsingular. We conclude that while it is cer-

tainly possible to solve the Lyapunov equations independently, it is not necessarily a

sound strategy to do so. Nevertheless, there are algorithms for model reduction which

rely on low rank approximations for P and Q which are computed independently, see

Penzl [42].

44

45

4. Subspace iteration

4.1 Introduction

The standard subspace iteration can be used to compute the dominant invariant

subspace of a general nonsymmetric matrix. The associated Ritz acceleration is a

standard scheme, which can be used to dramatically improve the rate of convergence

of subspace iteration. In what follows, we only state the results for the symmetric

positive definite case. This chapter provides the necessary background for Chapter 7

where we discuss the Approximate Power Iteration by A. S. Hodel [24], as well as an

improved version of his algorithm, which we present in Chapter 8.

The subspace iteration is also known as simultaneous iteration or orthogonal it-

eration. Additional details can be found in [48, 61, 62, 67].

Let A be any n by n diagonalizable matrix, and let {λi}n
i=1 its eigenvalues

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|,

and let {ui}n
i=1 be the corresponding eigenvectors, i.e.,

Aui = λiui, i = 1, 2, . . . , n.

If |λk| > |λk+1|, then

Dk(A) = span
R

{u1, u2, . . . , uk}

is the dominant invariant subspace of A of rank k.

4.2 The power method

Let A be an n by n diagonalizable matrix with a dominant eigenpair (λ1, u1). Then

we may use the basic power method to compute an approximation of this dominant

eigenpair, as shown in Algorithm 3.

46

Input: An n by n diagonalizable matrix A, v(0) ∈ Rn, ‖v(0)‖2 = 1.

Output: An approximation (λ(j), v(j)) of the dominant eigenpair of A.

1: for j = 1, 2, . . . do

2: y(j) = Av(j−1)

3: v(j) = y(j)/‖y(j)‖2

4: λ(j) = y(j)Ay(j)

5: end for

Algorithm 3: The basic power method

47

If the initial guess v(0) is not orthogonal to u1 and if |λ1| > |λ2|, then v(j) con-

verges to an eigenvector for A corresponding to the eigenvalue λ1. We are primarily

interested in the case where A = P is a symmetric matrix. We have the following

theorem.

Theorem 4.2.1 Let P be a symmetric matrix, and let {λi}n
i=1 be the eigenvalues

listed in the order of decreasing magnitude,

|λ1| > |λ2| ≥ · · · ≥ |λn|,

and let {ui}n
i=1 be the the corresponding eigenvectors,

Pui = λiui, i = 1, 2, . . . , n.

Define θj ∈ [0, π/2] by

cos(θj) = |uT
1 v(j)|.

If cos(θ0) 6= 0 then

| sin(θj)| ≤ tan(θ0)

∣
∣
∣
∣

λ2

λ1

∣
∣
∣
∣

j

,

|λ(j) − λ1| ≤ |λ1 − λn| tan(θ0)

∣
∣
∣
∣

λ2

λ1

∣
∣
∣
∣

2j

.

Proof The proof is given in Golub [15] and is omitted.

In practice it does not matter if the initial guess v(0) is orthogonal to u1, be-

cause roundoff errors will introduce a component in the direction of u1, which is then

amplified by subsequent iterations until it becomes the dominant component.

4.3 The subspace iteration

This is a straight forward generalization of the power method which can be used

to compute the rank k dominant eigenspace of A. The subspace iteration is given as

Algorithm 4.

48

Input: An n by n diagonalizable matrix A, an n by k matrix V0 with V T
0 V0 = Ik.

Output: An approximation of the rank k dominant subspace of A

1: for j = 0, 1, 2, . . . do

2: Yj+1 = PVj

3: QR-factorization: Vj+1Rj+1 = Yj+1

4: end for

Algorithm 4: The basic subspace iteration

49

The distance between a pair of subspaces of equidimensional subspace E1, E2 is

given by

dist(E1, E2) = ‖Π1 − Π2‖2,

where Πi is the orthogonal projector onto Ei, i = 1, 2.

As before, we are primarily interested in the case where A = P is symmetric. We

have the following theorem.

Theorem 4.3.1 Let P be a symmetric matrix, and with eigenvalues {λi}n
i=1, such

that

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|.

Assume that |λk+1| < |λk|, and that the n by k matrices Yj are given by Algorithm 4.

Let θ ∈ [0, π/2] be given by

cos(θ) = min

{ |uTv|
‖u‖2‖v‖2

: u ∈ Dk(P), v ∈ Ran(Y0)

}

.

If θ < π/2 then

dist(Dk(P), RanYj) ≤ tan(θ)

∣
∣
∣
∣

λk+1

λk

∣
∣
∣
∣

j

.

Proof The proof is given in Golub [15] and is omitted.

4.4 Ritz acceleration

The basic subspace iteration converges rapidly if |λk+1| ≪ |λk|. However, given a

matrix A it is a nontrivial problem to find such a k and it may not even exist. Ritz

acceleration uses r ≥ k vectors in order to compute an improved approximation of

Dk(A). The procedure is given as Algorithm 5.

If |λk| > |λk+1|, so that Dk(A) is well defined, then it can be shown that the range

of the leading k columns of Vj converge to Dk(A) essentially as fast as |λr/λk|j → 0,

as j → ∞.

50

Input: An n by n diagonalizable matrix A, an n by r matrix V0 with orthonormal

columns

1: for j = 1, 2, . . . do

2: Wj := AVj−1.

3: Sj := V T
j−1Wj.

4: Schur decomposition: Sj = UjTjU
T
j , where the diagonal entries of the triangular

matrix Tj are sorted in the order of decreasing magnitude.

5: Wj := WjUj .

6: QR-factorization: VjRj = Wj.

7: end for

Algorithm 5: Subspace iteration with Ritz acceleration

51

5. Krylov subspace methods for standard linear equations

5.1 Introduction

In this chapter, we provide an elementary introduction to Krylov subspace meth-

ods for solving a standard linear system

Ax = f,

where A is a nonsingular n by n real matrix and f is a vector in Rn. We cover

the basic ideas and definitions, we review some standard algorithms including their

convergence theory, and discuss the concept of preconditioning. With the possible

exception of Theorem 5.4.3, which is a minor generalization of a recent result by

Philipe and Gamti [12] , the material presented here is very well known. We shall

make frequent references to this chapter, when we apply Krylov subspace methods

directly to Lyapunov equations in the Kronecker product form.

5.2 Krylov subspaces

Let A be a nonsingular n by n matrix, let f be a vector in Rn and consider the

problem of solving the standard linear system

Ax = f,

forx in R
n. We have the following lemma.

Lemma 5.2.1 There exists a unique real monic polynomial p, such that

p(A)f = 0, and q(A)f 6= 0,

for all real nonzero polynomials q of degree strictly less than p.

52

Proof By Cayley’s theorem there exists a real polynomial p of degree at most n

such that p(A) = 0. It follows that the set

D = {k ∈ N : ∃ p ∈ Pk : p 6= 0, p(A)f = 0},

is not empty and has a smallest element m ∈ D. Let q be any nonzero polynomial of

degree strictly less than m. Then q(A)f 6= 0 by the minimality of m. Now let p1 and

p2 be real monic polynomials of degree m such that pi(A)f = 0. Since p1 and p2 are

monic, the degree of p1 − p2 is strictly less than m, and since [(p1 − p2)(A)] f = 0, it

follows that p1 − p2 = 0 or equivalently p1 = p2.

Definition 5.2.1 The minimal polynomial for f with respect to A is the monic poly-

nomial p of minimal degree, such that

p(A)f = 0.

The degree of p is called the grade of f with respect to A.

Now, let p be the minimal polynomial for f with respect to A and let m be the

degree of p. We have

p(t) =
m∑

j=0

αjt
j, t ∈ R,

where αj ∈ R, j = 0, 1, 2, . . . , m, and αm = 1. We claim that α0 6= 0. If α0 = 0, then

p(t) = tq(t), t ∈ R,

where q has degree m − 1, and since A is nonsingular, it follows that

q(A)f = 0,

which violates the minimality of m. Therefore α0 6= 0, and the solution to

Ax = f,

is given by

x =
m−1∑

j=0

βjA
jf,

53

where βj = −αj+1

α0
for j = 0, 1, 2, . . . , m − 1. This is the main reason why we study

the subspaces named in the following definition.

Definition 5.2.2 Let j be a positive integer. The Krylov subspace Kj(A, f) is given

by

Kj(A, f) = span
R

{f, Af, A2f, . . . , Aj−1f}.

Lemma 5.2.2 Let m be the grade of f with respect to A, then

Kj(A, f) ⊂ Kj+1(A, f), j < m,

and

Kj(A, f) = Km(A, f), j = m.

Proof It is clear from the definition that the Krylov subspaces form an increasing

sequence,

Kj(A, f) ⊆ Kj+1(A, f).

Let p be the minimal polynomial for f with respect to A. Let j ≥ m. We claim

that Kj(A, f) = Km(A, f). It is enough to show that Kj(A, f) ⊆ Km(A, f). Let

y ∈ Kj(A, f) be given, then y = w(A)f , where w is a polynomial of degree strictly

less than j. By factoring w as follows,

w(x) = g(x)p(x) + r(x),

where the degree of the remainder r is strictly less than m, we see that

y = w(A)f = g(A)p(A)f + r(A)f = r(A)f,

is really a member of Km(A, f), and we conclude that Kj(A, f) = Km(A, f). Now we

claim that for j < m, we have

Kj(A, f) ⊂ Kj+1(A, f).

Let j < m. By definition Ajf ∈ Kj+1(A, f), but we claim that Ajf 6∈ Kj(A, f).

Suppose, Ajf ∈ Kj(A, f), then Ajf = q(A)f for a polynomial of degree at most

j − 1. But, then [Aj − q(A)] f = 0, contradicting the definition of m. We conclude

that Kj(A, f) ⊂ Kj+1(A, f).

54

Corollary 5.2.1 Let m be the grade of f with respect to A, then Km(A, f) is the

smallest A invariant vector space.

Now, given the fact that the solution of Ax = f is a member of Km(A, f), it

is only natural that we try to approximate x with xj ∈ Kj(A, f). This requires a

reliable way of computing a basis for Kj(A, f). By definition,

{f, Af, A2f, . . . , Aj−1f},

is a basis for Kj(A, f), but this basis can be very ill conditioned. If A has a dom-

inant eigenvalue, then the angle between Aj−1f and the corresponding eigenvector

will tend to zero as j tends to infinity, unless f is deficient in that particular direc-

tion. In practice, roundoff errors will introduce a component in the direction of the

dominant eigenvector. It is clear that we require a systematic way of computing a

well conditioned basis for Kj(A, f).

5.3 The Arnoldi algorithm

The Arnoldi algorithm uses the Gram-Schmidt process to compute an orthonormal

basis for Kj(A, f). It is well known that the classical Gram-Schmidt algorithm is

numerically unstable, and this problem can be cured partially by using the modified

Gram-Schmidt method and/or reorthogonalization.

Mathematically, the four possible algorithms are equivalent. However, the mod-

ified Gram-Schmidt is much more reliable than the classical Gram-Schmidt process.

Reorthogonalization improves the quality of the basis in either case and if reorthog-

onalization is applied, then there is virtually no difference between the classical and

the modified scheme. The difference between the four variants have been investigated

by Giroud, Langlou, and Rozlosnik [14].

The Arnoldi algorithm with the modified Gram-Schmidt method is stated as Al-

gorithm 6.

55

1: v1 := f/‖f‖2

2: for j = 1, 2, . . . , k do

3: wj := Avj

4: for i = 1, . . . , j do

5: hij := vT
i wj

6: wj := wj − vihij

7: end for

8: hj,j+1 := ‖wj‖2

9: if hj,j+1 = 0 then

10: vj+1 := 0

11: k := j

12: exit

13: else

14: vj+1 := w/h̃j,j+1

15: end if

16: end for

Algorithm 6: Arnoldi algorithm with modified Gram-Schmidt (MGS)

56

Let m be the grade of f with respect to A. Let k ≥ m, then the Arnoldi algorithm

terminates after exactly m steps, and produces a factorization of the form

AVm = VmHm,

where

Vm =
[

v1 v2 . . . vm

]

,

is a matrix with orthonormal columns spanning Km(A, f), and

Hm =














h11 h12 h1m

h21 h22 h2m

h32
. . .

...
. . .

. . .
...

hm,m−1 hmm














,

is an m by m upper Hessenberg matrix.

If k < m, then the Arnoldi algorithm terminates after exactly k steps, and pro-

duces a factorization of the form

AVk = Vk+1H̄k,

where

Vk =
[

v1 v2 . . . vk

]

,

consists of the first k columns of Vm, which span Kk(A, f), and

H̄k =

















h11 h12 h1k

h21 h22 h2k

h32
. . .

...
. . .

. . .
...

hk,k−1 hkk

hk+1,k

















,

consists of the k + 1 by k upper left corner of Hm.

57

5.4 Standard Krylov subspace methods

In this section we briefly review four standard Krylov subspace methods: GMRES,

CG, CGNR, and BCG. We state the algorithms explicitly and comment on their

convergence. We will refer to these algorithms in Chapter 10.

Saad [51] has written a good introduction to iterative methods for linear systems,

which contains several chapters on Krylov subspace methods. Simoncini and Szyld

[57] have also written a survey paper on such methods.

5.4.1 GMRES

The GMRES method is due to Saad and Schultz [49]. It can be used to solve a

standard linear system

Ax = f.

Given an initial guess x0, the GMRES algorithm forms the initial residual

r0 = f − Ax0

and constructs the Krylov subspaces

Kj(A, r0) = span{r0, Ar0, A
2r0, . . . , A

j−1r0}.

For each j the algorithm computes an approximate solution

xj ∈ x0 + Kj(A, r0)

such the 2-norm of the corresponding residual

rj = f − Axj

is minimized, i.e.,

‖rj‖2 = min{‖f − Ax‖2 : x ∈ x0 + Kj(A, r0)}.

The basic procedure is given as Algorithm 7. For the sake of brevity we use the

modified Gram-Schmidt orthogonalization scheme.

58

1: r0 = f − Ax0, β := ‖r0‖2, v1 := r0/β.

2: for j = 1, 2, . . . , k do

3: wj := Avj

4: for i = 1, . . . , j do

5: hij := vT
i wj

6: wj := wj − vihij

7: end for

8: hj,j+1 := ‖wj‖2

9: if hj,j+1 = 0 then

10: k:=j

11: Goto 16

12: else

13: vj+1 := w/hj,j+1

14: end if

15: end for

16: Solve the linear least squares problem H̄kyk = βe1 for yk ∈ Rk

17: Set xk = x0 + Vkyk.

Algorithm 7: GMRES algorithm with modified Gram-Schmidt (MGS)

59

Let m be the grade of r0 with respect to A. In exact arithmetic, the residuals

returned by GMRES satisfy

‖r1‖2 ≥ ‖r2‖2 ≥ · · · ≥ ‖rm‖2 = 0,

because

K1(A, r0) ⊆ K2(A, r0) ⊆, . . . ,⊆ Km(A, r0),

and x − x0 = A−1r0 ∈ Km(A, r0).

A general convergence theory of GMRES is still lacking and it is the topic of

current research. In particular, Greenbaum, Pták, and Strakoš [17] have shown that

any non-increasing residual curve is possible, and Embree [11] discusses different types

of bounds.

We need a few theorems, which we shall use later when we discuss the nature of

good preconditioners.

Lemma 5.4.1 The residuals produced by the GMRES algorithm satisfy

‖rj‖2 = min{‖p(A)r0‖2 : p ∈ Pj, p(0) = 1},

where Pj denotes the set of polynomials of degree at most j.

Proof The proof follows directly from the definition of GMRES.

We now consider a very specific family of polynomials. Let A be any n by n

matrix, such that ‖I − A‖2 < 1. Then A is nonsingular, and

A−1 =

∞∑

j=0

(I − A)j ,

from which it follows, that

I − A
∞∑

j=0

(I − A)j = 0.

We now define ωk to be the polynomial given by

ωk(x) = 1 − x
k−1∑

j=0

(1 − x)j . (5.1)

60

Then ωk ∈ Pk and ωk(0) = 1. In addition we have

0 = I − A

k−1∑

j=0

(I − A)j

︸ ︷︷ ︸

ωk(A)

− A

∞∑

j=k

(I − A)j,

which implies

‖ωk(A)‖2 ≤
‖A‖2

1 − ‖I − A‖2

‖I − A‖k
2.

If we define ρ = ‖I − A‖2, and estimate ‖A‖2 ≤ ‖I‖2 + ‖I − A‖2, then

‖ωk(A)‖2 ≤
1 + ρ

1 − ρ
ρk. (5.2)

The following two theorems are both immediate consequences of this discussion.

Theorem 5.4.1 If A is any matrix such that ρ = ‖I − A‖2 < 1, and if rk is the

residual after k steps of the GMRES algorithm, then

‖rk‖2 ≤
1 + ρ

1 − ρ
ρk‖r0‖2.

Theorem 5.4.2 Let A be a diagonalizable matrix, and let AC = CΛ where C is

nonsingular and Λ = diag{λ1, λ2, . . . , λn}, is diagonal. If ρ = max |1 − λj| < 1, and

if rk is the residual after k steps of the GMRES algorithm, then

‖rk‖2 ≤ κ2(C)
1 + ρ

1 − ρ
ρk‖r0‖2,

where κ2(C) = ‖C‖2‖C−1‖2 is the condition number of C with respect to the 2-norm.

Proof Let p be any polynomial, then p(A) = Cp(λ)C−1 from which it follows

‖p(A)‖2 ≤ ‖C‖2‖p(Λ)‖2‖C−1‖2 = κ2(C)‖p(Λ)‖2,

which together with Lemma 5.4.1 implies

‖rk‖2 ≤ ‖ωk(A)r0‖2 ≤ ‖ωk(A)‖2‖r0‖2 ≤ κ2(C)‖ωk(Λ)‖2‖r0‖2,

and the proof is completed by using (5.2).

61

In addition we have the following lemma.

Lemma 5.4.2 Let A be any n by n matrix and let f ∈ Rn. If I −A has rank k, then

the grade of f with respect to A is at most k + 1.

Proof If A is any n by n matrix and f ∈ Rn then

Kj(A, f) = Kj(I − A, f) ⊆ span
R

{f} + Ran(I − A),

for all j = 1, 2, Now, let m be the grade of f with respect to A. Then

Km(A, f) ⊆ span
R

{f} + Ran(I − A)

which implies that the dimension of Km(A, f) is at most k + 1. Since

{Ajf : j = 0, 1, 2, . . . , m − 1}

is a basis for Km(A, f) we conclude that m ≤ k + 1.

Corollary 5.4.1 If A is a nonsingular matrix which is a rank k perturbation of the

identity matrix, then GMRES will converge in at most k iterations.

Proof Let f ∈ Rn. By the previous lemma, the grade m of f with respect to A is

at most k + 1. The GMRES algorithm therefore constructs an orthonormal basis for

Km(A, f) and converges after at most k applications of the matrix A.

There is another case where the residual can be estimated. The case of ρ = 1 is due

to Gamti and Philippe [12]. The following theorem is a straightforward generalization

of their result.

Theorem 5.4.3 Let A be a nonsingular and diagonalizable matrix with AC = CΛ,

where C is nonsingular and Λ = diag{λ1, λ2, . . . , λn} is diagonal.

Now suppose, that there exists an integer k and a ρ < 1, such that

|1 − λj| ≥ ρ, j = 1, 2, . . . , k

62

and

|1 − λj| < ρ, j = k + 1, k + 2, . . . , n.

If rm is the residual after m ≥ k steps of the GMRES algorithm, then

‖rm‖2 ≤ κ2(C)‖pk(Λ)‖2
1 + ρ

1 − ρ
ρm−k‖r0‖2,

where pk is the polynomial of degree k given by

pk(λj) = 0, j = 1, 2, . . . , k

and pk(0) = 1.

Proof First, we notice that the polynomial pk is well defined, because A is nonsin-

gular or equivalently λj 6= 0 for all j. Specifically, we have

pk(x) =
k∏

j=1

(

1 − x

λj

)

.

Now, let m ≥ k and consider the polynomial

qm(x) = pk(x)ωm−k(x),

where ωm−k is defined by equation (5.1). It is clear that qm(0) = 1 and as in the proof

of Theorem 5.4.2 we have

‖rm‖2 ≤ ‖qm(A)r0‖2 ≤ κ2(C)‖qm(Λ)‖2‖r0‖2,

which is why we must derive an estimate for ‖qm(Λ)‖2. We have

‖qm(Λ)‖2 = max
λ∈σ(A)

|qm(λ)|.

However, by definition

qm(λj) = pk(λj)ωm−k(λj) = 0, j = 1, 2, . . . , k,

which implies

‖qm(Λ)‖2 = max
j>k

|qm(λj)|.

63

It follows immediately, that

‖qm(Λ)‖2 ≤
(

max
j>k

|pk(λj)|
)(

max
j>k

|ωm−k(λj)|
)

.

Now, since |1 − λj | < ρ for j > k, we have

|ωm−k(λj)| ≤
(

1 + ρ

1 − ρ

)

ρm−k, j > k.

Finally, we conclude

‖qm(Λ)‖2 ≤ ‖pk(Λ)‖2

(
1 + ρ

1 − ρ

)

ρm−k

and as a result

‖rm‖2 ≤ κ2(C)‖pk(Λ)‖2

(
1 + ρ

1 − ρ

)

ρm−k‖r0‖2,

which completes the proof.

Gamti and Philippe used the case of ρ = 1 to explain why GMRES converges

even when some eigenvalues of I − A lie outside the unit disk. Their results shows

if I − A has k eigenvalues outside the unit disk, then the convergence is delayed by

k iterations, but the asymptotic rate is the same as if all the eigenvalues were inside

the unit disk. We have merely generalized their result to a disk with radius ρ < 1.

We emphasize that these theorems do not imply that GMRES converges rapidly,

because the condition number, κ2(C), can easily be so large that the bounds are

worthless. However, if ‖I − A‖2 < 1 or if A is nonsingular and I − A is of low rank,

then GMRES converges rapidly to the solution.

5.4.2 CG

The conjugate gradient algorithm is due to Lanczos [31], as well as Hestenes and

Stiefel [20]. The algorithm applies to

Ax = f,

where A is a symmetric positive definite matrix. The standard formulation of the

method is given as Algorithm 8.

64

1: Compute r0 := f − Ax0, p0 = r0.

2: for = 0, 1, 2, . . . , until convergence do

3: αj := (rj , rj)/(Apj, pj)

4: xj+1 := xj + αjApj

5: βj := (rj+1, rj+1)/(rj, rj)

6: pj+1 := rj+1 + βjpj

7: end for

Algorithm 8: Standard CG for Ax = f

65

In order to discuss the convergence of CG it is convenient to introduce the A-norm,

which is given by

‖x‖A =
√

(x, Ax).

If A is symmetric positive definite, then ‖ · ‖A is a norm, and

λmin‖x‖2 ≤ ‖x‖A ≤ λmax‖x‖2.

The following lemma characterizes the approximations obtained from the CG

algorithm.

Lemma 5.4.3 (Saad [51]) Let xj be the approximate solution obtained after j steps

of the CG algorithm, and let x be the exact solution, then xm is of the form

xj = x0 + qj(A)r0,

where qj is a polynomial of degree j − 1 such that

‖x − xj‖A = ‖(I − Aqj(A))(x − x0)‖A = min
q∈Pj−1

‖(I − Aq(A))(x − x0)‖A

It follows immediately that if A has k distinct eigenvalues, then the CG algorithm

converges using at most k iterations.

The following lemma can be used to estimate the A-norm of the error.

Lemma 5.4.4 (Saad [51]) Let A be symmetric positive definite and consider the lin-

ear system Ax = f . If x∗ is the true solution, and if xj is the j’th approximation

obtained from the CG algorithm, then

‖x∗ − xj‖A ≤ 2

[√
κ − 1√
κ + 1

]j

‖x∗ − x0‖A.

We see that if A is a well conditioned symmetric positive definite matrix, then the

CG algorithm will converge rapidly.

66

5.4.3 CGNR

The CGNR algorithm is given as Algorithm 9. It can be used to solve a general

linear system

Ax = f,

where A is a nonsingular matrix with respect to x.

1: Compute r0 := f − Ax0, z0 := AT r0, p0 := z0.

2: for i = 0, 1, 2, . . . , until convergence do

3: wi = Api

4: αi = ‖zi‖2
2/‖wi‖2

2

5: xi+1 = xi + αipi

6: zi+1 = AT ri+1

7: βi = ‖zi+1‖2
2/‖zi‖2

2

8: pi+1 = zi+1 + βipi

9: end for

Algorithm 9: Standard CGNR for Ax = f

The approximation xj is such that the corresponding residual

rj = f − Axj ,

satisfies

‖rj‖2 = min{‖f − Ax‖2 : x ∈ x0 + Kj(A
T A, AT r0)}.

This expression is very similar to GMRES, the only difference is the subspace in which

the residual is minimized.

The CGNR algorithm is essentially the CG algorithm applied to the normal equa-

tions,

AT Ax = AT f,

with the important difference that the CGNR algorithm calculates the true residual

rj, as well as the residual zj for the normal equations. CGNR inherits its convergence

properties from CG.

67

5.4.4 BCG

The biconjugate gradient algorithm, Algorithm 10, can be used to solve a pair of

adjoint equations,

Ax = f, (5.3)

AT x = g. (5.4)

1: Compute r0 := f − Ax0, r∗0 = g − AT x∗
0

2: for j = 0, 1, . . . , until convergence do

3: αj := (rj , r
∗
j)/(Apj , p

∗
j)

4: xj+1 := xj + αjpj

5: x∗
j+1 := x∗

j + αjp
∗
j

6: rj+1 := rj − αjApj

7: r∗j+1 := r∗j − αjA
T p∗j

8: βj := (rj+1, r
∗
j+1)/(rj, r

∗
j)

9: pj+1 := rj+1 + βjpj

10: p∗j+1 := r∗j+1 + βjp
∗
j

11: end for

Algorithm 10: BCG for solving a pair of adjoint equations.

The BCG algorithm reduces to the conjugate gradient algorithm in the special

case where A = AT is a symmetric positive definite matrix and f = g.

The algorithm terminates prematurely if (rj, r
∗
j) = 0 for any value of j. There is

very little information on the convergence of BCG. The algorithm does not necessarily

converge, and the residual history may be very erratic, and it is absolutely necessary

to find a good preconditioner.

68

The BCG algorithm caught our attention because we want to solve a pair of

Lyapunov equations

AP + PAT + BBT = 0,

AT Q + QA + CT C = 0,

which are mathematically equivalent to a pair of standard linear equations, specifically

Ãvec(X) + vec(BBT) = 0,

ÃT vec(Y) + vec(CT C) = 0,

where Ã = I ⊗A + A⊗ I. Properties of the Kronecker product and the vec operator

are given in Chapter 2.

5.5 Preconditioning

Preconditioning is the attempt to replace the original linear system Ax = f with

an equivalent system

M−1Ax = M−1Ax,

such that the properties of the new matrix M−1A are more favorable than those of

A. In the case of Krylov subspace methods, the ideal preconditioner is a linear map

M such that

My = g,

can be solved efficiently for all g, and such that M−1 is a good approximation of A−1.

Good preconditioners are critical to the success of Krylov subspace methods.

In view of the previous section we prefer to obtain an M such that

‖I − M−1A‖2 ≪ 1,

or I−M−1A is of low rank, because in these cases the GMRES algorithm will converge

after only a few iterations.

69

Given a nonsingular matrix A it is a nontrivial exercise to compute a good precon-

ditioner and there are many different techniques. A good introduction to the topic

can be found in Saad [51].

We will treat the Lyapunov matrix equation

AX + XAT + BBT = 0,

as a standard linear equation

(I ⊗ A + A ⊗ I)vec(X) + vec(BBT) = 0,

in n2 variables. It is possible to overcome the O(n2) storage requirement, but most

of the preconditioners for standard linear systems cannot be applied simply because

we require at least n2 words of memory in order to represent a general nonsingular

linear map on R
n2

.

70

71

6. Current numerical methods for the Lyapunov equation

6.1 Introduction

In this chapter we briefly review the standard methods for the solution of a single

Lyapunov equation

AX + XAT + Q = 0,

with special emphasis on the case Q = BBT , where B is a tall matrix.

The algorithms are divided into two groups, namely those which are suitable for

small dense problems, and those which are suitable for large sparse problems.

6.2 Methods for small dense problems

In this section we list the standard methods for small and dense Sylvester and

Lyapunov equations.

6.2.1 Bartels-Stewart’s method

Bartels-Stewart’s method [3] can be used to solve a general Sylvester equation of

the form

AX − XB = C,

where A is an n by n matrix, B is a m by m matrix, and C is an n by m matrix. If

σ(A) ∩ σ(B) = ∅,

then there is a unique solution for every choice of C.

72

The basic idea is very simple. By Schur’s lemma every matrix is unitarily similar

to a triangular matrix, and we have unitary matrices U , and V , such that

A = URU∗,

B = V SV ∗,

where R is upper triangular and S is lower triangular. Then

RY − Y S = T,

where T = U∗CV . Now let yj and tj denote the j’th columns of Y and T respectively.

Then the equation for yj is of the form

Ryj −
m∑

i=j

yisij = tj , j = 1, 2, . . . , m,

or equivalently

(R − sjjI)yj = tj +
m∑

i=j+1

yisij , j = 1, 2, . . . , m.

The matrices R− sjjI are all nonsingular and upper triangular, and we can compute

yj by substitution as soon as ym, ym−1, ym−2, . . . , yj+1 have been obtained. Finally,

the solution of the original problem is given by

X = UY V ∗.

The serial algorithm has been improved by Sorensen and Zhou [59] and requires

O(n3 + m3) arithmetic operations. A parallel version of Bartels-Stewart’s algorithm

has been developed by Hodel [24].

There is a common variation of Bartels-Stewart’s algorithm which can be used

when A is a large sparse matrix, and B is a small dense matrix. In this case we only

transform B to lower triangular form S, i.e.

B = V SV ∗.

The new equation is

AY − Y S = T,

73

where T = CV . The j’th column, yj , of Y is given by

(A − sjjI)yj = tj +
m∑

i=j+1

yisij , j = 1, 2, . . . , m,

but the situation is considerably more complicated than before because A − sjjI is

not necessarily a triangular matrix. It is necessary to solve m linear systems each

with a different coefficient matrix A − sjjI. Even in the simple case in which A is a

narrow banded matrix, we still have to perform m distinct LU factorizations.

6.2.2 The Hessenberg-Schur method

The Hessenberg-Schur method applies to the Sylvester equation

AX − XB = C,

where A is an n by n matrix, B is a m by m matrix, and C is an n by m matrix. It

is designed to handle the situation where n is much larger than m. The main idea is

to transform A to upper Hessenberg form H , and to transform B to lower triangular

form S, i.e.

A = UHU∗, B = V SV ∗.

The new system is

HY − Y S = T,

where T = U∗CV . Let yj and tj be the j’th column for Y and T respectively. The

equation for the j’th column of Y is of the form

(H − sjjI)yj = tj +

m∑

i=j+1

yisij, j = 1, 2, . . . , m.

These systems are solved one a at time using Gaussian elimination with partial pivot-

ing, a process which is inexpensive for Hessenberg matrices. The number of arithmetic

operations is O(n3 + m3), which is the same as in Bartels-Stewart’s algorithm, but

the Hessenberg-Schur method requires less arithmetic, when n ≫ m.

74

It is clear that reducing A to the upper Hessenberg form H destroys the sparsity

of A and requires O(n2) memory locations to store H . This limits the method to

relatively small problems.

6.2.3 Hammarling’s method

Hammerling’s method [19] applies exclusively to Lyapunov equations in which the

inhomogeneous term is symmetric positive semidefinite, i.e. Lyapunov equations of

the form

AX + XAT + BBT = 0.

The algorithm first transforms A to lower triangular form, and then solves recursively

for the Cholesky factorization of the solution X. The algorithm return a lower trian-

gular matrix G, such that X = GG∗. It can be shown that this is exactly what we need

in model reduction by balanced truncation of a relatively small system. It is possible

to avoid complex arithmetic by transforming A to real Schur form. In either case,

the algorithm requires O(n3) arithmetic operations. The serial algorithm has been

improved by Sorensen and Zhou [59]. Hammarling’s method has been parallelized by

Hodel [24].

6.2.4 Matrix sign function iteration

Let A be a diagonalizable matrix

A = V ΛV −1,

where Λ = diag{λ1, λ2, . . . , λn}. If A does not have any eigenvalues on the imaginary

axis, then the matrix sign function of A is defined as follows

sign(A) = V DV −1,

75

where D = diag{d1, d2, . . . , dn} and

di =







1 Re(λi) > 0,

−1 Re(λi) < 0.

The following iteration can be used to compute the matrix sign function,

Z0 = A, Zk+1 =
1

2
(Zk + Z−1

k), k = 0, 1,

It can be shown that Zk → sign(A) as k → ∞. This is of one of the topics covered in

Chapter 5 of the recent book by Higham [22].

Roberts [46] used the matrix sign function iteration to solve the Sylvester equation

AX − XB = C,

where A is a stable n by n matrix and B is a stable m by m matrix. The key is to

notice, that the matrices



A C

−B



 and




A

−B



 ,

are similar. Specifically, we have



A C

−B



 =




I X

I








A

−B








I −X

X



 .

It follows that

sign








A C

−B







 =




I X

I



 sign








A

−B












I −X

X



 ,

and since A and B are both stable matrices, we have

sign








A

−B







 =




In

−Im



 .

Therefore

sign








A C

−B







 =




In 2X

−Im



 .

76

Now if

Z0 =




A C

−B



 , and Zk+1 =
1

2
(Zk + Z−1

k), k = 0, 1, . . . ,

then we have

Zk =




Ak Ck

−Bk



 ,

where

Ak =
1

2
(Ak + A−1

k), Bk =
1

2
(Bk + B−1

k), Ck+1 =
1

2
(Ck + A−1

k CkB
−1
k).

It is important to notice that we are explicitly inverting both Ak and Bk. This drives

the number of arithmetic operations up to O(n3) for each iteration, because even

when A0 = A is a sparse matrix, Ak will almost certainly be a dense matrix for k > 0.

Benner [5] applied the matrix sign function iteration to the special case where the

inhomogeneous term C has a low rank representation, i.e. C = EF T . This allowed

him to represent Ck in the form

Ck = EkF
T
k ,

where the number of columns in Ek and Fk was reduced by routinely performing a

tall SVD. However, the expensive operation of inverting Ak and Bk remains.

Grasedyck, Hackbusch and Khoromskij [16] have implemented the matrix sign

function iteration using hierarchical matrix arithmetic. This allows them to solve

certain Lyapunov equations using O(n logq n) arithmetic operations where q > 0,

which is nearly optimal. However, the necessary hierarchical representation is limited

to matrices which arise from the discretization of certain elliptic differential equations.

A very thorough introduction to hierarchical matrix arithmetic has been written by

Börm, Grasedyck and Hackbusch [7].

Baur and Benner [4] made the natural combination of these two ideas using both

hierarchical matrix arithmetic and the low rank representation of Ck.

77

6.3 Methods for large sparse problems

In this section we list the standard methods for Lyapunov equations where A is a

large sparse matrix. These methods are all iterative in nature.

We begin by reviewing the standard Krylov subspace methods for solving Lya-

punov equations. It is necessary to introduce the block Arnoldi algorithm which is

an extension of the basic Arnoldi algorithm discussed in Chapter 5.

6.3.1 The block Arnoldi algorithm

We begin with the following definition.

Definition 6.3.1 Let A be an n by n matrix, let B be an n by p matrix, and let j be

a positive integer. The block Krylov subspace Kj(A, B) is defined by

Kj(A, B) = Ran
[

B AB A2B . . . Aj−1B
]

⊆ R
n,

i.e. Kj(A, B) is the range of the linear map φ : R
jp → R

n given by

φ(x) =
[

B AB A2B . . . Aj−1B
]











x1

x2

...

xjp











.

It is clear that the block Krylov subspaces form an increasing sequence

Kj(A, B) ⊆ Kj+1(A, B), j ∈ N,

and there exists an m such that

Kj(A, B) = Km(A, B)

for all j ≥ m. This observation justifies the following definition.

Definition 6.3.2 The smallest m such that Kj(A, B) = Km(A, B) for all j ≥ m is

called the grade of B with respect to A.

78

The block Arnoldi algorithm can be used to compute an orthonormal basis for

the block Krylov subspaces Kj(A, f). One version of the block Arnoldi algorithm is

given as Algorithm 11. If we run k ≤ m steps of Algorithm 11, then we obtain a

matrix Vk given by

Vk =
[

Q1 Q2 . . . Qk

]

,

with orthonormal columns spanning Kk(A, B). If we define Hk as the upper block

Hessenberg matrix given by

Hk =














H11 H12 H1k

H21 H22
...

0 H32 H33 . . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . Hk,k−1 Hkk














,

then

AVk = VkHk + Qk+1Hk+1,kE
T
k , k < m,

where Ek consists of the last pk columns of the nk by nk identity matrix, and

AVm = VmHm, k = m.

The numbers pk and nk are computed by the algorithm in order to keep track of the

partitioning of the matrices Vk and Hk. Specifically, Vk is an n by nk matrix and Hij

is a pi by pj matrix.

If we attempt to run k > m steps of Algorithm 11, then it terminates normally

after k = m steps.

The subdiagonal blocks Hi+1,i are not necessarily upper triangular, but are column

permutations of upper triangular matrices. It is important to notice that any rank

degradation in B as well as the intermediate block vectors Wj is reflected in the block

structure of Vm and Hm, specifically we have

p1 = rank(B),

79

1: Compute

BP =
[

Q̂1 Q̂2

]




R11 R12

0 0



 , (6.1)

using a rank revealing QR algorithm with column pivoting.

2: Set p1 := rankB ≤ p, and Q1 := Q̂1.

3: for j = 1, 2, . . . , k do

4: Set Vj :=
[

Q1, Q2, . . . , Qj

]

, and nj := p1 + p2 + · · ·+ pj .

5: Wj := AQj

6: for i = 1, 2, . . . , j do

7: Hij := QT
i Wj

8: Wj := Wj − QiHij

9: end for

10: if Wj = 0 then

11: Set Qj+1 := 0, nj+1 := nj , and pj+1 = 0.

12: k := j

13: return

14: else

15: Compute

WjPj =
[

Q̂
(j+1)
1 Q̂

(j+1)
2

]




R

(j+1)
11 R

(j+1)
12

0 0



 ,

using a rank revealing QR algorithm with column pivoting.

16: Set pj+1 := rankWj , Qj+1 := Q̂
(j+1)
1 , and

Hj+1,j :=
[

R
(j+1)
11 Rj+1

12

]

P−1
j .

17: end if

18: end for

Algorithm 11: A block Arnoldi algorithm with column pivoting

80

and

pj+1 = rank(Wj)

for j = 1, 2, 3, . . . , m. Finally, we emphasize that the matrices Hj satisfy

Hj = V T
j AVj

both for j < m and for j = m.

If A is a sparse matrix, then the most expensive part of the block Arnoldi algorithm

is the modified Gram-Schmidt process. The cost of running k iterations is O(np2k2)

arithmetic operations and we need O(npk + p2k2) words of storage to execute the

algorithm and hold the final result.

6.3.2 The Arnoldi method

The Arnoldi method for Lyapunov equations is due to Saad [50] who considered

the case of p = 1, and Jaimoukha and Kasenally [28] who extended the method to

the general case of p > 1. The convergence of the Arnoldi method has been studied

by Simoncini and Druskin [56].

We now derive the algorithm and make several comments along the way regarding

the stability and limitations of the method.

Let Vj , and Hj be the matrices generated by applying the block Arnoldi algorithm

to the matrices A and B, i.e.

AVj = VjHj + Qj+1Hj+1,jE
T
j

for j < m, and

AVm = VmHm.

We consider approximations of the form

Xj = VjYjV
T
j ,

81

where Yj is any square matrix of the appropriate size, i.e., an nj by nj matrix.

By Theorem 2.6.3 we will recover the true solution for j = m. Now, the residual

corresponding to Xj is given by

R(Xj) = AVjYjV
T
j + VjYjV

T
j AT + BBT .

The Arnoldi method computes Yj such that the Galerkin condition

V T
j R(Xj)Vj = 0,

is satisfied. Jaimoukha and Kasenally proved the following theorem.

Theorem 6.3.1 Suppose that k < m steps of Algorithm 11 have been taken, then an

approximation of the form

Xk = VkYkV
T
k

satisfies the Galerkin condition

V T
k R(Xk)Vk = 0,

if and only if Yk is a solution of

HkYk + YkH
T
k + V T

k BBT Vk = 0,

in which case the Frobenius norm of the residual R(Xk) is given by

‖R(Xk)‖F =
√

2‖Hk+1,kE
T
k Yk‖F .

If k = m steps of Algorithm 11 have been taken, then the corresponding residual is

zero and the exact solution is obtained.

Proof The proof is elementary and can be found in Jaimoukha and Kasenally’s

paper [28].

The fundamental problem is to ensure that each of the reduced order equations

HkYk + YkH
T
k + V T

k BBT Vk = 0,

82

has a unique solution Yk. If H is a real matrix, then the Lyapunov equation

HY + Y HT + Q = 0

has a unique solution Y for every choice of Q if and only if

λ + µ 6= 0

for every pair of eigenvalues λ and µ for H . In our case the original matrix A is always

stable, which ensures that the original equation has a unique solution. However, as

illustrated in the following example, this is not enough to ensure that the reduced

order equations are uniquely solvable.

Let A be the n by n matrix given by

A = T − ene
T
n , (6.2)

where T is the skew-symmetric Toeplitz matrix given by

T =














0 1

−1 0 1
. . .

. . .
. . .

. . . 0 1

−1 0














and en is the last column of the n by n identity matrix. We studied the matrix A

in Chapter 2, when we discussed the low rank phenomenon for Lyapunov equations.

The matrix A is stable, but if B = en, then the reduced order equations

HkYk + YkH
T
k + V T

k BBT Vk = 0

are singular for all k, except for k = m. To see why this is the case, note that the A

is already in upper Hessenberg form and since B = en, the matrices Hk are given by

Hk = A(1 : k, 1 : k)

for k = 1, 2, . . . , m. Now, for k < m

A(1 : k, 1 : k) = T (1 : k, 1 : k)

83

is skew-symmetric, and it is clear the corresponding reduced order Lyapunov equa-

tions are all singular. However, if A is negative definite, i.e.

A + AT < 0,

then V T AV is stable for every n by p matrix V with orthonormal columns and p ≤ n.

This is easily seen by considering the numerical range of A, see Chapter 7. The matrix

A given by (6.2) is not negative definite.

We are now ready to state the Arnoldi method as Algorithm 12. Solving the

first k dense Lyapunov equations using Bartels-Stewart’s method requires O(k4p3)

arithmetic operations and evaluating the first k residuals requires O(k3p3) arithmetic

operations. When n is large, these figures are insignificant compared with the cost of

running k steps of the block Arnoldi algorithm, which is O(np2k2).

Input: The matrices Vj and Hj generated by applying the block Arnoldi algorithm,

Algorithm 11, to an n by n negative definite matrix A and an n by p matrix B.

Output: An approximate solution of the form Xj = VjYjV
T
j .

1: for j = 1, 2, . . . , until convergence do

2: Solve the reduced order equation

HjYj + YjHj + V T
j BBT Vj = 0.

3: Compute the Frobenius norm

‖R(Xj)‖F =
√

2‖Hk+1,kE
T
k Yk‖F ,

where Ek consists of the last pk columns of the nk by nk identity matrix.

4: end for

Algorithm 12: The basic Arnoldi method for continuous time Lyapunov equations

The convergence of the Arnoldi method has been studied by Simoncini and Druskin

[56]. They consider Lyapunov equations of the form

AX + XAT = BBT , A = AT > 0.

84

Theorem 6.3.2 (Simoncini, Druskin [56]) Let A be a symmetric positive definite

matrix, and let λmin be the smallest eigenvalue of A. Let λ̂min, λ̂max be the extreme

eigenvalues of A + λminI and κ̂ = λ̂max/λ. Then

‖X − Xk‖2 ≤
√

κ̂ + 1

λ̂min

√
κ̂

(√
κ̂ − 1√
κ̂ + 1

)k

. (6.3)

They also considered the nonsymmetric case and proved a set of theorems of which

the following is the simplest.

Theorem 6.3.3 (Simoncini, Druskin [56]) Assume that the field of values of the real

matrix A is contained in an ellipse of center (c, 0), c > 0, foci (c±d, 0) and semi-axes

a1 and a2, with a1 ≥ a2, such that d =
√

a2
1 − a2

2. Then

‖X − Xk‖ ≤ 8
√

(αmin + c)2 − d2

r2

r2 − 1

(
1

r2

)m

, (6.4)

where r2 = c+αmin

2r
+ 1

2r

√

(c + αmin)2 − d2, and r = a1+a2

2
.

We mention these theorems to make a simple point, namely that the convergence

rate, or more accurately the bound on the residuals, depends continuously on the

entries of the matrix A. This will become important when we discuss the notion of

preconditioning.

We now show that the Arnoldi method can have an arbitrary residual history:

Given a positive integer n and a sequence of positive real numbers {rj}n−1
j=1 we show

how to construct an n by n negative definite matrix A and a column vector B ∈ R
n,

such that the Arnoldi method returns a sequence of residuals R(Xj), for which

‖R(Xj)‖F = rj, j = 1, 2, . . . , n − 1.

To the best of our knowledge this is a new result.

The following lemma constructs a family of negative definite matrices which are

unaffected by the basic Arnoldi algorithm, Algorithm 6.

85

Lemma 6.3.1 Let A be the n by n real matrix given by

A =














−ǫ1 −α1

α1 −ǫ2 −α2

α2
. . .

. . .

. . . −ǫn−1 −αn−1

αn−1 −ǫn














, (6.5)

where ǫi > 0 for i = 1, 2, . . . , n and αi > 0 for i = 1, 2 . . . , n − 1. Then A is negative

definite. If B is the first column vector of the n by n identity matrix, then the grade

of B with respect to A is n, and the basic Arnoldi algorithm, Algorithm 6, returns the

trivial factorization

AIn = InA

when applied to the pair (A, B).

Proof It is clear that A is negative definite, because the subdiagonal elements have

been choosen so that they cancel the corresponding superdiagonal elements, i.e.

1

2

(
A + AT

)
= diag{−ǫ1,−ǫ2, . . . ,−ǫn} < 0.

It is not important here, but we observe that we have complete control over the

spectrum of 1
2

(
A + AT

)
. Since A is upper Hessenberg, and each αi 6= 0 for i =

1, 2, . . . , n − 1, it follows that the n vectors

AjB, j = 0, 1, . . . , n − 1

form an independent set, hence the grade of B with respect to A is n. The Arnoldi

algorithm applied to the pair (A, B) will return an orthonormal basis V of K(A, B) =

Rn as well as an upper Hessenberg matrix H , such that

AV = V H.

However, we also have the trivial factorization AIn = InA, and since A is an upper

Hessenberg matrix with positive subdiagonal entries and In has orthonormal columns,

it follows that V = In and A = H . This last conclusion is a special case of Theorem

2.4 [60].

86

Now, let ǫi > 0 for i = 1, 2, . . . , n and αi > 0 for i = 1, 2 . . . , n−1. Let A be given

by (6.5) and let B be the first column vector of the n by n identity matrix. Consider

the Lyapunov equation

AX + XAT + BBT = 0.

The Arnoldi method applies, because A is negative definite. The Frobenius norm of

the residual R(Xj) is given by

‖R(Xj)‖F =
√

2‖Hj+1,jE
T
j Yj‖F , j = 1, 2 . . . , n − 1,

where Ej is the last column of the j by j identity matrix and Yj is the solution of the

reduced order equation

HjYj + YjH
T
j + BjB

T
j = 0.

Now, by design the matrix A is not affected by the Arnoldi process, and it follows

that the reduced order equations are

A(1 : j, 1 : j)Yj + YjA(1 : j, 1 : j)T + B(1 : j)B(1 : j)T = 0, j = 1, 2, . . . , n (6.6)

and the Frobenius norm of the residual is given by

‖R(Xj)‖F =
√

2‖αjYj(1 : j, j)‖F =
√

2αj‖Yj(1 : j, j)‖F , j = 1, 2, . . . , n − 1.

This last expression is the key. The real number αj is the value of the (j + 1, j)

entry of A, hence it is not involved in the calculation of Yj. If the jth row of the Yj

is nonzero, then αj can be chosen such that ‖R(Xj)‖F assumes whatever value we

desire.

Now, since the matrix Yj is symmetric, it suffices to show that the jth column

of the Yj is nonzero. It is clear that Yj 6= 0, because the inhomogenous terms BjB
T
j

is nonzero. However, only the (1, 1) entry of this matrix is nonzero, and we can use

this structure to show that if Yj(:, j) = 0, then Yj = 0, which is a contradiction. Let

j > 1, then by equating the jth columns of each side of equation (6.6) we see that

A(1 : j, 1 : j)Yj(:, j) − Yj(:, j)ǫj + Yj(:, j − 1)αj−1 = 0,

87

because A has only a single subdiagonal. If the jth column of Yj should vanish, then

this expression reduces to

Yj(:, j − 1)αj−1 = 0

and since αj−1 > 0 we see Yj(:, j − 1) = 0. Now, suppose that 1 < i < j and we

have established that Yj(:, i) = Yj(:, i + 1) = · · · = Yj(:, j) = 0, then we claim that

Yj(:, i − 1) = 0. By equating the ith columns of both sides of equation (6.6) we see

that

A(1 : j, 1 : j)Yj(:, i) − Yj(:, i + 1)αi − Yj(:, i)ǫi + Yj(:, i − 1)αi−1 = 0.

By assumption, each of the columns Yj(:, i + 1) and Yj(:, i) are zero, and we are left

with

Yj(:, i − 1)αi−1 = 0

from which it follows Yj(:, i − 1) = 0. We conclude that if the last column of Yj is

zero, then Yj is zero. This is a clear contradiction and it follows that the last column

of Yj is always nonzero.

Algorithm 13 constructs a negative definite Lyapunov equation for which the

Arnoldi method has a given residual history. Using this algorithm we have constructed

a matrix of dimension n = 200 for which the residual history is particularly nice, see

Figure 6.1.

The Arnoldi method suffers from a fundamental problem which is not fully ap-

preciated in the literature: It does not exploit the low rank phenomenon. We now

construct a negative definite Lyapunov equation such that the solution admits a good

low rank approximation and the Arnoldi method does not converge until the very last

iteration. Let A be the n by n bidiagonal Toeplitz matrix given by

A =











−1 1
. . .

. . .

. . . 1

−1











88

Input: Integer n > 0, ǫj > 0 for i = j, 2, . . . , n, rj > 0 for j = 1, 2, . . . , n − 1.

Output: A ∈ Rn×n negative definite, B ∈ Rn, such that the residuals returned by

the Arnoldi method, Algorithm 12, satisfy

‖R(Xj)‖F = rj, j = 1, 2, . . . , n − 1.

1: Set A(i, i) := −ǫi for i = 1, 2, . . . , n and B := In(:, 1).

2: for j=1:n-1 do

3: Solve A(1 : j)Yj + YjA(1 : j, 1 : j)T + B(1 : j)B(1 : j)T = 0.

4: Set αj :=
rj√

2‖Yj(:,j)‖F
.

5: Set A(j + 1, j) := αj , A(j, j + 1) := −αj .

6: end for

Algorithm 13: Construction of a special Lyapunov equation

89

50 100 150 200
0

100

200

300

400

500

600

700

800

index j

th
e

su
bd

ia
go

na
l e

le
m

en
ts

 α
j

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

iterations

F
ro

be
ni

us
 n

or
m

 r
el

at
iv

e
re

si
du

al

Figure 6.1. With ǫj = −1 and a very particular choice of αj we can force
the Arnoldi method to have the given residual history.

90

and

B = (1, 1, . . . , 1)T .

We choose n = 500 and solve the corresponding Lyapunov equation

AX + XAT + BBT = 0 (6.7)

using the MATLAB function “lyap”. The singular values of the solution are approxi-

mated in Figure 6.2. It is clear that the exact solution can be accurately approximated

by matrices of very low rank. We applied the Arnoldi method to the Lyapunov equa-

tion. The residual history can also be found in Figure 6.2. We would like to emphasize

that the matrix A is negative definite, and

A + AT =











−2 1

1
. . .

. . .

. . .
. . . 1

1 −2











.

The previous example realized the worst possible kind of behavior, but it does not

correspond to any known “real-life” application that we are aware of. Consider the

following heat equation

vt = vxx + g(x)u(t), x ∈ (0, 1), t > 0,

together with the initial condition

v(x, 0) = f(x),

and the homogeneous boundary conditions

v(0, t) = v(1, t) = 0.

Now, choose an integer N > 1, set h = 1/N , and let

xj = jh, j = 0, 1, . . . , N.

91

0 100 200 300 400 500
−25

−20

−15

−10

−5

0

lo
g 10

(σ
j/σ

1)

index j of the sorted singular values
0 100 200 300 400 500

−12

−10

−8

−6

−4

−2

0

2

iteration number

lo
g 10

 F
ro

be
ni

us
 n

or
m

 r
el

at
iv

e
re

si
du

al

Figure 6.2. Singular value decay and residual history for the Lyapunov
equation (6.7).

92

Let wj(t) be the approximation to u(xj, t), given by

dwj

dt
=

wj+1 − 2wj + wj−1

h2
+ g(xj)u, j = 1, 2, . . .N − 1,

and

w0(t) = wN(t) = 0

for all t > 0. This can be rewritten in matrix notation as

ẇ = Aw + Bu(t),

where A is the N − 1 by N − 1 matrix given by

A = h−2











−2 1

1
. . .

. . .

. . .
. . . 1

1 −2











and B is the vector given by

B = (g(x1), g(x2), . . . , g(xN−1))
T .

We now choose g = 1, which corresponds to

B = (1, 1, . . . , 1)T ,

and consider the Lyapunov equation

AX + XAT + BBT = 0. (6.8)

It is clear that the matrix A is stable, and even negative definite, and the Arnoldi

method applies. We consider the case of N = 501. It is not difficult to see that

dim K(A, B) = 250,

which implies that the true solution X of the Lyapunov equation has rank 250. The

decay of the singular values for X is illustrated in Figure 6.3. We see that it is

possible to find a good low rank approximation of X. The residual history for the

Arnoldi method applied to this problem is given in Figure 6.3. Again, we see that

the Arnoldi method does not converge until iteration 250. There is nothing special

about N = 501 and we have seen the same type of behavior for different values of N .

93

0 100 200 300 400 500
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

index j of the sorted singular values

lo
g 10

 (
σ j/σ

1)

0 50 100 150 200 250
−12

−10

−8

−6

−4

−2

0

2

iteration

lo
g 10

F
ro

be
ni

us
 n

or
m

 r
el

at
iv

e
re

si
du

al

Figure 6.3. Singular value decay and residual history for the Lyapunov
equation (6.8).

94

6.3.3 The GMRES method

The GMRES method, due to Jaimoukha and Kasenally [28], computes an approx-

imation of the form

Xj = VjYjV
T
j ,

where the matrices Vj are computed by applying a block Arnoldi algorithm to the

matrices A and B. The matrix Yj is chosen such that the Frobenius norm of the

residual

R(Xj) = AXj + XjA
T + BBT

is minimized over all symmetric matrices Yj, i.e.

‖R(Xj)‖F = min{‖R(X)‖F : X = VjYjV
T
j , Yj = Y T

j }.

The problem of computing the minimizer Yj is a linear least squares problem with n2
j

unknowns, where nj denotes the number of columns in Vj:

‖R(Xj)‖F = ‖AVjYjV
T
j + VjYjV

T
j AT + BBT‖2 = ‖A(Vj)vec(Yj) + b̃‖2,

where

A(Vj) = Vj ⊗ AVj + AVj ⊗ Vj,

is an n2 by n2
j matrix, and b̃ = vec(BBT). When does this problem have a unique

solution? If A is negative definite, then A(Vj) has full rank, because

A(Vj)vec(Yj) = 0 ⇒ AVjYjV
T
j + VjYjVjA

T = 0 ⇒ V T
j AVjYj + YjV

T
j AT Vj = 0,

which in turn implies Yj = 0, because V T
j AVj is stable. Now, in general nj ≤ jp and

nj = jp is possible. If A is negative definite, then it is possible to compute Yj using

O(j6p6) arithmetic operations, by solving the normal equations

A(Vj)
T A(Vj)vec(Yj) + A(Vj)

T b̃ = 0.

Jaimoukha and Kasenally [28] derived an algorithm, which exploits the special

structure of the problem in order to create a sequence of smaller problems which can

be solved independently. Their algorithm also requires O(j6p6) arithmetic operations.

However, their approach has the following limitations:

95

• Their algorithm cannot handle column pivoting in the Arnoldi algorithm, a fact

which is not stated explicitly in their original paper. However, in the proof of

their central Theorem 3.3 [28], it is critical that the subdiagonal blocks of the

upper block Hessenberg matrix Hj produced by the block Arnoldi algorithm

are upper triangular. If the block Arnoldi algorithm uses column pivoting to

handle rank degradation, then this structure is lost. We have confirmed this

problem by communicating directly with Imad Jaimoukha.

• Each approximation is constructed as a linear combination of the solutions to

certain specialized Lyapunov equations. The exact linear combination to use

is given as the solution to a very special linear system. Unfortunately the

condition number for this linear system has a tendency to grow exponentially

with the iteration number to the point where it completely overwhelms the unit

roundoff error of the machine, making it impossible to determine which linear

combination to use.

In our numerical experiments we have tracked the condition number of these linear

systems and observed algorithmic breakdown as these linear systems became singular

to working precision.

In exact arithmetic, the GMRES method recovers the exact solution, when the

Krylov subspace K(A, B) has been constructed. To the best of our knowlegde there

are no results on the convergence rate of the GMRES method, even in exact arith-

metic. In their experiments Jaimoukha and Kasenally [28] observed that the iteration

count for the Arnoldi method is slightly larger than the iteration count for the GM-

RES method. We would add that this is true only as long as their GMRES method

has not broken down.

6.3.4 Other Krylov methods and variations

Jaimoukha and Kasenally [28] extended Saad’s Arnoldi method [50] to the case

of p > 1. We are aware of two distinct extensions, namely the work of Hu and

96

Reichel [27], as well as the work of Jbilou and Riquet. The method of Hu and

Reichel is a Galerkin type method which requires the selection of certain parameters.

The method of Jbilou and Riquet relies on their global Arnoldi method. It requires

the solution of certain reduced order equations, which may or may not have unique

solutions. Both methods have Saad’s method as a special case.

Simoncini [55] has developed a variant of the Arnoldi method which requires the

solution of linear systems with coefficient matrix A. There has not been a thorough

comparison made betweeen this method and Sabino’s version of the block cyclic Smith

method [52] with his improved heuristics for the selection of shift parameters.

Attempts have been made to mitigate the effect of the slow convergence of the

Arnoldi method by conserving memory. Kressner [30] uses a two-pass version of the

Lanczos algorithm to reduce memory consumption to a very small number of vectors.

Naturally, this procedure applies only to symmetric matrices A, and memory is saved

at the cost of a two-fold increase in arithmetic.

6.3.5 ADI-methods

This is a class of algorithms which have been very successful for the solution of

large sparse Lyapunov equations of the form

AX + XAT + BBT = 0,

where A is a stable matrix and B is a tall matrix with a relatively small number of

columns.

Smith [58] recognized that the continuous time Lyapunov matrix equation

AX + XAT + Q = 0,

is equivalent with the discrete time Lyapunov equation

X = UXUT + W, (6.9)

where

U = (A + pI)−1(A − pI) and W = −2p(A + pI)−1Q(A + pI)−T ,

97

and p is any complex number with negative real part. This is not difficult to show.

The key observation is the elementary identity

(A + pI)X(A + pI)T = (A − pI)X(A − pI)T + 2p(AX + XAT),

which is valid for any complex number p. If p has negative real part, then A + pI

is nonsingular, because A is stable, and we may apply (A + pI)−T from the left and

(A + pI)−T from the right.

Now, the solution of the discrete time Lyapunov equation (6.9) is given by

X =
∞∑

j=0

U jW (UT)j,

and if

X0 = 0,

Xn+1 = Xn + UXnUT , n = 0, 1, 2, . . . ,
(6.10)

then it is not difficult to see that Xn → X, and the rate of convergence is linear. This

is the standard Smith method. Smith [58] introduced the sequence

Y0 = 0,

Yn+1 = Yn + U2n

W (UT)2n

, n = 0, 1, 2,

An easy induction establishes

Yn =
2n−1∑

j=0

U jW (UT)j ,

from which it follows that Yn → X for n → ∞. Observing that,

U2n+1

=
(
U2n)2

,

the iteration is given in Algorithm 14. This is the so-called squared Smith method

which converges quadratically.

The fundamental problem is that neither the Smith method nor the squared Smith

method exploits the sparsity of the matrix A. Even when A is very sparse the matrices

98

1: Y := 0

2: for n = 0, 1, 2, . . . do

3: Y := Y + UWUT ,

4: U := U2,

5: end for

Algorithm 14: Squared Smith method

99

U will almost certainly be dense. This limits the Smith iteration and the squared

Smith iteration to small dense problems.

Wachspress [66] recognized that the standard Smith iteration is equivalent to the

basic ADI iteration

X0 = 0,

(A + pI)Xi+1/2 = −Q − Xi(A − pI)T ,

Xi+1(A + pI)T = −Q − (A − pI)Xi+1/2, i = 0, 1, 2, . . . ,

and introduced a more general iteration of the form

X0 = 0,

(A + piI)Xi+1/2 = −Q − Xi(A − piI)T

Xi+1(A + piI)T = −Q − (A − piI)Xi+1/2, i = 0, 1, 2,

This iteration is mathematically equivalent to

Xi+1 = −2pi(A + piI)−1Q(A + piI)−T

+ (A + piI)−1(A − piI)Xi(A − piI)T (A + piI)−T . (6.11)

The solution of the Lyapunov equation satisfies

X = −2pi(A + piI)−1Q(A + piI)−T

+ (A + piI)−1(A − piI)X(A − piI)T (A + piI)−T ,

which implies that

(X − Xi+1) = (A + piI)−1(A − piI)(X − Xi)(A − piI)T (A + piI)−T ,

or equivalently

(X − Xi+1) = (piI + A)−1(piI − A)(X − Xi)(piI − A)T (piI + A)−T .

Now let rl be the polynomial given by

rl(t) =
l∏

i=1

(pi − t),

100

then by induction we establish that

(X − Xl+1) = rl(−A)−1rl(A)(X − X0)rl(A)T rl(−A)−T .

It is clear that the rate of convergence is controlled by the spectral radius of the

operator

Dl(A) = rl(−A)−1rl(A).

The problem of minimizing the spectral radius as a function of the shift parameters

is given by

{p1, p2, . . . , pl} = argmin
{p1,p2,...,pl}

max
t∈σ(A)

|rl(t)|
|rl(−t)| .

This is the minimax problem for Lyapunov equations. It is a nontrivial problem

to select the optimal shift parameters. However, the problem has been solved for

matrices A with real spectrum. There have been many contributions to the complex

case and a set of references can be found in Penzl’s paper [40], as well as in Sabino’s

dissertation [52].

Penzl [40, 41] showed that it is possible to solve large sparse Lyapunov equations

using O(n) time and storage. He considered the ADI iteration in the special case in

which the inhomogeneous term Q is a symmetric positive definite matrix with low

rank, i.e. the case of

Q = BBT ,

where B is a tall matrix with a relatively small number of columns. Penzl recognized

that the ADI matrices Xi given by equation (6.11) could be written as

Xi = ZiZ
T
i , i = 0, 1, 2 . . . ,

where

Z0 = 0, and

Zi+1 =
[√−2pi(A + pi)

−1B (A + piI)−1(A − piI)Zi

]

, i = 0, 1, 2,
(6.12)

This is the low rank ADI method for Lyapunov equations. Notice that each iteration

consists of a linear solve with an increasing number of right hand sides.

101

Penzl showed experimentally that it was possible to obtain good results by using

a limited number of shift parameters in a cyclic fashion, i.e.

pi+jl = pi,

for i = 1, 2, . . . , l, and j = 0, 1, 2 He also showed that it was possible is avoid

complex arithmetic by using conjugate pairs of shift parameters.

Penzl introduced the low rank cyclic Smith method, which is equivalent to the

above low rank ADI iteration, if the shift parameters are used in a cyclic fashion in

the ADI iteration. The advantage of the low rank cyclic Smith method is that each

iteration consists of a linear solve with a fixed, rather than an increasing number of

right hand sides. Penzl developed a simple heuristic for selecting shift parameters

based on the Arnoldi algorithm.

Gugercin, Sorensen, and Antoulas [18] developed and analyzed a modified version

of the low rank ADI method and the low rank cyclic Smith method. They reduced

the storage requirements by computing a truncated singular value decomposition of

the iterates.

Sabino [52] developed a block version of the cyclic Smith method and made sig-

nificant progress on the art of selecting good shift parameters. However, the problem

of selecting optimal shift parameters for a general stable matrix remains open. Even

when good shift parameters can be found it is a nontrivial exercise to solve the cor-

responding linear systems.

102

103

7. The Approximate Power Iteration

7.1 Introduction

In this chapter we review the approximate power iteration which was introduced

by A. S. Hodel [24] in 1989. The algorithm computes an approximation of the rank

k dominant invariant subspace Uk for the solution P to the Lyapunov equation

AP + PAT + BBT = 0, (7.1)

by approximating the action of P , rather than computing P explicitly. We derive

the algorithm, and present a few numerical experiments. We have used Hodel’s main

idea to develop a new algorithm which is faster and more accurate. The improved

algorithm is presented in Chapter 8. Hodel’s analysis of the API is extended in

Theorem 7.5.2.

The problem of computing the dominant eigenspace of the implicitly given oper-

ator P is interesting in its own right, but it is also the first step toward computing

the dominant eigenspace of a product PQ, where Q is given as the solution of the

adjoint equation

AT Q + QAT + CT C = 0

The importance of this problem is explained in detail in Chapter 3. In the special

case of A = AT and B = CT , the two equations are identical, P = Q, and the general

problem reduces to the special case which we consider here and in Chapter 8.

7.2 The algorithm

If P were available explicitly, then we could have used subspace iteration to es-

timate Uk, see Chapter 4. Since P is not available explicitly, we must use equation

104

(7.1) to approximate the action of P . Let V be any n by k matrix with orthonormal

columns. Our immediate goal is to approximate PV . By post-multiplying equation

(7.1) by V it follows,

A(PV) + PAT V + BBT V = 0,

which we rewrite as

A(PV) + (PV)(V T AT V) + P (I − V V T)AT V + BBT V = 0.

Now, let us for now disregard the term

P (I − V V T)AT V, (7.2)

which may or may not be large, and consider instead the Sylvester equation

AY + Y (V T AT V) + BBT V = 0. (7.3)

This equation has a unique solution Y = Y (V), since A being negative definite implies

that both A and V T AT V are stable. This is not difficult to see. The numerical range

nr(A) of an n by n matrix A is given by

nr(A) = {x∗Ax : x ∈ C
n, x∗x = 1} ⊂ C.

For any square matrix A we have

σ(A) ⊂ nr(A),

and if V is any matrix with orthonormal columns, then

nr(V T AV) ⊆ nr(A).

If A is negative definite, then nr(A) ⊂ C−. Additional properties of the numerical

range of a matrix can be found in Shapiro [54], as well as Psarrakos and Tsatsomeros

[45].

Now, if the special term (7.2) were to vanish, then we could recover PV as the

unique solution to equation (7.3). The special term (7.2) need not be small, but it is

possible to overcome this problem. Hodel proved the following theorem for the case

of p = 1. The extension to p > 1 is trivial.

105

Theorem 7.2.1 Let A be a real n by n negative definite matrix, and let B be a real

n by p matrix and let P be the solution to the Lyapunov equation

AP + PAT + BBT = 0.

Let V be any n by k matrix with orthonormal columns. Let the columns of W be

the orthonormal basis for K(AT , V) constructed by using the block Arnoldi algorithm.

Then

PV = Y




Ik

0



 ,

where Y is the unique solution to the Sylvester equation

AY + Y (W TAT W) + BBT W = 0.

Proof Let V be any n by k matrix with orthonormal columns and let the columns

of W be the orthonormal basis for K(AT , V) constructed by using the block Arnoldi

algorithm. By post-multiplying equation (7.1) with W it follows

A(PW) + P (AT W) + BBT W = 0.

Since RanW is AT invariant, we have AT W = WW TAT W , and

A(PW) + (PW)W TAT W + BBT W = 0.

This equation has a unique solution Y = PW , because A being negative definite

implies both A and W TAT W are stable. By the block Arnoldi algorithm,

W =
[

V, Q
]

,

where Q is a suitable matrix. It follows immediately that

PV = Y




Ik

0



 .

106

Now, the dimension of K(AT , V) need not be small and the worst case in which

K(AT , V) = R
n,

can be unavoidable. As a result, Hodel suggested to replace W with Wl, where the

columns of Wl form an orthonormal basis for Kl(A
T , V) and are computed using the

block Arnoldi algorithm. He derived Algorithm 15 which is the original Approximate

Power Iteration (API).

Input: An n by k matrix V0 with orthonormal columns, a positive integer l.

Output: An approximation of the rank k dominant invariant eigenspace for P .

1: for i = 0, 1, 2 . . . do

2: Compute an orthonormal basis Wi of the Krylov subspace Kl(A, Vi) using the

block Arnoldi algorithm.

3: Solve AYi + YiW
T
i AT Wi + BBT Wi = 0 for Yi.

4: Compute Vi+1, an orthonormal basis for Yi




Ik

0



.

5: end for

Algorithm 15: The original API

Hodel pointed out that the size of the neglected term,

P (I − WlW
T
l)AT Wl,

in which Wl spans Kl(A
T , Vi), is not necessarily a decreasing function of l. He gave

an explicit example where the size of the term is a strictly increasing function of l

until it finally vanishes, when

Kl(A
T , Vi) = K(AT , Vi),

and an AT invariant vector space has been constructed.

Hodel suggested to terminate the iteration when the distance between successive

subspaces, i.e.

‖ViV
T
i − Vi−1V

T
i−1‖2 = ‖Vi − Vi−1V

T
i−1Vi‖2, (7.4)

107

becomes sufficiently small. Hodel used the second stopping criterion, because the

2-norm can then be computed by examining a k by k matrix rather than a full n by

n matrix. The equality is a consequence of Theorem 2.6.1 [15].

7.3 Numerical experiments

We illustrate the behavior of Algorithm 15 by applying it to the Lyapunov equation

AX + XAT + BBT = 0,

where A is the n by n Toeplitz matrix given by

A =











−2 1

1
. . .

. . .

. . .
. . . 1

1 −2











,

and

B = (1, 1, . . . , 1)T ∈ R
n.

This is merely a special case of the problem treated in Example 1, Chapter 3. We

choose n = 500 and compute approximations to the rank k = 5 dominant eigenspace

for X. First we solve the Lyapunov equation using the MATLAB funtion ”lyap” and

extract an approximation U of the rank k = 5 dominant subspace using the MATLAB

function “eig”. This allows us to compute the distance between the current API

iterate, Vi, and the target, U , i.e. the subspace identification error given by

‖UUT − ViV
T
i ‖2 = ‖U − ViV

T
i U‖2, i = 0, 1, 2,

The results are given in Figure 7.1. We see that for this example a higher value of l

ultimately leads to a smaller subspace identification error. The individual iterations

become more expensive as l steps of the (block) Arnoldi algorithm requires O(nl2)

arithmetic operations. In our example it is faster to use l = 4 to achieve an error of

10−4. But if the largest acceptable error is 10−6, then we must use l = 8, as the curve

108

0 10 20 30
−8

−7

−6

−5

−4

−3

−2

−1

0

iterations

lo
g 10

 s
ub

sp
ac

e
id

en
tif

ic
at

io
n

er
ro

r

0 1 2 3
−8

−7

−6

−5

−4

−3

−2

−1

0

time (s)

lo
g 10

 s
ub

sp
ac

e
id

en
tif

ic
at

io
n

er
ro

r

l=1
l=2
l=4
l=8

l=1
l=2
l=4
l=8

Figure 7.1. API: The subspace identification error for different values of
the number of Arnoldi iterations.

corresponding to l = 4 levels off at 10−5. We solve every relevant Sylvester equation

using the variant of Bartels-Stewart’s method described in Chapter 6.

7.4 Modifications of the original algorithm

Hodel, Tenison and Poolla [25] suggested that the block Arnoldi process in Algo-

rithm 15 be run against (AT ,
[

Vi, B
]

), rather than the pair (AT , Vi), which is what

Hodel originally did. We have been unable to duplicate their exact experiments.

The fundamental problem is that we do not know exactly how they initialized their

109

0 10 20 30 40 50 60 70 80 90 100
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

iterations

lo
g 10

 s
ub

sp
ac

e
id

en
tif

ic
at

io
n

er
ro

r

Figure 7.2. The effect of including B in the Arnoldi processes of Algorithm
15.

iterations. We have always used randomly generated starting points, and in our expe-

rience the inclusion of B does not improve the performance, but causes the subspace

identification error to oscillate wildly. As an illustration we return to the example

used in Section 7.3. Figure 7.2 shows the effect of appending B for the case of l = 4.

We have not found a single case where there was any advantage to including B in the

Arnoldi process.

110

7.5 Theoretical results

In his dissertation, Hodel [24] focused on extracting the dominant eigenpair (λ1, v1)

(k = 1) for the solution P . The analysis presented there dealt exclusively with the

special case of l = 1. Let v ∈ Rn be any unit vector and let y ∈ Rn be the solution of

the Sylvester equation

Ay + yθ(v) + Qv = 0,

where

θ(v) = vT AT v,

then

y = −(A + θ(v)I)−1v.

It is clear that y is not zero, because v is not zero and A is negative definite. We see

that in the case of k = 1, l = 1, the API reduces to the simple iteration

vi+1 = φ(vi),

where v0 is any unit vector and φ is given by

φ(v) =
−(A + θ(v)I)−1Qv

‖(A + θ(v)I)−1Qv‖2
.

This is the so-called scalar API algorithm. It is clear that φ : S → S, where

S = {x ∈ R
n : ‖x‖2 = 1},

is a continuous function. Hodel [24] made a preliminary analysis of the existence,

uniqueness and stability of fixed points for this map.

We are primarily interested in the following two results.

Proposition 7.5.1 (Hodel [24]) Let A be a negative definite matrix and let X be the

solution of

AX + XAT + BBT = 0.

111

Let u1 be the dominant eigenvector of X and let λ1 > λ2 be the dominant eigenvalues

of X. Let v ∈ Rn be a unit vector and let

ŷ = −(A + θ(v)I)−1v,

where

θ(v) = vT AT v.

If y = Xv then

‖y − ŷ‖2 ≤ κ2(A)(λ1‖u1 − v‖2
2 + λ2),

where κ2(A) = ‖A‖2‖A−1‖2 is the condition number of A with respect to the 2-norm.

Theorem 7.5.1 (Hodel [24]) Let A be negative definite, and let X be the solution of

AX + XAT + BBT = 0.

Let u1 be the dominant eigenvector of X and let λ1 > λ2 be the dominant eigenvalues

of X. Let {vi}∞i=0 be given by

vi+1 = φ(vi), i = 0, 1, 2, . . . ,

where v0 is any unit vector. Suppose

λ2

λ1
<

1

16(κ + 1)2
,

where κ = κ2(A) = ‖A‖2‖A−1‖2. Define

R =
1

κ + 1

(

1 +

√

1 − 16(κ + 1)2
λ2

λ1

)

,

r =
1

κ + 1

(

1 −
√

1 − 16(κ + 1)2
λ2

λ1

)

.

Then

1. If ‖vi − u1‖ ≤ R, then ‖vi+1 − u1‖ ≤ R.

2. If ‖v0 − u1‖ ≤ R, then lim sup ‖vi − u1‖2 ≤ r.

112

3. There exist a fixed point v∞ for the scalar API such that ‖v∞ − u1‖ ≤ r. The

fixed point is not necessarily stable.

Proposition 7.5.1 states that if v is not too far from the dominant eigenvector and

if λ1 ≫ λ2, then ŷ is a fairly accurate approximation of y = Xv.

Theorem 7.5.1 states that if A is a well conditioned matrix and if λ1 ≫ λ2, then

there is a fixed point v∞ which is fairly close to a dominant eigenvector u1. If the

initial separation is not too great, then the iterates will eventually lie in a small

neighborhood surrounding u1.

Hodel pointed out the special case of λ2 = 0, in which r = 0, and the scalar API

algorithm has a stable fixed point at the dominant eigenvector u1 of X. We now

strengthen Hodel’s result by showing that if X has rank 1, then the API algorithm

converges in a single iteration to a dominant eigenvector regardless of the initial guess.

Theorem 7.5.2 Let A be a negative definite matrix, and let X be the solution of the

Lyapunov equation

AX + XAT + BBT = 0.

Let v be a unit vector. If X has rank 1, then φ(v) is a dominant eigenvector of X for

every unit vector v.

Proof By assumption y = Xv, satisfies the Sylvester equation

Ay + y(vTAT v) + X(I − vvT)AT v + BBT v = 0,

while ŷ = φ(v) is given as the solution of

Aŷ + ŷ(vT AT v) + BBT v = 0.

It follows that y − ŷ satisfies

A(y − ŷ) + (y − ŷ)vT AT v + X(I − vvT)AT v = 0,

from which we deduce

(y − ŷ) = −(A + (vT AT v)I)−1X(I − vvT)AT v.

113

By assumption, the symmetric positive semidefinite matrix X has rank 1, i.e.

X = λ1u1u
T
1 ,

where u1 is a unit vector and λ1 > 0. By Theorem 2.6.4

RanX = K(A, B),

from which we deduce that u1 is an eigenvector for A, i.e.

Au1 = µu1.

Therefore

(y − ŷ) = −(A + (vT AT v)I)−1X(I − vvT)AT v

= − 1

(µ + vT AT v)
λ1u1u

T
1 (I − vvT)AT v = −λ1u

T
1 (I − vvT)AT v

µ + vTAT v
u1.

On the other hand, since y = Xv = λ1(u
T
1 v)u1, we deduce that

ŷ = y − (y − ŷ) =

(

λ1(u
T
1 v) +

λ1u
T
1 (I − vvT)AT v

µ + vT AT v

)

u1.

In short, ŷ is proportional to u1. Since ŷ is nonzero, it follows that φ(v) = ŷ/‖ŷ‖2 is

a dominant eigenvector of X.

We would like to end this chapter by making an elementary point. In general, it

is extremely unlikely that the API algorithm will converge to the dominant invariant

eigenspace of P . Why is that? The entire algorithm is based on approximating

the action of P , by replacing the original Lyapunov equation with a tall Sylvester

equation. This introduces a truncation error and it is the size of this error which

will determine the quality of the final approximation. The situation is similar to that

when we attempt to solve a linear PDE using a finite difference method. We may

solve the resulting linear system as accurately as we like, but we cannot escape the

fact that we have already introduced a discretization error.

114

115

8. The Approximate Subspace Iteration

The approximate power iteration was introduced by Hodel [24]. The goal of the

algorithm is to compute an approximation of the rank k dominant invariant subspace

Uk of the solution P of the Lyapunov equation

AP + PAT + BBT = 0, (8.1)

without computing P explicitly. If P were available explicitly, then we could have

computed Uk by subspace iteration, see Chapter 4. In Chapter 7 we described how

Hodel approximated the action of P and computed an approximation to Uk. In this

chapter we reconsider the problem and show how to apply subspace iteration with

Ritz’s acceleration to the matrix P , without computing an approximation of P . Our

algorithm is based on the same fundamental idea as the API, but we do not compute a

basis of the Krylov subspaces Kl(A
T , Vi). We still require that A be negative definite.

We present numerical experiments which show that our algorithm can be faster and

more accurate than the original scheme.

8.1 The new algorithm

Since P is not available explicitly, we must use the Lyapunov equation (8.1) to

approximate the action of P . Let V be any n by r matrix with orthonormal columns.

At this point the value of r is not important, but ultimately we will pick r ≥ k, which

is why we introduce this extra variable. Like Hodel, we post-multiply the Lyapunov

equation (8.1) with V and find

A(PV) + (PV)(V T AT V) + P (I − V V T)AT V + BBT V = 0.

As we pointed out in Chapter 7 the term

P (I − V V T)AT V,

116

need not be small, but we will use the Sylvester equation

AY + Y (V T AT V) + BBT V = 0, (8.2)

as an approximation and consider the truncation error in Section 8.2. Since A is

negative definite, both A and V T AT V are stable, which imply that this equation has

a unique solution Y . Given V we shall use Y = Y (V) as an approximation for PV .

It is clear that V T Y (V) need not be a symmetric, while the target V T PV is always

symmetric.

We can immediately write down the following approximate subspace iteration with

Ritz acceleration: Algorithm 16. It clear that the symmetrization step 4 is never a

bad idea: Suppose that T and Z are square matrices of the same size, and T is

symmetric, then
∥
∥
∥
∥
T − 1

2
(Z + ZT)

∥
∥
∥
∥

2

=

∥
∥
∥
∥

1

2
(T − Z) +

1

2
(T − ZT)

∥
∥
∥
∥

2

≤ 1

2
‖T − Z‖2 +

1

2
‖T T − ZT‖2 = ‖T − Z‖2.

We see that the approximation error does not increase when we replace Z with its

symmetric part, 1
2
(Z + ZT). It turns out that the symmetrization step is critical.

8.2 Analysis of the new algorithm

Algorithm 16 is based on the assumption that the term P (I − V V T)AT V can

eventually be ignored. The difference between our target, PV , and our approximation

Y = Y (V) satisfies the Sylvester equation

A(PV − Y) + (PV − Y)H + P (I − V V T)AT V = 0. (8.3)

Since A is negative definite, we immediately have the following formula

PV − Y =

∫ ∞

0

etAP (I − V V T)AT V etHdt, (8.4)

from which it follows that

‖PV − Y ‖2 ≤
−1

2µ(A)
‖P (I − V V T)‖2‖A‖2, (8.5)

117

Input: An n by r matrix V0 with orthonormal columns, a positive integer k.

Output: An approximation of the rank k dominant invariant eigenspace of P .

1: for i = 0, 1, 2 . . . do

2: Solve AYj + YjV
T
j AT Vj + BBT Vj = 0 for Yj.

3: Set Sj := V T
j Yj.

4: Symmetrize: Sj := (Sj + ST
j)/2.

5: Compute the eigenvalue decomposition Sj = WjΛjW
T
j , where the eigenvalues

of Sj are sorted by decreasing magnitude.

6: Set Yj := YjWj

7: QR factorization: Vj+1Rj+1 = Yj.

8: end for

Algorithm 16: Approximate Subspace Iteration with Ritz acceleration

118

where µ(A) = λmax(A + AT) < 0 is the log norm of A. The term

‖P (I − V V T)‖2,

measures the 2-norm of the restriction of P to the orthogonal complement of RanV .

If V is sufficiently close to Ur, the rank r dominant eigenspace of P , then

‖P (I − V V T)‖2 ≤ 2λr+1.

It follows that if λr+1 is small and if V is sufficiently close to Ur, then Y (V) is a good

approximation of PV . However, this observation is not very useful, because we have

no systematic way of selecting a good initial guess for Ur.

Hodel showed how to use the block Arnoldi algorithm to extend V to a matrix W

with orthonormal columns, so that the corresponding truncation error

P (I − WW T)AT W (8.6)

vanishes, see Theorem 7.2.1. In our case we have the following theorem.

Theorem 8.2.1 Let A be a real n by n negative definite matrix and let B be a real

n by p matrix. Let P be the solution of the the corresponding Lyapunov equation,

AP + PAT + BBT = 0.

Let k denote the rank of P . Let V be any n by k matrix with orthonormal columns.

Let Y be the solution of the Sylvester equation (8.2). If Y has full rank k, then

RanY = RanP .

Proof Since P is symmetric positive semidefinite of rank k, it can be written in the

form P = UΣUT , where U is an n by k matrix with orthonormal columns and Σ is

a k by k diagonal matrix with positive diagonal entries. By Theorem 2.6.4 the range

of P is exactly the Krylov subspace K(A, B), which implies that

AU = UH,

119

for a suitable k by k matrix H . Now, let V be any n by k matrix with orthonormal

columns. Then the difference between PV and Y is given by

PV − Y =

∫ ∞

0

eAtP (I − V V T)AT V eV T AT V tdt

=

∫ ∞

0

eAtUΣUT (I − V V T)AT V eV T AT V tdt

= U

(∫ ∞

0

etHΣUT (I − V V T)AT V)eV T AT V tdt

)

.

By writing Y as PV − (Y − PV) we find,

Y = U

(

ΣUT V −
∫ ∞

0

etHΣUT (I − V V T)AT V)eV T AT V tdt

)

,

from which it follows that if Y has full rank k, then Ran Y = Ran P .

This theorem shows that if P has rank k and if we choose any n by k matrix V

with orthonormal columns, then RanY = Ran P , unless Y is rank deficient, and this

condition is relatively easy to detect. The reader will notice that the theorem and the

proof is an extension of the result derived in Chapter 7, specifically Theorem 7.5.2.

The only difference is that we now have to entertain the possibility that Y might be

rank deficient.

In the worst case P has rank n and it is out of the question to use k = n vectors in

V . However, it is well known that the nonzero eigenvalues of P will often decay very

rapidly, and this knowledge motivated us to experiment with increasing values of k.

We used the simple approximate subspace iteration, which is given as Algorithm 17.

We found experimentally, that if k is chosen sufficiently large, then the size and the

effect of the truncation errors will vanish after a few iterations. These observations

lead to the application of Ritz-acceleration and the formulation of Algorithm 16.

8.3 Solving the Sylvester equation

The most time consuming step in Algorithms 16 and 17 is the solution of Sylvester

equations of the type

AX + XH + M = 0, (8.7)

120

Input: An n by k matrix V0 with orthonormal columns, a positive integer k.

Output: An approximation of the rank k dominant invariant eigenspace of P .

1: for i = 0, 1, 2 . . . do

2: Solve AYj + YjV
T
j AT Vj + BBT Vj = 0 for Yj.

3: QR factorization: Vj+1Rj+1 = Yj.

4: end for

Algorithm 17: Approximate Subspace Iteration

121

where H = V T AT V and M = BBT V . Let n be the dimension of A and let m be the

dimension of H .

Currently there is at least two different ways to solve such an equation. The first

method is the variant of Bartels-Stewart’s method, which we described in Chapter 6.

The fundamental problem is that we have to solve a sequence of linear systems with

different coefficient matrices. This can be extremely time consuming.

The second approach is due to Sorensen and is based on the implicit restarted

Arnoldi (IRA) method which he pioneered. The principle is easy to explain. Suppose

we have computed a partial Schur decomposition




A M

−H








V1

V2



 =




V1

V2



R,

where V T
1 V1 + V T

2 V2 = Im, and R is a real quasi upper triangular matrix. Now if V2

is nonsingular, then X = V1V
−1
2 is the solution of (8.7) because

AV1V
−1
2 + M = V1RV −1

2 = −V1V
−1
2 H.

Sorensen has shown that V2 is nonsingular if and only if the eigenvalues of −H and

M are the same. It is clear that in general,

σ(R) ⊆ σ








A M

−H







 = σ(A) ∪ σ(−H), (8.8)

and since we want σ(R) = σ(−H) we must locate those eigenvectors for




A M

−H



,

which correspond to eigenvalues with positive real part. The IRA method can accom-

plish this goal with varying degrees of success. Sorensen and his group are currently

investigating ways of accelerating the IRA approach.

Both schemes suffer from the same fundamental difficulty, namely that there is

a very large number of memory references compared with the number of arithmetic

operations performed.

122

8.4 Practical stopping criteria

If the rank k dominant eigenspace U = Uk of P is known, then we can directly

monitor the size of the subspace identification error, i.e.

‖UUT − ViV
T
i ‖2 = ‖U − ViV

T
i U‖2, i = 1, 2,

In practice, U is unknown and we cannot calculate the subspace identification error.

Instead we can measure the distance between successive approximations,

‖ViV
T
i − Vi+1V

T
i+1‖2 = ‖Vi − Vi+1V

T
i+1Vi‖2, (8.9)

which is exactly the approach taken by Hodel, Tenison and Poolla [25]. This is a very

economical way to determine if the algorithm is stagnating.

8.5 Solving the corresponding Lyapunov equation

If U1 spans the k’th dominant eigenspace and if U2 spans U⊥
1 , then P can be

written as

P = U1Σ1U
T
1 + U2Σ2U

T
2 , (8.10)

where Σ1, and Σ2 are matrices of dimension k and n − k respectively. They are not

necessarily diagonal. It is easy to recover Σ1 from U1, because

0 = UT
1 (AP +PAT +BBT)U1 = (UT

1 AU1)Σ1+Σ1(U
T
1 AT U1)+(UT

1 B)(UT
1 B)T , (8.11)

is only a k by k Lyapunov equation in Σ1.

It follows that we can turn Algorithm 16 into a solver of Lyapunov equations.

Given an approximation Vi of the rank k dominant eigenspace U1, we can solve the

reduced order Lyapunov equation

AiΣ
(i) + Σ(i)AT

i + BiB
T
i = 0, Ai = V T

i AVi, (8.12)

for Σ(i) and use

Pi = ViΣ
(i)V T

i , (8.13)

123

as an approximation to P . The corresponding residual Ri is given by

Ri = AViΣ
(i)V T

i + ViΣ
(i)V T

i AT + BBT = EiF
T
i , (8.14)

where

Ei =
[

AViΣ
(i), Vi, B

]

, and Fi =
[

Vi, AViΣ
(i), B

]

. (8.15)

Calculating the Frobenius norm of this residual in a manner which is both efficient

and reliable is a nontrivial task, which we discuss in detail in another chapter.

If the residual stagnates at a level which is deemed unacceptable, then this can

be taken as evidence that we have chosen a value of k which is too small, in the

sense that P does not admit a good approximation of rank k, and we should instead

increase k, while maintaining k ≤ r.

8.6 Applications to the discrete time Lyapunov equation

Subspace iteration with Ritz acceleration applies equally well to discrete time

Lyapunov equations,

P = APAT + BBT , (8.16)

where A is a square matrix with ‖A‖2 < 1. Again, the only problem lies in approxi-

mating the action of P on any n by r matrix V with orthonormal columns. Hodel’s

idea is equally applicable in this case. We have

PV = A(PV)(V T AT V) + AP (I − V V T)AT V + BBT V = 0,

and if Y is the solution of

Y = AY (V T AT V) + BBT V,

then we can use Y as an approximation of PV . This is a Stein equation for Y , which

is uniquely solvable, because ‖A‖2 < 1 implies ‖V T AT V ‖2 < 1, and therefore λµ 6= 1

for all λ ∈ σ(A) and µ ∈ σ(V T AT V). The Stein equation can be solved by orthogonal

reduction of V T AT V to lower triangular form. It is clear that the difference between

124

what we want, namely PV , and what can easily be obtained, namely Y , satisfies the

equation

PV − Y = A(PV − Y)V T AT V + AP (I − V V T)AT V,

which allows us to estimate the difference between PV and Y in a manner quite

similar to the continuous time case. Specifically, we have

PV − Y =

∞∑

j=0

Aj(AP (I − V V T)AT V)(V T AT V)j.

Now, if P has rank r and V is an n by r matrix with orthonormal columns, and if

Y = Y (V) is not rank deficient, then

RanY = Ran P.

8.7 Numerical experiments

In this section we report on some numerical experiments which illustrate properties

of the original API and our new algorithm, the approximate subspace iteration with

Ritz acceleration. We have successfully solved every relevant Sylvester equation using

the variant of Bartels-Stewart’s method described in Chapter 6.

Let n = 103 and let A1, and A2 be the n by n Toeplitz matrices given by

A1 =











−2 1

1
. . .

. . .

. . .
. . . 1

1 −2











, and A2 =











−1 1
. . .

. . .

. . . 1

−1











, (8.17)

and let

B = (1, 1, . . . , 1)T ∈ R
n.

It is clear that A1, and A2 are both negative definite. The matrices are chosen because

they are nearly indefinite, and while A1 is symmetric, A2 cannot be diagonalized.

While the standard Arnoldi method can be applied to these problems, they yield

very poor results, see Chapter 6. Optimal ADI shift parameters can be found for

125

symmetric matrices, but there are no convergence results for the ADI applied to

non-diagonalizable matrices, which is yet another reason to work with A2.

Let Xi be the solution of the Lyapunov equation

AiXi + XiAi + BBT = 0, (8.18)

for i = 1, 2. Our goal is to compute approximations of the rank k = 5 dominant

eigenspace U
(i)
k of Xi. The matrices are very small and a direct solve is possible in

MATLAB. We use the function ’lyap’ to compute a pair of approximations X̂i such

that
‖A1X̂1 + X̂1A

T
1 + BBT‖2

‖BBT‖2
≈ 7.2 · 10−10, (8.19)

and
‖A2X̂2 + X̂2A

T
2 + BBT‖2

‖BBT‖2
≈ 2.9 · 10−15. (8.20)

We then compute the singular values for X̂i using the function “svd”. The results are

given in Figure 8.1. We note that the singular values decay rapidly in both cases, but

the decay is faster for X1, than for X2. Specifically, the numerical rank of X̂i with

respect to the unit roundoff error u = 2−53 is 53 for X̂1 and 111 for X̂2.

To establish a baseline for what is possible when the Xi’s are available explicitly,

we apply subspace iteration with Ritz acceleration to the explicit matrices X̂i. The

subspace identification error is shown in Figure 8.2. In all cases convergence is very

fast, which is expected because of the rapid eigendecay. We note that the final

subspace identification error is smaller than 10−10 for X̂1 and smaller than 10−13 for

X̂2.

We then apply the original API algorithm using different values of l, the number

of Arnoldi steps. The results for l = 1, 2, 3, 4 are shown in Figure 8.3. For X1 we

see that increasing l decreases the final subspace identification error which is reached

after 15 iterations. For X2 increasing l decreases the error, but for l > 2, the error

does not stabilize at a fixed level, but starts to oscillate after 20 iterations.

The results for l = 5, 10, 15, 20 are shown in Figure 8.4. For X1 increasing l

continues to steadily decrease the error, while for X2 the error continues to oscillate

126

0 200 400 600 800 1000
−25

−20

−15

−10

−5

0

Matrix X
1

index of the sorted singular values

lo
g 10

(σ
j/σ

1)

0 200 400 600 800 1000
−25

−20

−15

−10

−5

0

Matrix X
2

index of the sorted singular values

lo
g 10

(σ
j/σ

1)

Figure 8.1. The decay of the singular values for the matrices X̂1 (left) and
X̂2 (right).

0 10 20 30 40 50
−14

−12

−10

−8

−6

−4

−2

0

iterations

lo
g 10

 2
−

no
rm

 s
ub

sp
ac

e
id

en
tif

ic
at

io
n

er
ro

r

Matrix X
1

0 10 20 30 40 50
−14

−12

−10

−8

−6

−4

−2

0

iterations

lo
g 10

 2
−

no
rm

 s
ub

sp
ac

e
id

en
tif

ic
at

io
n

er
ro

r

Matrix X
2

r=5
r=10

r=5
r=10

Figure 8.2. The results of applying subspace iteration directly to the
matrices X̂1 (left), and X̂2 (right), which are explicitly available.

127

0 10 20 30 40 50
−5

−4

−3

−2

−1

0

1

2

iterations

lo
g 10

 2
−

no
rm

 s
ub

sp
ac

e
id

en
tif

ic
at

io
n

er
ro

r

Matrix X
1

l=1
l=2
l=3
l=4

0 10 20 30 40 50
−2.5

−2

−1.5

−1

−0.5

0

0.5

iterations

lo
g 10

 2
−

no
rm

 s
ub

sp
ac

e
id

en
tif

ic
at

io
n

er
ro

r

Matrix X
2

l=1
l=2
l=3
l=4

Figure 8.3. The results of applying Hodel’s original algorithm to the
equations defining X1 (left) and X2 (right).

128

0 10 20 30 40 50
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

iterations

lo
g 10

 2
−

no
rm

 s
ub

sp
ac

e
id

en
tif

ic
at

io
n

er
ro

r

Matrix X
1

0 10 20 30 40 50
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

iterations

lo
g 10

 2
−

no
rm

 s
ub

sp
ac

e
id

en
tif

ic
at

io
n

er
ro

r

Matrix X
2

l=5
l=10
l=15
l=20

l=5
l=10
l=15
l=20

Figure 8.4. The results of applying the original API to the equations
defining X1 (left) and X2 (right).

after 20 iterations, to the point where there is no clear advantage to using l = 20 over

l = 5. These oscillations pose a serious problem. In practice, we cannot track the

subspace identification error directly, because we do not know the target subspace,

and we can only measure the difference between the successive iterates. Now, should

the algorithm converge, then the difference between successive iterates will tend to

zero, and this can be detected and we can stop the iteration. However, if the true

error is oscillating violently, then it is unlikely that the difference between any pair of

successive iterations will be small, and when the algorithm is eventually terminated,

the final approximation need not be any good.

We now apply the approximate subspace iterations with Ritz acceleration to the

same pair of problems. The algorithm differs from the standard subspace iterations

in that it contains a symmetrization step which may appear somewhat arbitrary. We

begin by running 20 iterations of our algorithm, using r = 10, 20, 30, 40, 50 vectors,

129

0 5 10 15 20

−4

−2

0
r=10

0 5 10 15 20
−10

−5

0
r=20

0 5 10 15 20
−10

−5

0
r=30

0 5 10 15 20
−10

−5

0
r=40

0 5 10 15 20
−10

−5

0
r=50

0 5 10 15 20
−2

−1

0
r=10

0 5 10 15 20
−4

−2

0
r=20

0 5 10 15 20
−4

−2

0
r=30

0 5 10 15 20

−4

−2

0
r=40

0 5 10 15 20
−10

−5

0
r=50

Figure 8.5. The effect of including the symmetrization step (solid lines),
as opposed to no symmetrization (dashed curves). The logarithm (base
10) of the Frobenius norm of the subspace identification error is plotted
against the number of iterations. The results for matrices X̂1 (on the left)
and X̂2 (on the right). The number of vectors is indicated at the top of
each diagram. It varies from r = 10 vectors (top row), to r = 50 vectors
(bottom row).

with and without the symmetrization step. The subspace identification errors are

depicted in Figure 8.5. In the case of X1 we see that no symmetrization delays

convergence, while for X2 there is no convergence unless we symmetrize. We conclude

that the inexpensive symmetrization step is absolutely necessary and will include it

in all future experiments.

We now do a more detailed study of the dependence on r. For X1 we used

r = 5, 7, 9, 11, 13, 15, 50. The results are shown in Figure 8.6. In all cases the error

has stabilized after at most 20 iterations, and there is a clear advantage of increasing

r to a reasonable value, 15 in this case.

130

0 5 10 15 20 25 30 35 40 45 50
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

iterations

lo
g 10

 s
ub

sp
ac

e
id

en
tif

ic
at

io
n

er
ro

r

Matrix X
1

r=5
r=7
r=9
r=11
r=13
r=15
r=50

Figure 8.6. The performance of our algorithm applied to X1 as a function
of the number of vectors r.

131

0 5 10 15 20 25 30 35 40 45 50
−14

−12

−10

−8

−6

−4

−2

0

2

iterations

lo
g 10

2−
no

rm
 s

ub
sp

ac
e

id
en

tif
ic

at
io

n
er

ro
r

Matrix X
2

r=10
r=20
r=30
r=40
r=50
r=60
r=70
r=80
r=90
r=100

Figure 8.7. The performance of our algorithm applied to matrix X2 as a
function of the number of vectors r.

For X2 we use r = 10, 20, . . . , 100. The results are depicted in Figure 8.7. Again,

we notice that the error stabilizes after 20 iterations, for r > 10. We find no clear

advantage of using r ≥ 100 and the error oscillates in this case. In view of our

experiment with the explicit subspace iteration we cannot hope for a smaller subspace

error, than the one achieved for r = 100.

We would like to make an obvious point. When we compute the subspace identi-

fication error, we use an approximation for the rank k = 5 dominant eigenspace of Xi

obtained by applying “eigs” to X̂i. The matrix X̂i is an approximation of Xi obtained

using “lyap”. The point is that we are not tracking the “exact” subspace error, only

the difference between the iterates and a reasonable approximation of U
(i)
k .

However, in the case of X1 there is room for improvement. We can obtain the

spectral decomposition of A1 and use it to compute an improved estimate for X1. We

find X̂ ′
1 such that

‖A1X̂
′
1 + X̂ ′

1A
T
1 + BBT‖2

‖BBT‖2

≈ 3.5 · 10−11. (8.21)

132

0 5 10 15 20 25 30 35 40 45 50
−12

−10

−8

−6

−4

−2

0

iterations

lo
g 10

 2
−

no
rm

 s
ub

sp
ac

e
id

en
tif

ic
at

io
n

er
ro

r

Improved estimate for X
1

r=5
r=7
r=9
r=11
r=13
r=15
r=50
r=100

Figure 8.8. The performance of our algorithm applied to the matrix X̂ ′
1,

as a function of the number of vectors r. Matrix X̂ ′
1 has a smaller residual

than X̂1.

Iterative refinement can reduce the relative residual further, to about 9.6 · 10−13, but

X̂ ′
1 is good enough to illustrate our point. We repeat the previous experiment using

X̂ ′
1 in the place of X̂1 to approximate the rank 5 dominant eigenspace for X1. The

subspace identification error is depicted in Figure 8.8. We see that no substantial

advantage is realized by using more than r = 19 vectors. However, we are now

recording subspace identification errors, which are well below 10−10, and comparable

with what can be achieved by applying subspace iteration with Ritz acceleration

directly to X̂1.

133

API Our algorithm

Matrix l iter time (s) r iter time (s)

X1 10 12 0.79 13 11 0.34

X2 failed 60 12 1.84

Figure 8.9. The parameters and the time needed to identify the rank
k = 5 dominant eigenspace U

(i)
k for Xi, i = 1, 2 with an error less than

10−6.

name dimension symmetric definite

bcsstk17 10974 yes yes

bcsstk18 11948 yes yes

memplus 17758 no unknown

af23560 23560 no unknown

Figure 8.10. Summary of matrices used from Matrix Market.

Table 8.9 offers a brief comparison of the API and our algorithm. Our algorithm

is faster than the API, but more significantly, our algorithm succeeds in both cases,

while the API fails for X2.

We now apply our algorithm to a small set of real problems drawn from Matrix

Market. A brief summary of the matrices are given in Figure 8.10. We continue to

use an inhomogeneous term consisting of a matrix of ones, i.e. B = (1, 1, . . . , 1)T .

These problems are still quite small, but so large that it would be very expensive

to solve the corresponding Lyapunov equations and compute the dominant subspaces

by a direct method. Instead we can turn our algorithm into a solver for Lyapunov

equations and monitor the relative residual.

134

For each of the four matrices we run 30 iterations of our method, using r =

10, 20, . . . , 100 vectors. For each approximation to the dominant eigenspace of rank

r, we extract the corresponding approximation for the exact solution of the Lyapunov

matrix equation and compute the residual.

The results for matrix bcsstk17 are given in Figure 8.11. We have only rendered

the results for r = 10, 20, 30, 40. We see that the relative residual is larger than 10−2

for r = 10. This indicates that the numerical rank of the true solution is probably

larger than r = 10. We also note that the final relative residual continues to decrease

as we increase the number of vectors.

The results for matrix bcsstk18 are given in Figure 8.12. As in the case of matrix

bcsstk17 the residual curves are clearly determined by the number of vectors used

in each iteration. We see that there is a clear advantage to increasing r when the

current value is small, but that the gain decreases as we approach r = 60.

The results for matrices memplus and af23560 are similar to the previous two

cases and are given in Figure 8.13 and 8.14.

We note that it is possible to obtain a relative residual of 10−6 in all four cases.

The parameters and the runtimes are given in Figure 8.15.

Our runtimes are about 20 times larger than the ones achieved by Sabino [52], who

solved the same problems using carefully selected shift parameters together with his

own variant of the low rank cyclic Smith method on a comparable architecture. Since

every ADI algorithm requires the selection of certain shift parameters, a nontrivial

problem which has not been solved for arbitrary stable matrices, our algorithm has

a clear advantage in terms of robustness and perhaps even efficiency. The advantage

of our approach is that it does not require the selection of any parameters, and if

the solution of the Lyapunov equation has low rank or if the singular values decay

rapidly, then the dominant eigenspace can be recovered in a few iterations.

135

0 5 10 15 20 25 30
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

iteration

lo
g 10

 F
ro

be
ni

us
 n

or
m

 r
el

at
iv

e
re

si
du

al

Relative residual history for matrix bcsstk17

r=10
r=20
r=30
r=40

Figure 8.11. The results of applying our algorithm as a solver to the
Lyapunov equation defined by matrix bcsttk17, and an inhomogeneous
term consisting of ones.

136

0 5 10 15 20 25 30
−7

−6

−5

−4

−3

−2

−1

0

1

2

iteration

lo
g 10

 F
ro

be
ni

us
 n

or
m

 r
el

at
iv

e
re

si
du

al

Relative residual history for matrix bcsstk18

r=10
r=20
r=30
r=40
r=50
r=60
r=70

Figure 8.12. The results of applying our algorithm as a solver to the
Lyapunov equation defined by matrix bcsttk18, and an inhomogeneous
term consisting of ones.

137

0 5 10 15 20 25 30
−14

−12

−10

−8

−6

−4

−2

0

2

iteration

lo
g 10

 F
ro

be
ni

us
 n

or
m

 r
el

at
iv

e
re

si
du

al

Relative residual history for matrix memplus

r=10
r=20
r=30
r=40

Figure 8.13. The results of applying our algorithm as a solver to the
Lyapunov equation defined by matrix memplus, and an inhomogeneous
term consisting of ones.

138

0 5 10 15 20 25 30
−14

−12

−10

−8

−6

−4

−2

0

2

4

iteration

lo
g 10

 F
ro

be
ni

us
 n

or
m

 r
el

at
iv

e
re

si
du

al

Relative residual history for matrix af23560

r=10
r=20
r=30
r=40
r=50
r=60
r=70
r=80

Figure 8.14. The results of applying our algorithm as a solver to the
Lyapunov equation defined by matrix af23560, and an inhomogeneous
term consisting of ones.

name r iter time(s) rel. res

bcsstk17 40 7 73 3e-7

bcsstk18 70 13 204 9e-7

memplus 20 6 45 2e-7

af23560 50 10 2513 3e-7

Figure 8.15. Summary of the results of applying our algorithm to the
matrices used from Matrix Market.

139

8.8 Conclusion and future work

We have established our first real contribution to the problem of solving a Lya-

punov equation. The main result is Theorem 8.2.1 which states that if P has rank

r, then it is possible to recover the range of P by solving a single n by r Sylvester

equation. In practice, P does not have low rank, but our experiments show that if

the numerical rank is sufficiently low, then the approximate subspace iteration with

Ritz acceleration converges in a small number of iterations.

The symmetrization step in our adaption of the Ritz acceleration procedure is

reasonable because mathematically it cannot increase the error, but our experiments

demonstrate the necessity of performing this step.

Above all we now understand that it is possible to accurately approximate the

action of P by solving an n by r Sylvester equation as long as r is sufficiently large.

A suitable value of r is difficult to determine beforehand, but there seems to be little

gained from using r greater than the numerical rank of P with respect to the machine

unit roundoff.

If speed is the only measure of success, then our approach would certainly not

be competitive. However, ADI algorithms require the computation of certain shift

parameters, and while Sabino [52] has made significant progress, the problem has not

been solved for arbitrary stable matrices. The Arnoldi method is viable only for A

negative definite, and its convergence can be arbitrary slow. Our algorithm requires

A to be negative definite, but if the true solution has low numerical rank, then it

converges after a few iterations without requiring any shift parameters.

In general, the block Arnoldi algorithm (ARPACK) requires fewer iterations than

subspace iteration in order to identify the dominant eigenspace for an explicit matrix

P . For future study, one can apply the ideas presented in this chapter to develop an

approximate Arnoldi algorithm. The resulting scheme could be slightly better than

our current approach, but the main problem of solving the tall Sylvester equations

will remain.

140

141

9. The AISIAD algorithm

In this chapter we discuss aspects of the AISIAD algorithm due to Zhou and Sorensen

[70]. The abbreviation is short for “Approximate Implicit Subspace Iteration Alter-

nating Directions”. The goal is to compute the dominant eigenspaces for the products

PQ and QP where P and Q are given implicitly as the solution to a pair of Lyapunov

equations

AP + PAT + BBT = 0,

AT Q + QA + CT C = 0.

We explained the importance of this problem in Chapter 3. Here, we consider ap-

proximating the actions of P and Q.

We present the algorithm, and using the material developed in Chapters 7 and

8, we describe a simple situation where AISIAD correctly identifies the range of PQ

applied to a matrix V with orthonormal columns.

9.1 The algorithm

If P and Q were explicitly available, then it would have been a simple task to

use the standard subspace iteration to compute the rank k dominant eigenspace for

PQ and the rank k dominant eigenspace for QP . Specifically, we could have used

Algorithm 2 from Chapter 3. However, since P and Q are not explicitly available,

we must approximate their actions. Zhou and Sorensen [70] adopted Hodel’s idea to

address this situation and derived Algorithm 18, assuming that A is negative definite.

The actions of P and Q are approximated by solving a pair of tall Sylvester

equations. Both equations have unique solutions, because A is negative definite. It

142

1: Chose V0 such that V T
0 V0 = Ik.

2: for i = 0, 1, . . . , do

3: Solve AT Xi + XiV
T
i AT Vi + CT CVi = 0.

4: QR-factorization Wi+1Si+1 := Xi.

5: Solve AYi + YiW
T
i AT Wi + BBT Wi = 0.

6: QR-factorization Vi+1Ti+1 := Yi.

7: end for

Algorithm 18: Basic AISIAD

143

is clear, that if A = AT and CT = B, such that P = Q, then the AISIAD algorithm

reduces to the original API algorithm.

9.2 Elementary analysis

There has been very little progress in advancing the analysis of the AISIAD al-

gorithm for the general case. It is clear that such an analysis is even more difficult

than the analysis of Hodel’s API algorithm for which even the scalar case (one vec-

tor and no Arnoldi-steps) is still not understood. In view of the truncation error

made by approximating the actions of P and Q, the best we can hope for is that

the AISIAD algorithm converges to a pair of subspaces, which are “close” to the

dominant eigenspaces.

In this section we identify one situation where the range of the product PQ is

computed exactly. Let Q have rank r, let V be an n by r matrix, and let X be the

solution of the Sylvester equation

AT X + X(V AT V) + CT CV = 0.

By Theorem 8.2.1, if X has full rank r, then RanX = Ran Q. By Theorem 2.6.4

RanQ = K(AT , CT).

Now, suppose that X is not rank deficient. Then the QR-factorization of X produces

an n by r matrix W with orthonormal columns, such that

Ran W = K(AT , CT) = RanQ.

Then by post-multiplying the Lyapunov equation

AP + PAT + BBT = 0

by W we once again see that

A(PW) + (PW)AT + BBT W + P (I − WW T)AT W = 0.

144

However, the special term satisfies

P (I − WW T)AT W = 0,

because Ran W is an AT invariant subspace. Thus, if X is the solution of the Sylvester

equation

AX + XAT + BBT W = 0,

then X = PW . It follows that

RanX = Ran(PQ)V,

and the algorithm correctly identifies the range of PQ applied to V .

In Chapter 8 we showed that if Q has rank r, and if V is any n by r matrix with

orthonormal columns, and Y = Y (V) is the solution of

AT Y + Y (V T AV) + CT C = 0,

then Ran Y = RanQ, unless Y is rank deficient, which is easy to detect.

We now investigate the following two questions

1. Is it possible to extend this type of result to the AISAID algorithm?

2. Does the AISIAD algorithm converge in a single iteration provided that PQ

has rank k and we use k vectors?

Assume that PQ has rank k, and let V be any n by k matrix with orthonormal

columns. Then QV satisfies

AT (QV) + (QV)V T AV + Q(I − V V T)AV + CT CV = 0

Let Y = Y (V) be the solution of

AT Y + Y (V T AV) + CT CV = 0.

Then the difference between Y and QV satisfies

AT (QV − Y) + (QV − Y)(V T AV) + Q(I − V V T)AV = 0,

145

from which it follows

QV − Y =

∫ ∞

0

eAT tQ(I − V V T)AV eV T AV tdt.

Now, since Ran Q is AT invariant, it follows that

Ran(QV − Y) ⊆ RanQ,

from which we conclude that

RanY ⊆ Ran Q.

Let WS = Y is be a QR factorization of Y and let X be the solution of

AX + X(W T AT W) + BBT W = 0.

Since PW satifies the equation

A(PW) + (PW)W TAT W + P (I − WW T)AT W + BBT W = 0,

the difference between X and PW satisfies

A(PW − X) + (PW − X)(W TAT W) + P (I − WW T)AT W = 0,

from which it follows

PW − X =

∫ ∞

0

etAP (I − WW T)AT WeW T AT Wdt.

The question now reduces to wether one can conclude that

RanX = Ran(PQ).

First, however, we make two observations: In view of the splitting

X = PW − (PW − X),

we would be able to conclude RanX ⊆ Ran (PQ) provided

Ran (PW − X) ⊆ Ran(PQ),

146

and by splitting the expression for PW − X,

PW − X =

∫ ∞

0

etAPAT WeW T AT Wdt

︸ ︷︷ ︸

Ran(PAT W)⊆Ran(PQ)

−
∫ ∞

0

etA(PW)W TAT WeW T AT W dt

︸ ︷︷ ︸

Ran(PW)⊆Ran(PQ)

,

we see that if

Ran(PQ) is A invariant,

then

Ran(PW − X) ⊆ Ran(PQ),

and hence we would be able to conclude

RanX = Ran(PQ),

whenever X had full rank r. Unfortunately, it is not true that Ran(PQ) is A invariant,

except when A = AT , CT = B, and P = Q. We provide a simple example to illustrate

this point. Let A be the matrix given by

A =








−1
2

−1
2

−1 −1

−1








.

It is easy to verify that

λmax(A + AT) ≈ −0.2753,

and A is negative definite. If B and C are given by

B = (1, 1, 0)T , C =

(

1, 0,
1

2

)

,

then the Gramians P and Q are given by

P = diag

{

1,
1

2
, 0

}

, Q = diag

{

1, 0,
1

8

}

.

We see that PQ has rank 1, and

Ran(PQ) = span
R

{e1},

147

where e1 = (1, 0, 0)T . It is obvious that this vectorspace is not A invariant, because

A2,1 = −1 6= 0.

In short, the range of PQ is not A invariant for general negative definite matrices A,

and this particular approach to the analysis of the AISAID algorithm cannot succeed.

9.3 Conclusion

The analysis of the general AISAID algorithm continues to elude the research

community. It is clear that the problem is even harder than the scalar case of Hodel’s

API algorithm, which is still not understood. We have identified a single very simple

situation where the algorithm correctly identifies the range of PQ applied to a matrix

V with orthonormal columns.

148

149

10. Lyapunov equations in Kronecker product form

10.1 Introduction

In this chapter we consider Krylov subspace methods for the Lyapunov matrix

equation

AX + XAT + BBT = 0, (10.1)

in Kronecker product form

Ãvec(X) + b̃ = 0,

where

Ã = I ⊗ A + A ⊗ I

and

b̃ = vec(BBT).

Properties of the Kronecker product ⊗ and the vec operator are given in Chapter 2.

The Arnoldi algorithm can be used to compute an orthogonal basis for the Krylov

subspace

Kk(Ã, b̃) = Ran
[

b̃ Ãb̃ . . . Ãk−1b̃
]

using O(n2) memory and arithmetic operation. Our main goal is to reduce these

requirements to O(n). This procedure requires a compact representation of certain

vectors in Rn2

.

We show that it is possible to run the classical algorithms CG, CGNR, GMRES,

and BCG using O(n), rather than O(n2) memory and time.

We inherit the monotone residual history from GMRES, and we adapt the classical

CG error estimate to our situation.

Our compact representation of vectors in Rn2

does not permit preconditioning and

we leave the issue of preconditioning to Chapter 11.

150

10.2 The Arnoldi process for Ã

Let A be a real n by n matrix and let B be a real n by p matrix. Let

Ã = A ⊗ I + I ⊗ A,

and let

b̃ = vec(BBT).

Consider the Krylov subspace Kj(Ã, b̃) defined by

Kj(Ã, b̃) = span{b̃, Ãb̃, Ã2b̃, . . . , Ãj−1b̃} ⊆ R
n2

.

It is clear that

Kj(Ã, b̃) ⊆ Kj+1(Ã, b̃),

and there exist m̃ such that

Kj(Ã, b̃) = Km̃(Ã, b̃)

for all j ≥ m̃. The smallest m̃ such that

Kj(Ã, b̃) = Km̃(Ã, b̃), j ≥ m̃,

is called the grade of b̃ with respect to Ã.

It is theoretically possible to compute an orthonormal basis for Kk(Ã, b̃) using the

basic Arnoldi algorithm, which is restated as Algorithm 19. We need this algorithm

for the statement and proof of the main result, Theorem 10.3.1. The tilde superscript

is used to emphasize that we are computing in Rn2

rather than Rn.

Algorithm 19 produces a factorization of the type

ÃṼk = ṼkH̃k + h̃k+1,kṽk+1e
T
k ,

where H̃k =
[

h̃ij

]

is a k by k upper Hessenberg matrix and the columns ṽj of Ṽk

are orthonormal and span Kk(Ã, b̃). The vector ek is the last column of the k by

k identity matrix. If the initial value of k is greater than or equal to m̃, then the

151

1: ṽ1 := b̃/‖b̃‖2

2: for j = 1, 2, . . . , k do

3: w̃j := Ãṽj

4: for i = 1, . . . , j do

5: h̃ij := ṽT
i w̃

6: w̃j := w̃j − ṽih̃ij

7: end for

8: h̃j,j+1 := ‖w̃‖2

9: if h̃j,j+1 = 0 then

10: ṽj+1 := 0

11: k := j

12: exit

13: else

14: ṽj+1 := w̃/h̃j,j+1

15: end if

16: end for

Algorithm 19: Basic Arnoldi algorithm for the pair (Ã, b̃)

152

algorithm terminates at step 12 after m̃ iterations, otherwise it terminates at step 16

after k iterations.

If nz(A) is O(n), then running k ≤ m̃ steps of Algorithm 19 requires O(n2k2) flops

and O(n2k + k2) words of storage. This limits its application to small values of n.

Our main result, Theorem 10.3.1, offers a shortcut which requires O(np2k2 + p3k4)

flops and O(npk + p2k3) words of storage, and to this end we require a block Arnoldi

algorithm.

In Chapter 6 we stated one version of the block Arnoldi algorithm (Algorithm 11).

This algorithm can be used to compute an orthonormal basis for the block Krylov

subspace

Kj(A, B) = span{B, AB, . . . , Aj−1B} ⊆ R
n.

Let m denote the grade of B with respect to A. If we run k ≤ m steps of Algorithm

11, then we obtain a matrix Vk given by

Vk =
[

Q1 Q2 . . . Qk

]

,

with orthonormal columns spanning Kk(A, B). If we define Hk as the upper block

Hessenberg matrix given by

Hk =














H11 H12 H1k

H21 H22
...

0 H32 H33 . . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . Hk,k−1 Hkk














,

then

AVk = VkHk + Qk+1Hk+1,kEk, k < m,

where Ek consists of the last pk columns of the nk by nk identity matrix, and

AVm = VmHm, k = m.

The parameters pk and nk are computed by the algorithm in order to keep track of

the partitioning of the matrices Vk and Hk. Specifically, Vk is an n by nk matrix and

153

Hij is a pi by pj matrix. If we attempt to run k > m steps of Algorithm 11, then it

terminates normally after k = m steps.

This is the traditional view of the block Arnoldi algorithm. We would like to adapt

a slightly different perspective. We will use Vm and Hm to define a set of matrices

{Vj}∞j=1 and {H̄j}∞j=1 as follows. Let

Vj =







Vm(:, 1 : nj) for j < m

Vm for j ≥ m

,

and

H̄j =







Hj(1 : nj+1, 1 : nj) for j < m

Hm for j ≥ m

.

Then,

AVj = VjH̄j, j = 1, 2,

The advantage is purely notational. This type of factorization allows us to do induc-

tion on j without concerning ourselves with whether j < m or j ≥ m. This simplifies

the analysis of algorithms such as CG, where we might be interested in executing

more than m iterations.

10.3 The main result

In this section we establish a simple relation between the Krylov subspaces

Kj(A, B) ⊆ R
n

and

Kj(Ã, b̃) ⊆ R
n2

,

where Ã = A ⊗ I + I ⊗ A and b̃ = vec(BBT).

Theorem 10.3.1 Let A, B, Vj, and nj be as in section 10.2. Then there exist

symmetric nj by nj matrices Πj, such that the vectors ṽj produced by applying the

154

basic Arnoldi algorithm to the matrix Ã = I⊗A+A⊗I, and the vector b̃ = vec(BBT)

satisfy

ṽj = vec(VjΠjV
T
j).

Proof We begin by showing that the theorem is true for i = 1. Let β = ‖b̃‖2.

Initially, the block Arnoldi algorithm does a rank revealing QR factorization of B,

BP =
[

Q̂1 Q̂2

]




R11 R12

0 0



 ,

where P is a permutation matrix, from which it follows

BBT =
[

Q̂1 Q̂2

]




R11 R12

0 0



P−1P−T




RT

11 0

RT
12 0








Q̂T

1

Q̂T
2





= Q̂1(R11R
T
11 + R12R

T
12)Q̂

T
1 .

Since V1 = Q̂1 by definition, we see that

ṽ1 = b̃/β = vec(BBT)/β = vec(V1Π1V
T
1),

provided we choose

Π1 = (R11R
T
11 + R12R

T
12)/β.

It is clear that Π1 is a symmetric n1 by n1 matrix. Now, suppose that the statement is

true for i = 1, 2, . . . j. By the Arnoldi algorithms and the properties of the Kronecker

product

w̃j := Ãṽj = vec(AVjΠjV
T
j + VjΠjV

T
j AT) = vec(Vj+1H̄jΠjV

T
j + VjΠjH̄

T
j V T

j+1).

We claim that there exists a nj+1 by nj+1 symmetric matrix Γj such that

w̃j = vec
(
Vj+1ΓjV

T
j+1

)
. (10.2)

The key to finding Γj is to use the fact that Vj+1V
T
j+1 is the orthogonal projection

onto the column space of Vj+1, which includes the column space of Vj. Thus

Vj = Vj+1V
T
j+1Vj,

155

and we may write

Vj+1H̄jΠjV
T
j + VjΠjH̄

T
j V T

j+1 = Vj+1

(
H̄jΠjV

T
j Vj+1 + Vj+1

T VjΠjH̄
T
j

)
V T

j+1.

We see that

Γj := H̄jΠjV
T
j Vj+1 + V T

j+1VjΠjH̄
T
j , (10.3)

is the choice which satisfies equation (10.2). Clearly, if Πj is symmetric, then Γj is

symmetric. The inner loop of the Arnoldi algorithm consists of the linear updates

w̃j := w̃j − ṽih̃ij ,

where h̃ij = ṽT
i w̃j, which correspond to the linear updates

Γj := Γj − Vj+1
T ViΠiVi

T Vj+1h̃ij . (10.4)

This observation shows that the compact representation of w̃j can be maintained and

if Γj is symmetric before the inner loop, then the final value of Γj will be symmetric

as well.

After the inner loop has been completed, h̃j+1,j = ‖w̃j‖2 is computed and com-

pared to zero. If h̃j+1,j = 0, then the algorithm terminates, otherwise

ṽj+1 = w̃j/h̃j+1,j,

which corresponds to

Πj+1 = Γj/h̃j+1,j,

and we have

ṽj+1 = vec
(
Vj+1Πj+1V

T
j+1

)
.

This completes the proof.

In this proof we suppressed certain computational aspects of Theorem 10.3.1.

Specifically, we used the fact that β and h̃ij are real numbers, and we gave a formula

for Γj , but we did not show how to carry out these computations. We now address

these questions.

156

By definition,

β = ‖b̃‖2 = ‖vec(BBT)‖2.

However, since we are using a block Arnoldi algorithm, we already have a QR factor-

ization of B, BP = QR, where R is a p by p upper triangular matrix, from which it

follows,

β = ‖BBT‖F = ‖BP (BP)T‖F = ‖QRRT QT‖F = ‖RRT‖F ,

which is by far the most economical way of computing β.

At the beginning of the j’th iteration the matrix Γj is given by equation (10.3).

The matrix V T
j Vj+1 is merely the first nj rows of the nj+1 by nj+1 identity matrix.

As a result we see that the initial value of Γj can be evaluated using the following

three steps.

1: Γj := zeros(nj+1, nj+1)

2: Γj(1 : nj+1, 1 : nj) := H̄jΠj

3: Γj(1 : nj , nj+1) := Γj(1 : nj, 1 : nj+1) + Γj(1 : nj+1, 1 : nj)
T

The linear updates of Γj are performed using a similar relationship between Vi

and Vj+1. The inner products h̃ij are given by

h̃ij = ṽT
i w̃j = trace

(
ViΠiV

T
i)T (Vj+1ΓjV

T
j+1

)
= trace

(
ΠT

i (V T
i Vj+1ΓjV

T
j+1Vi)

)
.

However, the matrix V T
i Vj+1ΓjV

T
j+1Vi is just the upper left ni by ni corner of the

matrix Γj , i.e.

V T
i Vj+1ΓjV

T
j+1Vi = Γj(1 : ni, 1 : ni),

which implies that h̃ij can be evaluated as

h̃ij = trace
(
ΠT

i Γj(1 : ni, 1 : ni)
)
.

Note that

‖w̃j‖2
2 = trace

(

(Vj+1ΓjV
T
j+1)

T
Vj+1ΓjV

T
j+1

)

= trace
(
ΓT

j Γj

)
= ‖Γj‖2

F .

157

In short, if the result of the QR factorization of B, as well as the matrices H̄j are

available, then a compact representation of the ṽj can be computed using small and

dense matrices exclusively. In particular there is no need to involve the tall and dense

matrices Vj.

We can now state Algorithm 20, which uses the compact representation of Theo-

rem 10.3.1 to compute an orthonormal basis for Kk(Ã, b̃).

1: Set β := ‖R11R
T
11 + R12R

T
12‖F , and Π1 := (R11R

T
11 + R12R

T
12)/β.

2: for j = 1, 2 . . . , k do

3: Γj := zeros(nj+1, nj+1)

4: Γj(1 : nj+1, 1 : nj) := H̄jΠj

5: Γj(1 : nj , nj+1) := Γj(1 : nj , 1 : nj+1) + Γj(1 : nj+1, 1 : nj)
T

6: for i = 1, . . . , j do

7: h̃ij := trace(ΠT
i Γj(1 : ni, 1 : ni))

8: Γj(1 : ni, 1 : ni) := Γj(1 : ni, 1 : ni) − Πih̃ij

9: end for

10: h̃j+1,j := ‖Γj‖F

11: if h̃j+1,j = 0 then

12: k := j

13: exit

14: else

15: Πj+1 := Γj/h̃j+1,j

16: end if

17: end for

Algorithm 20: Arnoldi algorithm for the pair (Ã, b̃) using the compact representation

Algorithm 20 computes a compact representation of a factorization of the form

ÃṼk = ṼkH̃k + h̃k+1,kṽk+1e
T
k ,

158

where H̃k =
[

h̃ij

]

is a k by k upper Hessenberg matrix and the columns ṽj of Ṽk

are orthonormal and span Kk(Ã, b̃). The vector ek is the last column of the k by k

identity matrix. The vectors ṽj are given by

ṽj = vec(VjΠjV
T
j),

where the matrices Vj are produced by the block Arnoldi algorithm, Algorithm 11.

The most expensive step in this algorithm is not the modified Gram-Schmidt loop,

but the initial construction of each Γj . This is due to the fact that all the information

we need about the large sparse matrix A has been condensed into the small and dense

matrices H̄j. In the worst case there is no rank degradation and the flop count is

O(p3k4). If Γj is overwritten by the Πj+1, then we only need to store the Πj and the

matrix H̃ =
[

h̃ij

]

. In any case the storage requirement is O(p2k3). We need to run the

block Arnoldi algorithm, Algorithm 11, either before or concurrently with Algorithm

20. This carries an additional cost of O(np2k2) flops and O(npk) words of storage.

The total cost of computing a compact representation of Kk(Ã, b̃) is O(np2k2 + p3k4)

flops, and O(npk + p2k3) words of storage.

In practice Algorithm 20 loses orthogonality, which can be cured partially by re-

orthogonalization. When deriving algorithm 20 we used the fact that the columns

of Vm are mutually orthonormal. In practice we lose orthogonality, which is why it

is critical to apply re-orthogonalization during the block Arnoldi algorithm. Failure

to do this limits the accuracy of any calculation, which is based on Algorithm 20.

Re-orthogonalization increases the cost, but not the storage requirement.

10.4 GMRES

Given Algorithm 20 it is easy to apply GMRES for linear systems directly to

the Kronecker product form of the Lyapunov matrix equation (10.1), as shown in

Algorithm 21.

Algorithm 21 computes a symmetric nk by nk matrix Yk such that Xk = VkYkV
T
k is

an approximate solution of (10.1). The algorithm adds O(p2k3 +k2) to the flop count

159

1: Solve the k + 1 by k LS problem H̃ky + βe1 = 0 for y = (y1, y2, . . . yk)
T .

2: Yk := zeros(nk, nk)

3: for i = 1, . . . k do

4: Yk(1 : ni, 1 : ni) := Yk(1 : ni, 1 : ni) + Πiyi

5: end for

Algorithm 21: GMRES for linear systems adapted to Ãvec(X) + b̃ = 0

160

and O(p2k2 + k) to the storage requirement. These costs are insignificant compared

to the demands of Algorithms 11, and 20. If A is a sparse matrix, then the cost of

applying k ≤ m steps of GMRES to the Kronecker product form of the Lyapunov

matrix equation (10.1) using the compressed representation is O(np2k2 + p3k4) flops

and O(npk + p2k3) words of storage.

We did not change the GMRES algorithm when we showed how to adapt it to a

single Lyapunov equation in Kronecker form. We showed that the calculations could

be carried out using O(n) memory and flops. As a result, we inherit the monotone

convergence from the classical theory. We note that if A is negative definite, then

Ã = I ⊗ A + A ⊗ I is negative definite.

In principle our adaptation of the GMRES algorithm may require O(n2) iterations

before converging, however the block Arnoldi algorithm eventually finds a matrix Vm

with orthonormal columns spanning the A-invariant subspace K(A, B) = Km(A, B)

after at most n iterations. Then the exact solution X of (10.1) may be recovered by

solving the ’reduced’ order Lyapunov equation

(V T
m AVm)Y + Y (V T

m AT Vm) + V T
m BBT Vm = 0,

for Y , from which X can be computed as X = VmY V T
m . In practice this distinction

is irrelevant, as we can only afford to do k ≪ n iterations.

10.5 CG

In this subsection we show that the CG algorithm for linear systems can be

adapted to the Lyapunov matrix equation

AX + XAT = BBT ,

written in Kronecker product form

Ãvec(X) = b̃,

where

Ã = (I ⊗ A + A ⊗ I),

161

and

b̃ = vec(BBT).

It is clear that if A is symmetric positive definite, then Ã is symmetric positive

definite. However, while it is possible to apply the classical algorithm directly to the

equivalent linear system it is not practical to do so, because of the time and memory

requirements which are both O(n2). We state the classical algorithm as Algorithm

22 for the sole purpose of proving Theorem 10.5.1. The tilde superscript is used to

emphasize that we are computing in Rn2

rather than Rn.

1: r̃1 := vec(BBT), p̃1 := r̃1, x̃1 = 0.

2: for j = 1, 2 . . . , k do

3: αj := (r̃j , r̃j)/(Ãp̃j, p̃j)

4: x̃j+1 := x̃j + αj p̃j

5: r̃j+1 := r̃j − αjÃp̃j

6: βj := (r̃j+1, r̃j+1)/(r̃j, r̃j)

7: p̃j+1 := r̃j+1 + βj p̃j

8: end for

Algorithm 22: Classical CG for solving Ãvec(X) = b̃

Theorem 10.5.1 Let A, B, nj, and Vj be as in section 10.2. Then there exists nj by

nj symmetric matrices Rj, Pj and Xj, such that the vectors computed by Algorithm

22 are given by

r̃j = vec(VjRjV
T
j), p̃j = vec(VjPjV

T
j), and x̃j = vec(VjXjV

T
j).

Proof The proof is by induction on j and follows Algorithm 22 step by step. The

proof is constructive and leads directly to Algorithm 23. It is clear that the statement

of the theorem is true for j = 1. From the QR factorization of B we have

BBT = Q̂1(R11R
T
11 + R12R

T
12)Q̂

T
1 ,

162

and we can write R1 = P1 = (R11R
T
11 +R12R

T
12) and X1 = zeros(n1, n1). Now, assume

that the statement of the theorem is true for j ≥ 1. Then,

αj = (r̃j , r̃j)/(Ãp̃j, p̃j) = ‖Rj‖F /trace(Γ(Pj)
T V T

j+1VjPjV
T
j Vj+1),

where we have defined

Γ(Pj) = H̄jPjV
T
j Vj+1 + V T

j+1VjPjH̄
T
j .

Now,

x̃j+1 = x̃j + αj p̃j = vec(VjXjV
T
j) + αjvec(VjPjV

T
j) = vec(Vj(Xj + αjPj)V

T
j),

and we have Xj+1 = V T
j+1Vj(Xj + αjPj)V

T
j Vj+1. Similarly,

r̃j+1 = r̃j − αjÃp̃j = vec(VjRjV
T
j) − αj vec(AVjPjV

T
j + VjPjV

T
j AT)

= vec(Vj+1(V
T
j+1VjRjV

T
j Vj+1 − αjΓ(Pj)V

T
j+1),

and we have Rj+1 = V T
j+1VjRjV

T
j Vj+1 − αjΓ(Pj). Finally, we have

βj = (r̃j+1, r̃j+1)/(r̃j, r̃j) = ‖Rj+1‖F/‖Rj‖F ,

and

p̃j+1 := r̃j+1 + βj p̃j = vec(Vj+1Rj+1V
T
j+1) + βjvec(VjPjV

T
j)

vec(Vj+1(Rj+1 + βjV
T
j+1VjPjV

T
j Vj+1)V

T
j+1),

which yields

Pj+1 = Rj+1 + βjV
T
j+1VjPjV

T
j Vj+1.

We note, that if Pj is symmetric, then Γ(Pj) is symmetric and the symmetry of

Rj+1, Pj+1, and Xj+1 follows from the symmetry of Rj , Pj, and Xj. We have shown

that the statement of the theorem is true for j + 1, which completes the proof.

From the proof of Theorem 10.5.1 it is clear that once the matrices H̄j have been

computed by the block Arnoldi algorithm, then the rest of the computations can be

163

done with small and dense matrices. We formalize this statement in Algorithm 23.

As in Algorithm 21 we need not compute the product V T
j Vj+1 explicitly. Algorithm

23 requires O(p3k4) arithmetic operations and O(p2k3) words of storage, provided

that the storage is recycled.

1: R1 = P1 = V T
1 BBT V1, X1 = the n1 by n1 zero matrix.

2: for j = 1, 2, . . . , k do

3: Γ(Pj) = H̄jPjV
T
j Vj+1 + V T

j+1VjPjH̄
T
j

4: αj = ‖Rj‖2
F/trace(Γ(Pj)

T V T
j+1VjPjV

T
j Vj+1)

5: Xj+1 = V T
j+1Vj(Xj + αjPj)V

T
j Vj+1

6: Rj+1 = V T
j+1VjRjV

T
j Vj+1 − αjΓ(Pj)

7: βj := ‖Rj+1‖2
F/‖Rj‖2

F

8: Pj+1 = Rj+1 + βjV
T
j+1VjPjV

T
j Vj+1

9: end for

Algorithm 23: CG adapted to AX + XAT = BBT

Because of the equivalence between the classical algorithm, Algorithm 22, and

the adapted algorithm, Algorithm 23, we inherit the convergence results from the

classical CG theory. In particular, we have the following theorem.

Theorem 10.5.2 Let A be a symmetric positive definite matrix, A = AT > 0. Then

Algorithm 23 converges to the solution X of AX +XAT = BBT and the matrices Xk

satisfy

‖X − VkXkV
T
k ‖F ≤ 2κ(A)

(√

κ(A) − 1
√

κ(A) + 1

)k

‖X‖F .

Proof From the classical theory [51] we have the estimate

‖vec(X) − vec(VkXkV
T
k)‖Ã ≤ 2





√

κ(Ã) − 1
√

κ(Ã) + 1





k

‖vec(X)‖Ã, (10.5)

where

‖vec(X)‖Ã = vec(X)T Ãvec(X),

164

is the norm generated by the SPD matrix Ã. If λmin(Ã) is the smallest and λmax(Ã)

is the largest eigenvalue for Ã, then

λmin(Ã)‖vec(X)‖2 ≤ ‖vec(X)‖Ã ≤ λmax(Ã)‖vec(X)‖2. (10.6)

In general the eigenvalues of Ã are of the form λi + λj , where λi, and λj are

eigenvalues of A. In particular, we have

λmin(Ã) = 2λmin(A), λmax(Ã) = 2λmax(A) and κ(Ã) = κ(A). (10.7)

The proof is completed by applying the information contained in (10.6) and (10.7) to

the classical inequality (10.5).

We would like to draw attention to the fact that this result is very similar to

one obtained by Simoncini and Druskin [56], Theorem 6.3.2. The two bounds are

not immediately comparable, because Simoncini and Druskin bound the 2-norm of

the absolute error for Saad’s method [50], while we bound the Frobenius norm of

the relative error of the CG applied to the Kronecker product form of a Lyapunov

equation with low rank right hand side. However, we emphasize that their bound

decays more rapidly than ours, and that the key quantity is κ(A + λmin(A)I), rather

than κ(A).

Theorem 10.5.2 can be used to determine an upper bound on the number k(ǫ) of

iterations needed in order to achieve a specific forward relative error ǫ. This allows

us to estimate the runtime before starting the algorithm.

10.6 An experiment

At this junction we would like to insert an experiment which compares the Saad’s

Arnoldi method and the GMRES method by Jaimoukha and Kasenally, with our

adaptations of the CG and GMRES algorithms for Lyapunov equations in the Kro-

165

necker product form. Let n = 500 and let A be the symmetric tridiagonal Toeplitz

matrix given by

A =











−3 1

1
. . .

. . .

. . .
. . . 1

1 −3











and let

B = (1, 1, . . . , 1)T ∈ R
n.

By Gershgorin’s theorem A is negative definite, and each of the four algorithms applies

to at least one of the two equivalent Lyapunov equations, namely

AX + XAT + BBT = 0,

or

(−A)X + X(−A)T = BBT .

The residual history for each of these four methods is recorded in Figure 10.1.

The GMRES method developed by Jaimoukha and Kasenally (JK GMRES) does

not have a monotone residual history! As mentioned in Chapter 6 the algorithm hinges

on the solution of a special linear system. Experimentally, the condition numbers

for these linear systems grow monotonically with the iteration number, and in our

case the condition number was greater than 1015, after 21 iterations, and subsequent

calculations became meaningless. This coincides with the point at which the residual

norm starts to increase.

There is no data for iterations 1, 2, and 3 for JK GMRES: Each iteration is

independent of the other iterations, but the first three iterations are special cases. It

is not a trivial matter to implement JK GMRES, even in MATLAB, which is why we

did not implement the first three iterations.

The basic Arnoldi method does not suffer from stability problems and compares

well with JK GMRES, which is theoretically optimal for a given number steps with

of the block Arnoldi algorithm.

166

Now, our CG algorithm and our GMRES algorithm are virtually indistinguishable

from each other, until they reach stagnation, which, surprisingly, is at a lower level

for our CG algorithm.

However, this is less significant compared with the following observation. Saad’s

Arnoldi method is faster than our CG algorithm. Asymptotically, both algorithms

require the same number of arithmetic operations in order to carry out k iterations,

specifically O(np2k2 + p3k4). In both cases the underlying block Arnoldi algorithm

requires O(np2k2) flops, while the rest of the calculations are independent of n. Saad’s

Arnoldi method appear to be nearly optimal with respect to the number of Arnoldi

steps, which is why it is faster than our method, especially for large values of n.

In general, the successful numerical scheme mimics the original problem as much

as possible. Saad’s Arnoldi method exploits the structure of the Lyapunov equations,

specifically Theorem 2.6.3. We are only using the structure of the Lyapunov operator

to reduce the storage requirement from O(n2) to O(n). We are running the CG

algorithm on a very large linear system, but our choice of method does not exploit

the structure of the solution. This, we believe, is why we lose to the Arnoldi algorithm.

10.7 BCG

Consider a pair of Lyapunov equations

AX + XAT = BBT ,

AT Y + Y A = CT C,

or the equivalent set of linear equations

Ãvec(X) = b̃,

ÃT vec(Y) = c̃,

where Ã = I ⊗A +A⊗ I, b̃ = vec(BBT), and c̃ = vec(CT C). The importance of this

problem has already been explained in Chapter 3.

167

0 5 10 15 20 25 30 35 40 45 50
−16

−14

−12

−10

−8

−6

−4

−2

0

iterations

lo
g 10

 F
ro

be
ni

us
 n

or
m

 r
el

at
iv

e
re

si
du

al

Arnoldi
JK GMRES
Our CG
Our GMRES

Figure 10.1. Residual history for different Krylov methods applied to
equivalent Lyapunov equations

168

The BCG algorithm, which is stated as Algorithm 24, can be used to solve such

as dual system. We continue to use the tilde superscript to emphasize that we are

dealing with vectors in R
n2

.

1: r̃1 := b̃, r̃∗1 := c̃, p̃1 := r̃1, p̃∗1 := r̃∗1

2: for j = 1, . . . , do

3: αj := (r̃j , r̃
∗
j)/(Ãp̃j , p̃

∗
j)

4: x̃j+1 = x̃j + αj p̃j

5: x̃∗
j+1 = x̃∗

j+1 + αj p̃
∗
j

6: r̃j = r̃j − αjÃp̃j

7: r̃∗j+1 = r̃∗j − αjÃ
T p̃∗j

8: β̃j = (r̃j+1, r̃
∗
j+1)/(r̃j, r̃

∗
j)

9: p̃j+1 = r̃j+1 + β̃j p̃j

10: p̃∗j+1 = r̃∗j+1 + β̃j p̃
∗
j

11: end for

Algorithm 24: BCG for a pair of linear equations

It is clear that the runtime and the storage requirements for Algorithm 24 are

both O(n2), which limits this approach to small values of n.

For the sake of simplicity we consider only the case of B = b ∈ Rn, and C = cT ∈
Rn, i.e. the pair of Lyapunov equations,

AX + XAT = bbT ,

AT Y + Y A = cT c.

Paul van Dooren suggested to us that we might use the Lanczos biorthogonal-

ization procedure, Algorithm 25, to reduce the storage and runtime requirements to

O(n). The statement of Algorithm 25 is taken from Saad [51], with minor modifica-

tions in order to specify how the vectors v1 and w1 are constructed from b and cT . We

assume the inner product (b, cT) is positive. If (b, cT) < 0, then we simply replace b

169

with −b, which does not change the corresponding Lyapunov equation. If (b, cT) = 0,

then this entire approach cannot be applied.

1: γ := (b, cT) > 0, v1 = bγ−1/2, v2 = cT γ−1/2

2: Set β1 = δ1 = 0, w0 = v0 = 0

3: for j = 1, 2, . . . , m do

4: αj = (Avj , wj)

5: v̂j+1 = Avj − αvj − βjvj−1

6: ŵj+1 = AT wj − αwj − δjwj−1

7: δj+1 = |(v̂j+1, ŵj+1|1/2. If δj+1 = 0 Stop.

8: βj+1 = (v̂j+1, ŵj+1)/δj+1

9: wj+1 = ŵj+1/βj+1

10: vj+1 = v̂j+1/δj+1

11: end for

Algorithm 25: Lanczos biorthogonalization procedure

Now, let Tm denote the matrix

Tm =














α1 β2

δ2 α2 β3

. . .
. . .

. . .

δm−1 αm−1 βm

δm αm














,

where the entries are defined by Algorithm 25.

It is well known, see Saad [51], that if the Lanczos algorithm does not break down

before step m, then

V T
m Wm = Im, j = 1, 2, . . . , m,

and

Km(A, b) = RanVm, Km(AT , cT) = RanWm,

170

and the following relations hold

AVm = VmTm + δm+1vm+1e
T
m, (10.8)

AT Wm = WmT T
m + βm+1wm+1e

T
m, (10.9)

as well as W T
mAVm = Tm.

We now define a sequence of matrices as follows

H̄j(1 : j, 1 : j) = Tj , H̄j(j + 1, :) = δj+1e
T
j ,

K̄j(1 : j, 1 : j) = T T
j , K̄j(j + 1, :) = βj+1e

T
j ,

and

Vj =
[

v1 v2 . . . vj

]

and Wj =
[

w1 w2 . . . wj

]

for j = 1, 2, . . . , m − 1. We emphasize that the matrices H̄j, K̄j are not square, but

are j + 1 by j matrices. These definitions allow us to rewrite equations (10.8), (10.9)

as follows,

AVj = Vj+1H̄j,

AT Wj = Wj+1K̄j ,

for j = 1, 2, . . .m − 1. This completes our preparation for the following theorem.

Theorem 10.7.1 If the unsymmetric Lanczos procedure does not break down before

step m, then there exists symmetric j by j matrices Xj, Rj, Pj, X∗
j , R∗

j , and P ∗
j , such

that the vectors x̃j, r̃j, p̃j, x̃∗
j , r̃∗j , and p̃∗j produced by applying the BCG algorithm to

the dual equations, satisfy

r̃j = vec(VjRjV
T
j), p̃j = vec(VjPjV

T
j), x̃j = vec(VjXjV

T
j),

and

r̃∗j = vec(WjR
∗
jW

T
j), p̃∗j = vec(WjP

∗
j W T

j), x̃∗
j = vec(WjX

∗
j W T

j).

171

Proof The proof is very similar to our analysis of the Arnoldi algorithm, and follows

Algorithm 25 step by step. Initially we have

x̃1 = 0, r̃1 = p̃1 = b̃ = vec(bbT) = vec(γv1v
T
1),

from which it follows that X1 = 0, R1 = P1 = γ (1 by 1 matrices) is the proper choice

for j = 1. Similarly, we find that X∗
1 = 0, and R∗

1 = P ∗
1 = γ. Now, assume that the

statement of the theorem is true for some value j < m. Then we have

Ãp̃j = Ãvec(VjPjV
T
j) = vec(AVjPjV

T
j + VjPjV

T
j AT) =

vec(Vj+1H̄jPjV
T
j + VjPjH̄

T
j V T

j+1).

We claim that there exists a matrix Γj such that

Ãp̃j = vec(Vj+1ΓjV
T
j+1).

To this end we note that, V T
j Wj+1V

T
j+1 = V T

j , from which is follows that

Γj = H̄jPjV
T
j Wj+1 + W T

j+1VjPjH̄
T
j

is the proper choice. Similarly, we see that

Γ∗
j = K̄jP

∗
j W T

j Vj+1 + V T
j+1WjP

∗
j K̄T

j ,

satisfies

ÃT p̃∗j = vec(Wj+1Γ
∗
jW

T
j+1).

We now continue to the definition of αj .

αj := (r̃j , r̃
∗
j)/(Ãp̃j , p̃

∗
j) = trace(RT

j R∗
j)/trace(ΓT

j (1 : j, 1 : j)P ∗
j).

Then we have

x̃j+1 := x̃j + αj p̃j = vec(Vj{Xj + αjPj}V T
j)

= vec(Vj+1{W T
j+1Vj(Xj + αjPj)V

T
j Wj+1}V T

j+1),

172

and

r̃j+1 := r̃j − αjÃp̃j = vec(VjRjV
T
j) − αjvec(Vj+1ΓjV

T
j+1)

= vec(Vj+1{W T
j+1VjRjV

T
j Wj+1 − αjΓj}V T

j+1),

from which it follows that

Xj+1 = W T
j+1Vj(Xj + αjPj)V

T
j Wj+1,

Rj+1 = W T
j+1VjRjV

T
j Wj+1 − αjΓj.

Finally, we note that

β̃j := (r̃j+1, r̃
∗
j+1)/(r̃j, r̃

∗
j) = trace(RT

j+1R
∗
j+1)/trace(RT

j R∗
j),

and

p̃j+1 = r̃j+1 + β̃j p̃j = vec(Vj+1Rj+1V
T
j+1) + β̃jvec(VjPjV

T
j)

= vec(Vj+1{Rj+1 + β̃jW
T
j+1VjPjV

T
j Wj+1}V T

j+1),

which implies that

Pj+1 = Rj+1 + β̃jW
T
j+1VjPjV

T
j Wj+1.

It is clear that we can obtain expressions for X∗
j+1, R∗

j+1, and P ∗
j+1 in a similar fashion.

Specifically, we find

X∗
j+1 = V T

j+1Wj(X
∗
j + αjP

∗
j)W T

j Vj+1,

R∗
j+1 = V T

j+1WjR
∗
jW

T
j Vj+1 − αjΓ

∗
j ,

P ∗
j+1 = R∗

j+1 + β̃jV
T
j+1WjP

∗
j W T

j Vj+1.

The symmetry of the matrices is established by induction, the key being the assumed

symmetry of Pj (P ∗
j), which leads to the symmetry of Γj (Γ∗

j).

It is now straight forward to adapt BCG the Kronecker product formulation.

This is done in Algorithm 26. By construction, the matrices W T
j+1Vj and V T

j+1Wj are

173

1: X1 := 0, R1 := γ, P1 = γ, X1 := 0, R1 := γ, P1 = γ.

2: for j = 1, 2, . . . , m − 1 do

3: Γj := zeros(j + 1, j + 1), Γj(1 : j + 1, 1 : j) := H̄jPj, Γj := Γj + ΓT
j

4: Γ∗
j := zeros(j + 1, j + 1), Γ∗

j(1 : j + 1, 1 : j) := K̄jP
∗
j , Γ∗

j := Γ∗
j + Γ∗

j
T

5: αj := trace(RT
j R∗

j)/trace(Γj(1 : j, 1 : j)T P ∗
j)

6: Xj+1 := zeros(j + 1, j + 1); Xj+1(1 : j, 1 : j) = Xj + αjPj

7: X∗
j+1 := zeros(j + 1, j + 1); X∗

j+1(1 : j, 1 : j) = X∗
j + αjP

∗
j

8: Rj+1 := −αjΓj; Rj+1(1 : j, 1 : j) := Rj+1(1 : j, 1 : j) + Rj

9: R∗
j+1 := −αjΓ

∗
j ; R∗

j+1(1 : j, 1 : j) := R∗
j+1(1 : j, 1 : j) + R∗

j

10: Pj+1 := Rj+1; Pj+1(1 : j, 1 : j) := Pj+1(1 : j, 1 : j) − β̃jPj

11: P ∗
j+1 := R∗

j+1; Pj+1(1 : j, 1 : j)∗ := Pj+1(1 : j, 1 : j)∗ − β̃jP
∗
j

12: end for

Algorithm 26: BCG for a pair of Lyapunov equations using the compact representa-

tion

174

nothing but the first j columns of the j +1 by j +1 identity matrix. This observation

has been used to simplify the calculations.

First, we note that this is not our first choice of a solver. We inherit the erratic

convergence of BCG, and the potential of breakdown from the Lanczos algorithm. In

addition it is critical that the Lanczos vectors remain biorthogonal, i.e. V T
mWm = Im,

which forces us to reorthogonalize at every iteration of Algorithm 25. Our goal has

been to emphasize that it is not the sheer size of the matrix Ã, which will prevent

one from applying BCG to a pair of Lyapunov equations in the Kronecker product

form.

It follows that we must find a way to limit the number of iterations, which makes

it imperative that we discuss the problem of how to precondition Lyapunov equations.

This is the topic of Chapter 11.

We finish this chapter by demonstrating how to apply CGNR to a Lyapunov

equation, regardless of whether A is negative definite or even stable.

10.8 CGNR

Given a linear system Ax = f and an initial guess x0, the CGNR algorithm

computes a sequences of approximations {xj} of the exact solution x∗ such that xj

minimizes the 2-norm of the residual r(x) = f − Ax over all vectors x in the affine

Krylov subspace

x0 + Kj(A
T A, AT r0) = x0 + span{AT r0, A

T AAT r0, . . . , (A
T A)j−1AT r0},

where r0 = f − Ax0 and j = 1, 2, If A is nonsingular, then the algorithm will

converge to the solution x∗ in at most n steps, if the calculations are carried out in

exact arithmetic. The convergence of the algorithm is controlled by the condition

number of AT A and/or the distribution of eigenvalues of AT A. Specifically, if AT A is

well conditioned or if the eigenvalues of AT A are tightly clustered, then xj is a good

approximation of x∗, even for modest values of j.

175

In this section we show how to adapt CGNR for linear systems to a Lyapunov

equation

AX + XAT + BBT = 0,

in Kronecker product form

Ãx̃ + b̃ = 0,

where Ã = I ⊗ A + A ⊗ I and b̃ = vec(BBT). The advantage of this approach is

that CGNR will converge if the matrix Ã is nonsingular. Now, Ã is nonsingular if

the Lyapunov equation

AY + Y AT + Q = 0,

has a unique solution Y for every matrix Q or equivalently if the eigenvalues {λj} of

A satisfy

∀ i, j : λi + λj 6= 0. (10.10)

Now, condition (10.10) is much weaker than that of requiring A to be negative definite,

giving us a clear advantage over standard projection methods which require A to be

negative definite. The low rank cyclic Smith method can also be applied to general

problems which satisfy condition (10.10), but it is necessary to analyze the spectrum

for A in order to determine the shift parameters pj, and in general we must also

compute good preconditioners for linear systems with coefficient matrices (A + pjI).

No such analysis is necessary for CGNR.

As usual the main problem is to reduce the storage requirements and the number

of arithmetic operations from O(n2) to O(n). The compact representation of vectors

in Rn2

which we developed in the previous chapters cannot be applied to CGNR. The

problem is that while that representation is designed to respond well to multiplication

by Ã, i.e.

∀ Xj ∃ Yj+1 : Ãvec(VjXjV
T
j) = vec(Vj+1Yj+1V

T
j+1),

we do not consider multiplication by ÃT and there is no guarantee that there exists

a Zj+2, such that

ÃT vec(Vj+1Yj+1V
T
j+1) = vec(Vj+2Zj+2V

T
j+2).

176

The key to overcoming this problem is to replace the standard factorization

AVj = Vj+1H̄j , j = 1, 2 . . . , 2k,

with a different factorization, specifically

AV2j−1 = V2jH̄2j−1, AT V2j = V2j+1K̄2j ,

for j = 1, 2 . . . , k.

We begin by stating our main result, Theorem 10.3.1, which explains why such a

factorization is exactly what we need, then we give a short proof of its existence, and

explain how to compute it in practice.

The CGNR algorithm for standard linear systems of the type Ax = f is given as

Algorithm 27.

1: r̃0 := f − Ax0, z0 := AT r0, p0 := z0.

2: for j = 0, 1, 2 . . . , do

3: wj := Apj .

4: αj = ‖zj‖2
2/‖wj‖2

2.

5: xj+1 := xj + αjpj .

6: rj+1 := rj − αjwj.

7: zj+1 := AT rj+1.

8: βj := ‖zj+1‖2
2/‖zj‖2

2.

9: pj+1 := zj + βjpj.

10: end for

Algorithm 27: CGNR for Ax = f

We are interested in applying the algorithm to the linear system Ãx̃ + b̃ = 0, or

equivalently (−Ã)x̃ = b̃. We limit ourselves to the initial guess x0 = 0, because it

is essential that the initial residual r̃0 has the same structure as the inhomogeneous

term b̃. As a result, it suffices to change the sign in the computation of xj+1, i.e.

xj+1 := xj − αjpj .

177

Finally, it is convenient to start the iteration at j = 1, rather than j = 0. We state

these minor modifications as Algorithm 28. We continue using the tilde superscript

to emphasize that we are dealing with vectors in R
n2

.

1: r̃1 := b̃, z̃1 := ÃT r̃1, p̃1 = z̃1.

2: for j = 1, 2 . . . , do

3: w̃j := Ãp̃j .

4: αj = ‖z̃j‖2
2/‖w̃j‖2

2.

5: x̃j+1 := x̃j − αj p̃j .

6: r̃j+1 := r̃j − αjw̃j.

7: z̃j+1 := ÃT r̃j+1.

8: βj := ‖z̃j+1‖2
2/‖z̃j‖2

2.

9: z̃j+1 := z̃j + βj p̃j .

10: end for

Algorithm 28: CGNR for Ãx̃ + b̃ = 0 with initial guess x̃1 = 0

It is clear that the storage requirement is O(n2) and that the runtime is at least

O(n2k). Simply storing a single vector explicitly requires O(n2) storage and comput-

ing a norm requires O(n2) arithmetic operations. If A is a general sparse matrix then

matrix multiplication with Ã requires O(n2) arithmetics operations, but this figure

grows to O(n3) if A is a general dense matrix.

However, the following theorem illustrates that the vectors computed by Algo-

rithm 28 have a very special structure, which can be used to reduce both the storage

and the runtime requirements significantly.

Theorem 10.8.1 Let k be a positive integer and suppose we are given matrices

Q1, Q2, . . . , Q2k+3, H̄1, H̄3, . . . H̄2k+1, K̄2, K̄4, . . . , K̄2k+2,

such that

Vj =
[

Q1 Q2 . . . Qj

]

, j = 1, 2, . . . 2k + 3,

178

has orthonormal columns and

AV2j−1 = V2jH̄2j−1,

AT V2j = V2j+1K̄2j ,

for j = 1, 2, . . . k + 1. If RanB = RanV1, then there exist matrices

Xj , Rj , Pj , and Zj,

such that the vectors x̃j, r̃j, p̃j, and z̃j produced by doing k iterations of Algorithm

28, can be written as

x̃j = vec(V2j+1XjV
T
2j+1), r̃j = vec(V2jRjV

T
2j),

p̃j = vec(V2j+1PjV
T
2j+1), z̃j = vec(V2j+1ZjV

T
2j+1),

for j = 1, 2, . . . , k + 1.

Proof The proof is by induction on j. First, let nj denote the number of columns

of Vj. Since the Vj+1 is formed by augmenting Vj, we have

1 ≤ n1 ≤ n2 ≤ · · · ≤ n2k+3.

We begin by examining the initial values, i.e. the vectors x̃1, r̃1, p̃1, and z̃1. The

initial guess is x̃1 = 0, so

X1 = zeros(1 : n3, 1 : n3),

will suffice. The initial residual is r̃1 = b̃ = vec(BBT). By assumption RanV1 =

RanB, so B = V1S for a suitable matrix S, from which it follows r̃1 = b̃ =

vec(V1SSTV1), which we write as r̃1 = vec(V2R1V
T
2), where

R1 =




SST 0

0 0



 .

This trivial embedding of SST T in a n2 by n2 zero matrix is convenient because z̃1

is computed by applying ÃT to r̃1. We have

z̃1 = ÃT r̃1 = vec(AT V2R2V
T
2 + V2R2V

T
2 AT) = vec(V3Z1V

T
3),

179

where

Z1 = K̄2R2V
T
2 V3 + V T

3 V2R2K̄
T
2 .

Finally we note that p̃1 = z̃1, so we should choose P1 = Z1.

Now, suppose the statement of the theorem is true for an integer j, 1 ≤ j ≤ k.

The auxiliary variable w̃j satisfies

w̃j = Ãp̃j = Ãvec(V2j+1PjV
T
2j+1) = vec(V2j+2∆jV

T
2j+2),

where

∆j = H̄2j+1PjV
T
2j+1V2j+2 + V T

2j+2V2j+1PjH̄
T
j+1.

The real number αj := ‖z̃j‖2
2/‖w̃j‖2

2 can be calculated as

αj = ‖Zj‖2
F /‖∆j‖2

F .

The vector x̃j+1 := x̃j − αj p̃j satisfies

x̃j+1 = vec(V2j+1{Xj − αjPj}V T
2j+1) = vec(V2j+3Xj+1V

T
2j+3),

where

Xj+1 =








Xj − αjPj 0 0

0 0 0

0 0 0








.

Similarly, r̃j+1 = r̃j − αjw̃j satisfies

r̃j+1 = vec(V2jRjV
T
2j − αjV2j+2∆jV

T
2j+2) = vec(V2j+2Rj+1V

T
2j+2),

where

Rj+1 =








Rj 0 0

0 0 0

0 0 0







− αj∆j .

The real number βj := ‖z̃j+1‖2
2/‖z̃j‖2

2 can be calculated as

βj = ‖Zj+1‖2
F /‖Zj‖2

F ,

180

and the vector z̃j+1 = ÃT r̃j+1 satisfies

z̃j+1 = ÃT vec(V2j+2Rj+1V
T
2j+2) = vec(V2j+3Zj+1V

T
2j+3),

where

Zj+1 = K̄2j+2Rj+1V
T
2j+2V2j+3 + V T

2j+3V2j+2Rj+1K̄
T
2j+2.

Finally, we note that p̃j+1 := z̃j+1 + βj p̃j satisfies

p̃j+1 = vec(V2j+3Zj+1V
T
2j+3) + βjvec(V2j+1PjV

T
2j+1) = vec(V2j+3Pj+1V

T
2j+3),

where

Pj+1 = Zj+1 + βj








Pj 0 0

0 0 0

0 0 0








.

We will now prove the existence of a factorization of the form which is required

for Theorem 10.8.1. The key step is the following lemma, which we shall refer to as

the single step extension lemma.

Lemma 10.8.1 Given an n by n matrix A and an n by m matrix V such that V T V =

Im, then there exist matrices Q, and H such that

AV =
[

V Q
]

H

and
[

V Q
]

has orthonormal columns.

Proof We begin with the elementary decomposition

AV = V V T AV + (I − V V T)AV.

Now, let Q be any matrix with orthonormal columns such that

RanQ = Ran (I − V V T)AV.

181

Then

AV = V V T AV + QQT (I − V V T)AV =
[

V Q
]




V T AV

QT (I − V V T)AV



 ,

from which it follows that given a suitable matrix Q, we should pick

H =




V T AV

QT (I − V V T)AV



 .

How do we choose Q? Let

(I − V V T)AV P =
[

Q̂1 Q̂2

]




R̂11 R̂12

0 0





be a rank revealing QR factorization of (I − V V T)AV , where P is a permutation

matrix. The matrix Q̂1 has p1 columns, where p1 is the rank of (I − V V T)W . The

choice of

Q = Q̂1,

will suffice.

The existence of a factorization of the form given above now follows by successive

applications of the single step extension lemma, where we alternate between multi-

plication by A and AT . The process can be continued until two successive iterations

have failed to append vectors to the current value of V . In this case we have dis-

covered a subspace V , which is invariant with respect to A as well as AT . If the

process does not break down before we have performed 2k + 2 extensions of the ini-

tial matrix V1, then we have found matrices Q1, Q2, . . .Q2k+3, H̄1, H̄3, . . . H̄2k+1, and

K̄2, K̄4, . . . , K̄2k+2 such that

Vj =
[

Q1 Q2 . . . Qj

]

, j = 1, 2, . . . 2k + 3,

has orthonormal columns and satisfies

AV2j−1 = V2jH̄2j−1,

AT V2j = V2j+1K̄2j ,

182

for j = 1, 2, . . . k + 1. This is exactly the assumption made in Theorem 10.8.1.

Exactly how much memory is consumed constructing a factorization of this type?

We are constructing an orthonormal basis for the vector-spaces

K1 = RanB,

K2 = Ran
[

B AB
]

,

K3 = Ran
[

B AB AT
[

B AB
]]

,

K4 = Ran
[

B AB AT B AT AB A
[

AB AT
[

B AB
]]]

,

at which point the formulas become too large to write out in full. Let V be a matrix

with orthonormal columns, such that

Kj = RanV (:, 1 : nj)

for suitable integers nj. Then

Kj+1 = Kj ∪ Ran (AV (:, nj−1 + 1 : nj)) , j = 3, 5, 7, . . .

and

Kj+1 = Kj ∪ Ran
(
AT V (:, nj−1 + 1 : nj)

)
, j = 4, 6, 8, . . .

It follows, that if there is no rank degradation at all, then

n1 = r, n2 = 2r, n3 = 4r,

where r denotes the rank of B, and in general

nj+1 = 2nj − nj−2, j = 3, 4, 5,

The general solution is

nj = c1q
j
1 + c2q

j
2 + c3q

j
3,

where q1, q2, q3 are the three roots of

z3 = 2z2 − 1,

183

which are {

1,
1 ±

√
5

2

}

.

The particular solution, which satisfies the initial conditions is

nj

r
= 1 +

(
1

2
− 3

10

√
5

)(

1 −
√

5

2

)j

+

(
1

2
+

3

10

√
5

)(

1 +
√

5

2

)j

.

For large values of j the expression is dominated by the last term, and we see that

nj = O(qj),

where q is the golden ratio,

q =
1 +

√
5

2
≈ 1.61803.

This places a severe restriction on the Lyapunov equations which can be solved by

this method. The corresponding linear equations must be well conditioned, or we run

out of memory long before the residual has been significantly reduced.

This is the worst case. In the very best case A is symmetric, but not necessarily

stable. In this case memory consumption grows only linearly. Unfortunately, we do

not know any real-life applications which generate non-stable symmetric problems.

We wrote a MATLAB implementation of the single step extension algorithm and

the CGNR algorithm for Lyapunov equations in Kronecker product form. The worst

case behavior is realized with randomly generated matrices. A nice problem, which

is not negative definite or even stable, is given by the following 500 by 500 matrix

A = [aij], where

aij =







−3 i = j < 500

1 i = j + 1, i < 500

−1 i = j − 1, i < 500, i 6= 5

6 i = j = 500

10 i = 5, j = 6.

184

We picked B = (1, 1, . . . , 1)T ∈ R500, and solved the corresponding Lyapunov equation

AX + XAT + BBT = 0

using our CGNR algorithm. The residual history as well as the memory consumption

are given in Figure 10.2. We emphasize that each CGNR iteration contains two

multiplications, one with A and one with AT , because we must calculate the action

of Ã and of ÃT . This is not an example which is in our favor. After only 12 CGNR

iterations, we are using 52 vectors to hold the basis, which is hardly a small number

compared with the dimension n = 500. At the same time the relative residual is

almost 4 · 10−3. The point of this experiment is to show that the CGNR algorithm

can be applied using less than O(n2) memory and that the worst case behavior need

not occur.

10.9 Conclusion

Let A be an n by n stable matrix, and let B be a tall matrix such that AB is

defined. The Lyapunov matrix equation

AX + XAT + BBT = 0

is equivalent to a standard linear system with n2 unknowns. Previously, Hochbruck

and Starke [23] applied Krylov subspace methods directly to this linear system using

O(n2) memory and time. We have shown that it is possible to reduce these require-

ments to O(n) for a variety of methods including CG, GMRES, BCG and CGNR.

The key is to exploit the relationship between certain Krylov subspaces.

Unfortunately, our CG and GMRES methods are slower than the Arnoldi method.

The fundamental problem is that we do not exploit the structure of the solution, but

are running algorithms which are designed for general linear systems.

Our BCG algorithm is built on the Lanczos biorthogonalization procedure, and

may break down at any time. This procedure is not recommended.

185

0 10 20 30 40
−6

−5

−4

−3

−2

−1

0

CGNR Iterations

lo
g 10

 F
ro

be
ni

us
 n

or
m

 r
el

at
iv

e
re

si
du

al

0 20 40 60 80
0

20

40

60

80

100

120

140

160

180

Total mat. vec.

M
em

or
y

co
m

su
m

pt
io

n
(v

ec
to

rs
)

Figure 10.2. Residual history and memory consumption for CGNR applied
to a non-stable Lyapunov equation.

186

In principle, our adaptation of the CGNR algorithm can solve any Lyapunov

matrix equation, regardless of whether A is negative definite or even stable. Unfor-

tunately, in the worst case memory consumption is O(1.62jn), where j is the number

of iterations, and n is the dimension of the problem. This limits our approach to well

conditioned problems.

187

11. Preconditioning

11.1 Introduction

Hochbruck and Starke [23] showed how to apply preconditioned Krylov subspace

methods to Lyapunov matrix equations, however their method requires O(n2) memory

and time, which limits their approach to all but the smallest values of n. In this

chapter we explain how to reduce the storage and time requirements to O(n).

The compact representations of vectors in Rn2

which we developed in the previous

chapter does not permit preconditioning. The fundamental problem is that even if

we are able to assemble and solve an equation of the type

M̃vec(Y) + vec(ViXiV
T
i),

there is no guarantee the the matrix Y can be written in the form

Y = vec(VjYjV
T
j)

for any value of j. In short the very first application of a arbitrary preconditioner is

likely to destroy our compact representation, which is why it necessary to rethink the

entire approach.

11.2 Enabling preconditioning

In this section we explain how to enable preconditioning, without using O(n2)

memory and time. We begin by illustrating why it is even possible.

We applied preconditioned CG to the equation

AX + XAT = Q,

188

where A = [aij], and

aij =







3, i = j

−1.4, |i − j| = 1

−0.1, |i − j| = 10

and Q =
[

qij

]

, where qij = 1, using the operator

φM(X) = MX + XMT

as preconditioner, where M = [mij], and

mij =







3, i = j,

−1.4, |i − j| = 1,

We recorded the residual history as well as the numerical rank of the iterates Xj with

respect to the tolerance 10−6. Our results can be found in Figure 11.1

As expected the residual is decaying rapidly and the relative residual is less than

10−6 after 72 iterations. The numerical rank of the iterates Xj grows almost linearly,

until it peaks at 35 and falls down to 7, which is equal to the numerical rank of the

exact solution with respect to the tolerance 10−6. This experiment shows that it is

at least theoretically possible to carry out the calculations using matrices with low

rank.

We now show how to carry out the calculations in practice. We claim that it

suffices to work with vectors x̃ which can be written in the form

x̃ = vec(EF T)

where E and F are real n by r matrices, where r ≪ n. It is clear that the inhomoge-

neous term is already in this format, but we must show that it is possible to continue

using this format.

We begin by showing how to apply the matrix

Ã = (I ⊗ A + A ⊗ I)

189

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

2

iterations

lo
g 10

 F
ro

be
ni

us
 n

or
m

 r
el

at
iv

e
re

si
du

al

0 20 40 60 80 100

5

10

15

20

25

30

35

40

iterations

nu
m

er
ic

al
 r

an
k,

 to
le

ra
nc

e
=

 1
0−

6

Figure 11.1. The residual history and the numerical rank of the approxi-
mate solutions for preconditioned CG applied to a simple Lyapunov equa-
tion

190

to a vector in this format. We have

Ãx̃ = vec
(
AEF T + EF T AT

)
= vec

([

AE E
] [

F AF
])

.

This simple expression is actually very problematic. Each application of Ã doubles the

storage requirement. It is clear that we run out of memory, sooner rather than later,

if Ã is applied repeatedly. This growth can be kept in check by regularly performing

tall SVD.

Now, a standard linear update is equally simple. If ỹ = vec(GHT), then

αx̃ + ỹ = vec
(
αEF T + GHT

)
= vec

([

αE G
] [

F H
])

It is more complicated to compute the 2-norm of a vector x̃ = vec(EF T). We

have

‖x̃‖2
2 = ‖EF T‖F

Now, it is possible to form the n by n matrix EF T and then calculate the Frobenius

norm directly. This can be done one block at a time and does not necessarily require

O(n2) memory, but O(n2) arithmetic operations, which limits this procedure to small

values of n.

However, there is a shortcut, since

‖EF T‖2
F = trace((EF T)T EF T) = trace((FET)EF T) = trace

(
(ET E)(F T F)

)

which allow us to calculate the norm using O(np2) arithmetic operations and only

O(p2) memory. Unfortunately this procedure is not reliable, to the point where the

even the sign can not be trusted. This situation can occur when the true norm is suf-

ficiently small. Mathematically the problem is identical to the problem of calculating

the inner product between a pair of vectors in Rn. The standard algorithm for this

problem can have a very large relative error, when the vectors are nearly orthogonal.

There is a way to get the sign right. Let E = UΣV T be the SVD of E. Then

FET EF T = FV Σ2V T F T = (FV)Σ2(FV)T

191

from which it follows that

trace
(
FET EF T

)
= trace

(
(FV)Σ2(FV)T)

)
= Σk

j=1σ
2
j ‖(FV)j‖2

2,

and this expression is guaranteed to return a nonnegative number even in the face

of roundoff errors. Unfortunately this expression is also unreliable and problems

occur when the true norm becomes sufficiently small. We believe that the problem

lies within the SVD. With the current algorithm in LAPACK, the large singular

values are determined with a small relative error, but the small singular values are

determined with an large relative error. While the singular vectors are orthogonal

almost to machine precision, their direction depends on the clustering of the singular

values and in the above expression we depend on getting the singular vectors right.

Regardless, there is simple solution to our problem which does not involve a sin-

gular value decomposition. Let E = QR, F = WS be the QR factorizations of E,

and F . Then

FET EF T = WSRTQT QRST W T = WSRTRST W T

from which it follows, that

‖EF‖2
F = ‖(RT R)(STS)‖2

F .

We found that this expression is numerically reliable even when the true norm is very

small.

Let ỹ = vec(GHT), and consider the problem of calculation the inner product

x̃T ỹ. We have

x̃T ỹ = trace
(
(EF T)T GHT

)
= trace(FETGHT) = trace((ET G)(HT F))

and while this expression offers a computational shortcut, we already know it is

unreliable in the special case of E = G, and F = H . Is it possible to avoid this

problem? We have not been able to answer this question with any certainty, but such

an algorithm would immediately allow us compute an regular inner product xT y with

192

a small relative error regardless of x and y being nearly orthogonal. This follows from

the simple observation that if x̃ = vec(xe1)
T , and ỹ = vec(yeT

1), then

x̃T ỹ = trace(e1x
T yeT

1) = trace(xT yeT
1 e1) = xT y.

Now, regardless of the choice of the preconditioner M̃ it is critical, that the solution

ỹ of every linear system

M̃ ỹ = vec(EF T).

admits a sufficiently good approximation of the same form, i.e.

ỹ ≈ vec(GHT).

where G, and H are tall matrices. In addition we must be able to calculate G, and

H directly, i.e. without forming the vector ỹ explicitly. If this can not be done, then

we end up using O(n2) memory, which we can not afford.

This is a major difference between matrix equations and standard linear equa-

tions, where it suffices that My = g can be solved efficiently and M−1 is a good

approximation of A−1.

Now are there any preconditioners which will satisfy this extra condition? We can

precondition the original problem with another Lyapunov equation,

MX + XMT + Q = 0

and use (I⊗M +M ⊗I)−1 as an approximation to (I⊗A+A⊗I)−1. If M is a stable

matrix with a tightly clustered spectrum and an eigenbasis with is well conditioned

or if M is negative definite with λmax(M +MT) ≪ 0, then we know that X will have

a good low rank approximation as long as Q has low rank.

11.3 Preconditioners

In this section we consider different classes of preconditioners for Lyapunov equa-

tions in Kronecker product form.

193

Regardless of choice of the preconditioner M̃ it will be bijective linear map from

Rn2

into Rn2

. As a result we can not afford to form M̃ explicitly, because even the

sparsest matrix still requires at least one entry per row in order to be nonsingular. It

follows that many of the techniques used to preconditioning a standard linear systems

Ax = f

can not be applied in our case, because they would return a matrix with n2 nonzero

rows. In particular we can not apply the incomplete Cholesky, LU or QR factorization

regardless of the drop tolerance and the level of fill.

11.3.1 Preconditioners based on splittings of A

Every splitting of A = M − N introduces a splitting of Ã, into

Ã = M̃ − Ñ

where M̃ = I ⊗ M + M ⊗ I, and Ñ = I ⊗ N + N ⊗ I. Now consider M̃ as a

preconditioner for Ã. We would like the eigenvalues of M̃−1Ñ = I −M̃−1Ã contained

in a closed disk D(0, ρ) given by

D(0, ρ) = {z ∈ C : |z| ≤ ρ}

If λ ∈ σ(M̃−1Ñ) then there exists a nonzero matrix X such that

M̃−1Ñvec(X) = λvec(X)

or equivalently

(N − λM)X + X(N − λM)T = 0

It follows that in order to eliminate the possibility of |λ| ≥ ρ it suffices to ensure that

every Lyapunov equation of the form

(N − λM)X + X(N − λM)T = Q (11.1)

has a unique solution.

194

There is at least one case where this is can be done. If M is symmetric positive

definite and if N is symmetric, then M̃−1Ñ is similar to a symmetric matrix and λ

must be real. If N is bounded relative to M , i.e.

|xT Nx| ≤ ρ xT Mx

for all x ∈ Rn, then (N − λM) is stable for all λ > ρ and anti stable for all λ < −ρ.

It follows that equation (11.1) can not have a nontrivial solution for all |λ| > ρ, and

we deduce σ(I − M̃−1Ñ) ⊆ [−ρ, ρ].

11.3.2 Preconditioners based on structural simplification of A

In this subsection we consider preconditioners of the form

M̃ = I ⊗ M + M ⊗ I,

where M is any matrix, such that M̃ is nonsingular. We show that if

‖In2 − M̃−1Ã‖2

is sufficiently small, then A is a good approximation of M , in the sense that

‖M − A‖2

‖M‖2

is small. We also show that if

In2 − M̃−1Ã

has rank k < n, then M = A.

Let n denote the dimension of A and φA be given by Lyapunov operator given by

φA(X) = AX + XAT

for all real n by n matrices X.

Theorem 11.3.1 The map A → ‖φA‖F is a norm on the set of real n by n matrices.

195

Proof Let A be an n by n matrix and let α be a real number. We must show

‖φαA‖F = |α|‖φA‖F

Let X be any n by n matrix. Then

‖φαA(X)‖F = ‖αAX + X(αA)T‖F = |α|‖AX + XAT‖F = |α|‖φA(X)‖F

which implies, that

‖φαA‖F = |α|‖φA‖F .

Let A1, and A2 be n by n matrices. We must show that

‖φA1+A2
‖F ≤ ‖φA1

‖F + ‖φA2
‖F .

Let X be any n by n matrix. Then

φA1+A2
(X) = (A1 + A2)X + X(A1 + A2)

T

= (A1X + XAT
1) + (A2X + XAT

2) = φA1
(X) + φA2

(X)

which implies

‖φA1+A2
(X)‖F ≤ ‖φA1

(X)‖F + ‖φA2
(X)‖F

≤ ‖φA1
‖F‖X‖F + ‖φA2

‖F‖X‖F (11.2)

from which it follows, that

‖φA1+A2
‖F ≤ ‖φA1

‖F + ‖φA2
‖F

Finally, we must show that ‖φ(A)‖F = 0 implies A = 0. Let A be a matrix such that

‖φ(A)‖F = 0. Let X be any n by n matrix. Then

‖AX + XAT‖F = ‖φA(X)‖F ≤ ‖φA‖F‖X‖F = 0

which implies that

AX + XAT = 0,

196

for all n by n matrices X. In particular, for X = I,

A + AT = 0

It follows, that

AX = XA

for all matrices X, which implies A = αI for a suitable choice of α ∈ R. We claim that

α = 0 is the only possibility. However, A + AT = 0 implies 2αI = 0, or equivalently

α = 0.

The following theorem is an immediate corollary.

Theorem 11.3.2 There exists a pair of positive constants c1 and c2, such that

c1‖φA‖F ≤ ‖A‖2 ≤ c2‖φA‖F

for all real n by n matrices A.

We remark, that it is critical that we restrict ourselves to real matrices A, because

the complex matrix A = iI 6= 0 is such that

‖AX + XA∗‖F = 0

for all complex matrices X.

Now, if M is any real matrix such that M̃ = I ⊗M + M ⊗ I is nonsingular, then

‖M − A‖2

‖M‖2

≤ c2

c1

‖φM−A‖F

‖φM‖F

=
c2

c1

M̃ − Ã‖2

‖M̃‖2

≤ c2

c1

‖In2 − M̃−1Ã‖2

Hodel [24] showed that we may use c1 = 1
2
, but we have not been able to bound

c2 independent of n. However, we can still deduce that if M̃ is a sufficiently good

preconditioner for Ã, in the sense that

‖In2 − M̃−1Ã‖2

is sufficiently small, then A is a good approximation of M , in the sense that

‖M − A‖2

‖M‖2

is small. This indicates why we have not been able to find good preconditioners of

the type M̃ = I ⊗ M + M ⊗ I unless we choose M close to A.

197

Theorem 11.3.3 Let A be any n by n matrix and let k denote the rank of

Ã = I ⊗ A + A ⊗ I.

If k < n, then A = 0.

Proof Since M has rank k there exists a pair of n2 by k matrices U , and V , such

that Ã = UV T . We partition U , and V into n blocks consisting of n rows,

U =
[

UT
1 UT

2 . . . UT
n

]T

V =
[

V T
1 V T

2 . . . V T
n

]T

and

Ã =











Ã11 Ã12 . . . Ã1n

Ã21
. . . Ã2n

. . .
.

Ãn1 Ãn2 . . . Ãnn











Now consider an off-diagonal block Ãij , i 6= j. By definition

Ãij = ajiIn

where In is the n by n identity matrix. It is clear that Ãij has rank n if and only if

aji 6= 0. By assumption

Ãij = UiV
T
j

from which it follows that the block Mij has rank at most k < n. The only possibility

is aji = 0. We conclude that A is diagonal.

Now, in general the rank of Ã is determined by the spectrum of A, specifically

rank(M) = #{(i, j) : λi + λj 6= 0}

and since we have deduced that A is diagonal, the eigenvalues are the diagonal entries.

Now let r denote the number of nonzero diagonal entries of A. When we pair each of

198

these entries with itself or with one of the n − r zeros, we generate a nonzero entry

on the main diagonal of M . It follows, that

r(n − r + 1) ≤ k

Now, by assumption k < n, which implies

r(n − r + 1) < n, (11.3)

At this point we can immediately eliminate r = 1 and r = n. Let

r ∈ {2, 3, . . . , n − 1}.

Our goal is to derive a contradiction. By rearranging (11.3) and using r ≥ 2 we find

(r − 1)n < r2 − r < r2 − 1 = (r − 1)(r + 1),

from which it follows, that

n < r + 1 ≤ n

which is impossible. We are left with r = 0 as the only choice and we conclude A = 0.

Now suppose that we have chosen M , such that

I ⊗ M + M ⊗ I (11.4)

is nonsingular and

I2
n − (I ⊗ M + M ⊗ I)−1(I ⊗ A + A ⊗ I) (11.5)

has rank k. We claim that if k < n, then M = A. By assumption

(I ⊗ M + M ⊗ I) − (I ⊗ A + A ⊗ I) = (I ⊗ (M − A) + (M − A) ⊗ I) (11.6)

has rank k < n. By applying the previous theorem to M − A we conclude that

M = A.

199

We conclude that it is impossible to find a preconditioner M̃ for Ã of the form

M̃ = I ⊗ M + M ⊗ I

such that M̃ is nonsingular and

I2
n − (I ⊗ M + M ⊗ I)−1(I ⊗ A + A ⊗ I) (11.7)

has rank k < n, unless we pick M = A, which is of no interest.

This is another significant difference between Lyapunov equations and standard

linear equations. If A is almost block diagonal save for say k ≪ n nonzero entries,

then one could solve Ax = f using the main block diagonal D as preconditioner. This

scheme would be successful, because I − D−1A would have rank k ≪ n. However,

for Lyapunov equations we simply will not experience this phenomenon, and if we

converge after a few outer iterations, then it is not because

I2
n − (I ⊗ M + M ⊗ I)−1(I ⊗ A + A ⊗ I)

had low rank.

11.4 Conclusion

In this chapter we have seen that it is theoretically possible to precondition Lya-

punov equations in Kronecker product form using O(n) memory and time. We saw

that the compact representation developed in the previous chapter would not allow

preconditioning to take place, and we showed that the calculations could be carried

out using a set of specialized vectors x̃ ∈ Rn2

of the form x̃ = vec(EF T) were E and

F are tall matrices. It became apparent that any preconditioner M̃ must respect the

new format in the sense that the solution ỹ of the equation Mỹ = vec(EF T) should

admit a good low rank approximation ỹ ≈ vec(GHT) for every pair of tall matrices

E, F . In addition, we must be able to extract the low rank approximation without

using O(n2) memory. This is the fundamental difference between preconditioners for

200

standard linear systems and preconditioners for Lyapunov equations in Kronecker

product form.

We can not use a general nonsingular n2 by n2 matrix M̃ as preconditioner, because

we will run out of memory just trying to represent the map. Naturally, we considered

preconditioners M̃ which could be written in the form

M̃ = I ⊗ M + M ⊗ I

for a suitable matrix M . If M is negative definite matrix or if the eigenvalues of M

are clustered around a few points, then it is possible to solve

MX + XMT + EF T = 0

efficiently using either the Arnoldi method or one of the ADI methods, and a good

low rank approximation for the solution is readily available. We saw that if M̃

was a successful preconditioner in the sense that the number of outer iterations is

guaranteed to be small, then A is a good approximation of M . Now, if Lyapunov

equations with coefficient M can be solved quickly using either the Arnoldi method

or an ADI methods, then by continuity the same holds for Lyapunov equations with

coefficient matrix A. The cost of enabling preconditioning is high, because we must

regularly perform tall SVDs in order to keep memory consumption down.

201

12. The SPIKE algorithms

12.1 Introduction

The SPIKE algorithms are designed to solve narrow banded linear systems

Ax = f (12.1)

on parallel machines.

Narrow banded linear systems occur naturally in many different fields. There are

sparse matrices who can either be reordered into narrow banded form or who admit

a good narrow banded preconditioner after reordering.

Most numerical methods for Lyapunov equations rely on the solution of linear

systems. The best example is the ADI family of methods which require the solution

of linear systems with coefficient matrix A+pI for certain values of the shift parameter

p. It is difficult to automatically select a good preconditioner for A + pI, because

the properties of the matrix may depend non-trivially on p. However, if A can be

reordered as a narrow banded matrix, then the systems can be solved automatically

using, say, Gaussian elimination with partial pivoting.

The Arnoldi method, the API, our approximate subspace iteration with Ritz ac-

celeration and the AISAID algorithm all require the action of A on a vector or a

block of vectors. Frequently, A is not given explicitly, and the action of A can only

be computed by solving linear systems.

In this chapter we study the SPIKE algorithm for solving narrow banded lin-

ear systems. Our analysis has immediate implications for the overlapping partition

method (OPM). Finally, our analysis of these methods raised some questions re-

garding the nature of narrow banded linear systems and their solution on a parallel

machine.

202

We now turn to the SPIKE algorithms. The main idea was introduced by Sameh

and Kuck [53] who considered the tridiagonal case and Chen, Kuck and Sameh [8]

who studied the triangular case. Lawrie and Sameh [34] applied the algorithm to the

symmetric positive definite systems, while Dongarra and Sameh [10] considered the

strictly diagonally dominant case. Berry and Sameh [6] consider ideas central to the

SPIKE algorithms. Variations of the SPIKE algorithms for tridiagonal systems were

introduced by Sun, Zhang, and Ni [65], who also analyzed the truncation error for

tridiagonal systems, which are evenly diagonally dominant. The truncation error for

systems which are Toeplitz, tridiagonal, strictly diagonally dominant, and symmetric

or skew symmetric was considered by Sun [64]. Another variation of the SPIKE

algorithm for strictly diagonally dominant systems was studied by Larriba-Pey, Jorba

and Navarro [32].

A large part of the material presented here has been drawn from Mikkelsen and

Manguoglo [37], as well as Mikkelsen [36].

We assume for the sake of simplicity that the number of superdiagonals k equals

the number of subdiagonals and that the number of processors p divides the n. Let

the system be partitioned into the block diagonal form shown below

Ax =














A1 B1

C2 A2
. . .

. . .
. . .

. . .

. . .
. . . Bp−1

Cp Ap



























x1

x2

...

...

xp














=














f1

f2

...

...

fp














. (12.2)

where Ai, i = 1, 2, . . . p, is a banded matrix of order µ = n/p, and bandwidth (2k+1),

which is inherited from A, and

Bi =




0 0

Bi 0



 , and Ci+1 =




0 Ci+1

0 0



 i = 1, 2, . . . p − 1,

in which Bi and Ci+1 are lower and upper triangular matrices, respectively, each of

order k.

203

In this chapter we assume that the main block diagonal D

D = diag{A1, A2, . . . Ap} (12.3)

is nonsingular. This is a nontrivial assumption and it is entirely possible for a well

conditioned matrix to have a singular diagonal block. A specific example of a tridi-

agonal matrix A with this property is given by

A =

















1 0 0 0 0 0

1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 1

0 0 0 0 0 1

















, A−1 =

















1 0 0 0 0 0

−1 1 0 −1 1 −1

0 0 0 1 −1 1

1 −1 1 0 0 0

−1 1 −1 0 1 −1

0 0 0 0 0 1

















for which the infinity norm condition number is

κ∞(A) = ‖A‖∞‖A−1‖∞ = 15,

while the main block diagonal D corresponding to p = 2,

D = diag














1 0 0

1 1 1

0 1 1








,








1 1 0

1 1 1

0 0 1














is clearly a singular matrix of rank 4.

The explicit SPIKE algorithm applies to matrices for which the main block diag-

onal is nonsingular, while the truncated SPIKE algorithm applies to systems which

are strictly diagonally dominant by rows.

A matrix A = [aij] is diagonally dominant by rows if

∑

i6=j

|aij | ≤ |aii|, (12.4)

for all i. If the inequality is sharp, then A is strictly diagonally dominant by rows.

Our main contribution is the analysis of the truncated SPIKE algorithm. The

algorithm flows naturally from the explicit SPIKE algorithm.

204

12.2 The explicit SPIKE algorithm

The explicit SPIKE algorithm consists of four stages. Our presentation has been

adapted from Dongarra and Sameh [10] with minor changes to the notation. The

fundamental assumption is that the main diagonal blocks are nonsingular.

Stage 1 Compute the LU factorization

AiPi = LiUi, i = 1, 2, . . . p,

using Gaussian elimination with partial pivoting, one processor per factorization.

Here Li is unit lower triangular, Ui is a nonsingular upper triangular matrix, and Pi

is a permutation matrix.

Stage 2 If we premultiply both sides of (12.2) by D−1 we obtain a system Sx = g

of the form 












Iµ V 1

W 2 Iµ V 2

. . .
. . .

. . .

W p−1 Iµ V p−1

W p Iµ














,














x1

x2

...

xp−1

xp














=














g1

g2

...

gp−1

gp














(12.5)

where

V i =
[

Vi, 0
]

, and W i =
[

0, Wi

]

in which Vi and Wi are matrices with k columns given by

Vi = A−1
i




0

Bi



 , and Wi = A−1
i




Ci

0



 ,

and will in general be full. In other words, Vi, Wi, and gi are obtained by solving the

linear systems

LiUi

[

Vi, Wi, gi

]

=








0

Bi



 ,




Ci

0



 , fi



P−1
i , i = 1, 2, . . . p,

where C1 = 0, and Bp = 0.

205

Stage 3 Let the tall and narrow matrices Vi, and Wi be partitioned, in turn, as

follows

Vi =








V
(t)
i

V
(m)
i

V
(b)
i








, and Wi =








W
(t)
i

W
(m)
i

W
(b)
i








,

where the tips, i.e. the matrices V
(t)
i , V

(b)
i , W

(t)
i , and W

(b)
i are small k by k blocks.

The superscripts t, m, and b are abbreviations of the words top, middle, and bottom,

respectively. Let xi, and gi be partitioned conformally, i.e.

xi =








x
(t)
i

x
(m)
i

x
(b)
i








, and gi =








g
(t)
i

g
(m)
i

g
(b)
i








.

As an illustration we show the system (12.5) for p = 3, where ν = µ − 2k,


























Ik V
(t)
1

Iν V
(m)
1

Ik V
(b)
1

W
(t)
2 Ik V

(t)
2

W
(m)
2 Iν V

(m)
2

W
(b)
2 Ik V

(b)
2

W
(t)
3 Ik

W
(t)
3 Iν

W
(t)
3 Ik



















































x
(t)
1

x
(m)
1

x
(b)
1

x
(t)
2

x
(m)
2

x
(b)
2

x
(t)
3

x
(m)
3

x
(b)
3


























=


























g
(t)
1

g
(m)
1

g
(b)
1

g
(t)
2

g
(m)
2

g
(b)
2

g
(t)
3

g
(m)
3

g
(b)
3


























.

It is from these narrow block columns or spikes extending from the main diagonal

that the algorithm has derived its name. We will frequently refer to the Vi as the

superdiagonal spikes and to the Wi as the subdiagonal spikes, and call the matrix S

the SPIKE matrix.

206

Observe that the union of the k equations above and the k equations below the

p − 1 partition lines form an independent subsystem of order 2k(p − 1), which we

shall refer to as the “reduced” system Rxr = gr, which is of the form













E1 F1

G2 E2
. . .

. . .
. . .

. . .

. . .
. . . Fp−2

Gp−2 Ep−1
























xr,1

xr,2

...

xr,p−1











=











gr,1

gr,2

...

gr,p−1











, (12.6)

where

Ei =




Ik V

(b)
i

W
(t)
i+1 Ik



 , Fi =




0 0

0 V
(t)
i+1



 , and Gi =




W

(b)
i 0

0 0



 ,

and

xr,i =




x

(b)
i

x
(t)
i+1



 , and gr,i =




g

(b)
i

g
(t)
i+1



 .

The subscript r is an abbreviation of the word “reduced”.

Stage 4 Once the reduced system has been solved, processor i computes

zi = gi − W
(b)
i x

(b)
i−1 − V

(t)
i x

(t)
i+1,

where x0, and xp+1 are undefined and should be taken to zero in this equation. If the

calculations are carried out using exact arithmetic, then z is the solution of Ax = f .

Solving the reduced system is the only part of the algorithm which requires com-

munication. The reduced system is spread across the machine. The matrices V
(b)
1 ,

and g
(b)
1 are calculated by processor 1, the matrices V

(t)
i , V

(b)
i , W

(t)
i , W

(b)
i , g

(t)
i , and g

(b)
i

are calculated by processor i, for i = 2, 3, . . . , p− 1, while the matrices W
(t)
p , and g

(t)
p

are calculated by processor p.

Dongarra and Sameh [10] noted that if A is strictly diagonally dominant by rows,

then the SPIKE system and the reduced system are strictly diagonally dominant

207

by rows and they solved the reduced system using a parallel implementation of the

Jacobi iteration. In Theorem 12.4.1 we show that the SPIKE matrix and the reduced

system are strictly diagonally dominant by rows with a degree no less than A.

In general the reduced system is block tridiagonal. However, Polizzi and Sameh

[43] noted that the off-diagonal block are often negligible and can be dropped, yielding

a truncated reduced system Txtr = gr, which is block diagonal,













E1

E2

. . .

. . .

Ep−1
























xtr,1

xtr,2

...

xtr,p−1











=











gr,1

gr,2

...

gr,p−1











. (12.7)

The subscript tr is an abbreviation of the words “truncated” and “reduced”. We will

establish a tight upper bound on the size of the off-diagonal blocks in Section 12.4.2.

We have made some large drawings of the partitioning and the systems relevant

to the SPIKE algorithms, see Appendix B.

Special attention has been given to matrices which are diagonally dominant. A

tridiagonal matrix is A given by










a1 b1

c2
. . .

. . .

. . . bn−1

cn an











is said to be evenly diagonally dominant, if

1

2
|ai| ≥ max

i
{|ci|, |bi|},

where c1 and bn are undefined and should be treated as zero, and

bici+1 6= 0, i = 1, 2, . . . , n − 1.

Sun, Zhang, and Ni [65] gave an upper bound on the truncation error for tridiagonal

matrices which are evenly diagonally dominant. Sun [64] considered the case of tridi-

agonal Toeplitz matrices, which are strictly diagonally dominant as well as symmetric

208

or anti symmetric. Larriba-Pey, Jorba and Navarro [32] established an upper bound

on the decay rate of the spikes in the case of a general banded matrix which is strictly

diagonally dominant by rows. In Theorem 12.4.3 we establish a tight upper bound

on the size of the off-diagonal blocks in terms of the degree of diagonal dominance of

the original matrix and the size of the partitions.

Polizzi and Sameh [44] showed that it is possible to assemble the truncated reduced

system directly without computing the entire matrix S. The key is to exploit the

special structure of the right-hand sides. Let A denote one of the diagonal blocks

and consider the problem of computing the bottom V(b) of the corresponding spike

V, given by

AV =




0

B



 ,

where B is k by k dense matrix. It is not important here that B is also lower trian-

gular. We can exploit the remaining structure as follows. Let A = LU be the LU

factorization of A. First we solve

LY =




0

B



 .

Partition L and Y conformally with the right-hand side,




L11 0

L21 L22








Y1

Y2



 =




0

B



 ,

where L22 is a k by k lower unit triangular matrix. Since L11Y1 = 0 we have Y1 = 0,

and the problem reduces to solving L22Y2 = B. Then we solve UV = Y . Partition U

and V conformally with the Y and the original right-hand side,




U11 U12

0 U22








V1

V2



 =




Y1

Y2



 .

Since U is upper triangular we can extract the bottom, V(b) = V2 = U−1
22 Y2, without

computing the rest of the spikes, i.e. the matrix V1. Similarly, it is possible to use

209

the UL factorization of a diagonal block to extract the top of the corresponding

subdiagonal spike without computing the entire spike.

The original equation is equivalent to

Aix = fi − Cixi−1 − Bixi+1, i = 1, 2, . . . p, (12.8)

where C1, Bp+1, x0 and xp+1 are undefined and should be taken to zero in this

equation.

These observations led to the truncated SPIKE algorithm, which is due to Polizzi

and Sameh [43].

12.3 The truncated SPIKE algorithm

We assume that the matrix A is strictly diagonally dominant by rows. This implies

that the diagonal blocks are nonsingular, and they have an LU factorization. The

algorithm consist of four stages.

Stage 1 Processor i computes the LU/UL factorizations

Ai = LiUi and Ai = U ′
iL

′
i,

for i = 1, 2, . . . p.

Stage 2 Processor i solves

Aigi = fi, i = 1, 2, . . . p,

using the LU factorization. Processor i computes V
(b)
i using (Li, Ui), i = 1, 2, . . . p−1.

Processor i computes W
(t)
i using (U ′

i , L
′
i) , i = 2, 3 . . . p.

Stage 3 Processor i + 1 sends W
(t)
i+1, and g

(t)
i+1 to processor i, i = 1, 2, . . . p − 1.

Processor i solves one block of the truncated reduced system, specifically



Ik V

(b)
i

W
(t)
i+1 Ik








x

(b)
i

x
(t)
i+1



 =




g

(b)
i

g
(t)
i+1



 , i = 1, 2, . . . p − 1.

210

Theorem 12.4.1 shows that the truncated reduced system is diagonally dominant by

rows with a degree no less than the original matrix, so Gaussian elimination without

pivoting is the obvious choice here.

Stage 4 Processor i send x
(b)
i to processor i + 1, i = 1, 2, . . . p − 1. Then processor

i solves

Aiyi = fi − Cix
(b)
i−1 − Bix

(t)
i+1,

using the LU factorization, where C1, Bp, x
(b)
0 , and x

(t)
p+1 are undefined and should be

taken to zero in this equation. The vector y is an approximation of the solution to

Ax = f .

In their experiments, Polizzi and Sameh [44] found that stage 1 and 2 of the

truncated SPIKE algorithm requires much less time than stage 1 and 2 of the explicit

SPIKE algorithm. This is true on machines where arithmetic operations require much

less time than memory references. The primary reason is that the LU/UL strategy has

greater data locality, computing the spikes is a BLAS 2 operation, while computing

the LU/UL factorizations is a BLAS 3 operation.

12.4 The matrices S, R, and T

If A is nonsingular and diagonally dominant by rows, then the diagonal entries

are non-zero and the (row-wise) dominance factor [13] ǫ is defined as follows

ǫ = max
i

{∑

i6=j |aij|
|aii|

}

. (12.9)

If ǫ > 0 then the degree of (row-wise) diagonal dominance d is given by

d = ǫ−1. (12.10)

The degree of diagonal dominance is central to the analysis of the truncated SPIKE

algorithm. In this section we prove that the matrices S, R, and T in (12.5), (12.6),

and (12.7) are strictly diagonally dominant by rows with degree no less than the

211

original matrix A, and we establish an upper bound on their condition number. We

bound the truncation error, i.e. the difference between R and T , and show that all

our bounds are tight.

Lemma 12.4.1 Let n ≤ m and let A be any n by m matrix which is strictly diag-

onally dominant by rows with degree d > 1. Let A = LU be the LU factorization

which is obtained by applying Gaussian elimination without pivoting to A. Then U is

strictly diagonally dominant by rows with degree no less than d.

Proof Gaussian elimination produces a chain of matrices A(j), where the first j − 1

columns of A(j) are lower triangular, A = A(1) and A(n) = U . Due to the recursive

nature of Gaussian elimination it suffices to consider the transition from A = A(1) to

B = A(2). Let B = [bij]. We must show the following equalities

|bkk| ≥ d
∑

j 6∈{1,k}
|bk,j|, k = 2, 3, . . . , n

Now, since d ≥ 1 and |a11| ≥ d
∑n

j=2 |a1j | we have

|akk| ≥ d
∑

j 6=k

|akj| ≥ |ak1| + d
∑

j 6∈{1,k}
|akj|

≥ |ak1|
d
∑n

j=2 |a1j |
|a11|

+ d
∑

j 6∈{1,k}
|akj|

≥ |ak1|
|a1k|
|a11|

+ d
∑

j 6∈{1,k}

(

|akj| +
|ak1|
|a11|

|a1j|
)

.

Now, since

bij = aij −
ai1

a11
a1j , i, j = 2, 3, . . . , n,

the previous inequality implies

|bkk| ≥ |akk| −
|ak1|
|a11|

|a1k| ≥ d
∑

j 6∈{1,k}

(

|akj| +
|ak1|
|a11|

|a1j |
)

≥ d
∑

j 6∈{1,k}
|bkj|.

212

Corollary 12.4.1 Let A be an n by n matrix, and let F be an n by m matrix. If the

matrix
[

A, F
]

is strictly diagonally dominant by rows with degree d, then the matrix
[

I, A−1F
]

is strictly diagonally dominant by rows with degree no less than d.

Proof Let ǫ = d−1. We use Gaussian elimination with no pivoting to reduce the n

by n + m matrix
[

A, F
]

to upper triangular form, U = [uij]. By Lemma 12.4.1, U

is strictly diagonally dominant by rows with degree no less than d, and using back

substitution we have a formula for the entries gij of the n by m matrix G = A−1F ,

namely

gn−t,j =
1

un−t,n−t

(

un−t,n+j −
n∑

s=n−t+1

un−t,sgs,j

)

for j = 1, 2, . . .m and t = 0, 1, 2 . . . n − 1. Let Ω ⊂ {0, 1, . . . n − 1} be given by

t ∈ Ω ⇔
m∑

j=1

|gn−t,j| ≤ ǫ.

We will prove that Ω = {0, 1, . . . n − 1}. First, 0 ∈ Ω by the diagonal dominance of

U , and if {0, 1, 2, . . . t − 1} ⊂ Ω with t < n, then

m∑

j=1

|gn−t,j| ≤
1

|un−t,n−t|

m∑

j=1

(

|un−t,n+j| +
n∑

s=n−t+1

|un−t,s||gs,j|
)

=
1

|un−t,n−t|

(
m∑

j=1

|un−t,n+j| +
n∑

s=n−t+1

|un−t,s|
m∑

j=1

|gs,j|
)

≤ 1

|un−t,n−t|

(
m∑

j=1

|un−t,n+j| +
n∑

s=n−t+1

|un−t,s|ǫ
)

≤ ǫ

which implies t ∈ Ω. Therefore, Ω = {0, 1, 2 . . . n − 1} and the proof is complete.

Theorem 12.4.1 Let A be strictly diagonally dominant by rows with degree d. Then

the matrices S, R, and T are strictly diagonally dominant by rows with degree no less

than d, specifically

d ≤ d(S) ≤ d(R) ≤ d(T)

with equality possible. In addition the condition numbers share a common bound,

namely

max{ κ∞(S), κ∞(R), κ∞(T)} ≤ d + 1

d − 1
,

213

with the possibility of

κ∞(S) = κ∞(R) = κ∞(T) =
d + 1

d − 1
.

Proof If S is strictly diagonally dominant by rows, then it is clear that T , and R are

strictly diagonally dominant by rows and d(T) ≥ d(R) ≥ d(S). By applying Lemma

12.4.1 to the matrices
[

Ai, Fi

]

, where

F1 =




0

B1



 , Fi =








0

Bi



 ,




Ci

0







 , i = 2, . . . p − 1, and Fp =




Cp

0



 ,

we see that S is strictly diagonally dominant by rows with degree no less than d. We

estimate the condition number as follows. Since Sii = 1, we have ‖S − I‖∞ ≤ ǫ < 1,

which allows us to treat S as a small perturbation of the identity matrix and estimate

‖S−1‖∞ ≤ 1

1 − ǫ
,

which implies

κ∞(S) ≤ 1 + ǫ

1 − ǫ
=

d + 1

d − 1
,

and similarly for R, and T .

It remains to be seen that our bounds are tight. To this end, we consider a special

matrix A given by

A =











Iµ B1

C2
. . .

. . .

. . .
. . . Bp−1

Cp Iµ











,

where the off-diagonal blocks are given by

Bi =




0 0

ǫJk 0



 , and Ci+1 =




0 ǫJk

0 0



 , i = 1, 2, . . . p − 1,

where Jk is the k by k anti diagonal identity matrix,

(Jk)ij =







1 i = k − j + 1

0 i 6= k − j + 1

214

and ǫ ∈ (0, 1). The matrix A is strictly diagonally dominant with degree d = ǫ−1.

The upper and the lower bandwidths are equal to k. The main block diagonal is equal

to the identity matrix, which implies A = S. The reduced system is block diagonal,

which implies T = R. It follows that

d(T) = d(R) = d(S) = d.

Computing S−1 reduces to inverting the 2 by 2 matrix [1 ǫ
ǫ 1]. Direct computation

establishes that

κ∞(T) = κ∞(R) = κ∞(S) =
1 + ǫ

1 − ǫ
=

d + 1

d − 1
.

12.4.1 The truncation error

We now study the truncation error, i.e. ‖R − T‖∞. Let A denote one of the

diagonal blocks of A, and let V be the corresponding superdiagonal spike given by

AV =




0

B



 .

We are especially interested in the size of the elements in the top of the spike, i.e. the

submatrix V(t), which is given by

V(t) = V(1 : k, 1 : k).

There is no loss of generality in limiting the analysis to the first diagonal block,

rather there is a slight notational advantage, because the numbering of elements of

A and A coincide. We will use µ to denote the size of the first diagonal block.

We begin by estimating the size of the elements located in the bottom of V, i.e.

the submatrix V(b) given by

V(b) = V(µ − k + 1 : µ, 1 : k).

215

Lemma 12.4.2 Let A be strictly diagonally dominant by rows with degree d. Let V
be a superdiagonal spike. Then the submatrix V(b) satisfies

‖V(b)‖∞ ≤ ǫ,

where ǫ = d−1.

Proof Reduce the first µ by n block row to upper triangular form U . Since Gaussian

elimination with no pivoting preserves the upper bandwidth and does not decrease

the degree of diagonal dominance, we have the following set of inequalities

k∑

j=1

|uµ−t,µ−t+j | ≤ ǫ|uµ−t,µ−t|, t = 0, 1, . . . k − 1. (12.11)

Our goal is to show that ‖V(b)‖∞ ≤ ǫ or equivalently

k∑

j=1

|vµ−t,j| ≤ ǫ, t = 0, 1, . . . k − 1. (12.12)

To this end we define the set Ω ⊂ {0, 1, 2, . . . , k − 1} by

t ∈ Ω ⇔
k∑

j=1

|vn−t,j| ≤ ǫ.

We claim that Ω =⊂ {0, 1, 2, . . . , k − 1}. Clearly 0 ∈ Ω, because

k∑

j=1

|uµ,µ+j| ≤ ǫ|uµ,µ|, and vµ,j =
uµ,µ+j

uµ,µ
, j = 1, 2, . . . k.

Now, suppose {0, 1, 2, . . . t − 1} ⊂ Ω with t < k. We wish to show that t ∈ Ω. By

back substitution we find that

vµ−t,j =
1

uµ−t,µ−t

(

uµ−t,µ+j −
t∑

s=1

uµ−t,µ−t+svµ−t+s,j

)

, j = 1, 2, . . . k − t,

and

vµ−t,j = − 1

uµ−t,µ−t

t∑

s=1

uµ−t,µ−t+svµ−t+s,j, j = k − t + 1, . . . k.

216

It follows that

k∑

j=1

|vµ−t,j| ≤
1

|uµ−t,µ−t|

(
k−t∑

j=1

|uµ−t,µ+j| +
k∑

j=1

t∑

s=1

|uµ−t,µ−t+svµ−t+s,j |
)

=
1

|uµ−t,µ−t|

(
k−t∑

j=1

|uµ−t,µ+j | +
t∑

s=1

|uµ−t,µ−t+s|
k∑

j=1

|vµ−t+s,j|
)

≤ 1

|uµ−t,µ−t|

(
k−t∑

j=1

|uµ−t,µ+j| + ǫ
t∑

s=1

|uµ−t,µ−t+s|
)

≤ 1

|uµ−t,µ−t|
k∑

j=1

|uµ−t,µ−t+j | ≤ ǫ,

which implies t ∈ Ω. It follows that Ω = {0, 1, 2, . . . k − 1} and ‖V(b)‖∞ ≤ ǫ.

We continue with the following lemma which relates the size of elements in a

specific row of V to the infinity norm of the k by k submatrix which lies directly

below the row.

Lemma 12.4.3 Let µ denote the dimension of the diagonal block A and let i ≥ µ−k.

Then,
k∑

j=1

|vi,j| ≤ ǫ‖V(i + 1 : i + k, 1 : k)‖∞.

Proof We have

V = A−1




0

B





for the appropriate k by k matrix B. We use Gaussian elimination with no pivoting

to reduce the matrix 

A,




0

B









to upper triangular form U = [uij]. By Lemma 12.4.1 U is strictly diagonally domi-

nant by rows with degree no less than d. Since the original matrix A was banded and

no pivoting was applied, it follows that uij = 0 for all i and j such that j > µ and

i ≥ µ − k. It follows by back substitution that

vi,j = − 1

ui,i

i+k∑

s=i+1

ui,svs,j,

217

which implies
k∑

j=1

|vi,j| ≤
1

|ui,i|

i+k∑

s=i+1

|ui,s|
k∑

j=1

|vs,j|.

By definition

max
s=i+1,...i+k

k∑

j=1

|vs,j| = ‖V(i + 1 : i + k, 1 : k)‖∞,

and since U is strictly diagonally dominant by rows with degree no less than d, we

have
1

|ui,i|

i+k∑

s=i+1

|ui,s| ≤ ǫ,

which completes the proof.

The following corollary is an immediate consequence.

Corollary 12.4.2 Let V ′ and V ′′ be two k by k submatrices of the superdiagonal spike

V, such that V ′ lies directly on top of V ′′. Then

‖V ′‖∞ ≤ ǫ‖V ′′‖∞.

This corollary establishes a chain of inequalities leading from the bottom of the

top of the spike which together with Lemma 12.4.2 implies the following theorem

Theorem 12.4.2 Let d denote the degree of diagonal dominance of A, let µ denote

the dimension of one of the diagonal blocks, and q = ⌊µ/k⌋. The elements in the top

of the corresponding superdiagonal spike V satisfy the inequality

‖V(t)‖∞ ≤ ǫq.

Is this estimate for the decay rate of the spikes tight or not? Consider the upper

triangular matrix A given by

aij =







1 for i = j,

ǫ for i = j − k,

0 otherwise.

218

Now consider a partition of a certain size µ. Write µ = qk + r, where q = ⌊µ/k⌋
and the remainder r satisfies 0 ≤ r < k. By back substitution we find that the

corresponding spike is given by

V =











Vq+1

Vq

...

V1











,

where

Vj = (−1)j−1ǫjIk for j = 1, 2, . . . , q,

and Vq+1 = (−1)qǫq+1Er, where Ik is the k by k identity matrix and Er consists of

the last r rows of Ik. Regardless of the value of the remainder r, we have,

‖V(t)‖∞ = ǫq.

In short, if we limit ourselves to matrices A which are strictly diagonally dominant

with degree d and upper bandwidth k, i.e.,

max{j − i : aij 6= 0} = k,

then the estimate given in Theorem 12.4.2 is tight.

The following theorem is an immediate consequence of Theorem 12.4.2.

Theorem 12.4.3 Let A be an n by n matrix which is narrow banded matrix with

upper and lower bandwidth k, and strictly diagonally dominant by rows with degree d.

Then the truncation error satisfies

‖R − T‖∞ ≤ max
i=1,...p

d−qi,

where qi = ⌊µi/k⌋ where µi is the size of the ith partition and k is its bandwidth.

A better bound exists in the special case in which A is a tridiagonal, evenly

diagonally dominant matrix [65] or when A is a tridiagonal Toeplitz matrix, which is

strictly diagonally dominant, as well as symmetric or anti symmetric.

219

What are the consequences of replacing the reduced system with the truncated

reduced system? We have the following theorem.

Theorem 12.4.4 Let A be an n by n matrix which is narrow banded with upper and

lower bandwidth k, and strictly diagonally dominant by rows with degree d. Let y

be the approximate solution of Ax = f , returned by the truncated SPIKE algorithm.

Then y is the exact solution of

AT x = f, (12.13)

where AT satisfies the inequality

‖A − AT‖∞ ≤ max
i=1,...p

d−qi‖A‖∞, (12.14)

where qi = ⌊µi/k⌋, where µi is the size of the ith partition.

Proof Let ST denote the matrix obtained by eliminating the tips of the spikes from

the spike matrix S. Then the reduced system matrix for ST is equal to T . The

truncation error effectively replaces A with the matrix AT = DST for which we have

‖A − AT‖∞ ≤ ‖D‖∞‖S − ST‖∞ ≤ ‖A‖∞‖R − T‖∞ ≤ max
i=1,...p

d−qi‖A‖∞. (12.15)

In short, the effect of the truncation error is to introduce a small norm-wise relative

backward error which is bounded by max
i=1,...p

d−qi.

We have already seen that the estimate of Theorem 12.4.3 is tight, but which

matrices exhibit the slowest possible decay rate? We can answer this question for

tridiagonal matrices.

Theorem 12.4.5 Let {(ai, bi, ci)}n
i=1 be a finite sequence, such that ai 6= 0, and

max
i=1,...,n

|bi| + |ci|
|ai|

= ǫ < 1.

220

If the vector x given by










x1

x2

...

xn











=











a1 b1

c2
. . .

. . .

. . . bn−1

cn an











−1 









0
...

0

bn











,

exhibits the smallest possible decay rate, i.e. if

|x1| = ǫn, (12.16)

then

ci = 0, and |bi| = ǫ|ai|, (12.17)

for i = 1, 2, . . . n.

Proof We prove the theorem using Gaussian elimination without pivoting, i.e. the

Thomas algorithm [63], which is designed to solve tridiagonal systems of the form

cixi−1 + aixi + bixi+1 = fi, i = 1, 2, . . . , n,

where x0, and xn+1 are given in advance. If the strictly diagonally dominant system

has degree d = ǫ−1 > 1, then the solution can be computed as follows

xi = pixi+1 + qi, i = 1, . . . , n,

where the coefficient pi and qi are given by

p0 = 0, pi =
−bi

ai + cipi−1

, i = 1, 2, . . . , n,

and

q0 = x0, qi =
fi − ciqi−1

ai + cipi−1

, i = 1, 2, . . . , n.

We claim that |pi| ≤ ǫ, for i = 0, 1, 2, . . . , n. If bi = 0, then pi = 0, and there is

nothing to show. Assuming |pi−1| ≤ ǫ < 1, and bi 6= 0, we have

|pi| ≤
|bi|

|ai + cipi−1|
≤ |bi|

|ai| − |ci|ǫ

≤ |bi|
ǫ−1(||bi| + |ci|) − |ci|ǫ

=
|bi|

ǫ−1|bi| + (ǫ−1 − ǫ)|ci|
. (12.18)

221

Now with ǫ ≤ 1, we have (ǫ−1 − ǫ)|ci| ≥ 0, which implies |pi| ≤ ǫ.

In our case x0 = xn+1 = 0, and fi = 0 for i = 1, 2, . . . , n − 1, while fn = bn. It

follows that

qi = 0, i = 0, 1, 2, . . . , n − 1,

while

qn =
bn

an + cnpn−1

, and |qn| ≤ ǫ.

It follows that

xn = qn, xi =
(
Πn−1

j=i pi

)
qn,

which implies that

|xi| ≤ ǫn−i+1.

Now suppose |x1| assumes the largest possible value, namely

|x1| = ǫn,

then we must have

|pi| = ǫ, i = 1, 2, . . . , n − 1, and |qn| = ǫ.

Now, we claim that this can only happen if ci = 0, for i = 1, 2, . . . , n. Using the same

reasoning as in (12.18), we see that we actually have

ǫ =

∣
∣
∣
∣

bi

ai + cipi−1

∣
∣
∣
∣
≤ |bi|

|ai| − |ci|ǫ
≤ ǫ,

for i = 1, 2, . . . , n − 1, as well as i = n. It follows, that

ǫ2|ci| = ǫ|ai| − |bi|.

However, ǫ|ai| ≥ |bi| + |ci|, leaving us with

ǫ2|ci| = ǫ|ai| − |bi| ≥ |ci|,

from which we deduce |ci| = 0, because ǫ < 1.

In short, if a tridiagonal matrix, which is also strictly diagonally dominant by

rows, exhibits the slowest possible decay rate, then it is actually bidiagonal and the

ratio |bi|/|ai| is fixed. In our experience the spikes always decay much faster than the

worst case.

222

12.4.2 The general case

The truncated SPIKE algorithm was developed for matrices which are strictly

diagonally dominant by rows, but it can also be applied to matrices for which the

diagonal blocks are well conditioned. In this section we examine the decay of the

spikes in this more general setting, and explain why it is difficult to obtain estimates

which are tight.

Demko, Moss and Smith [9] considered the decay rate of the entries of the inverse of

band matrices. Given a nonsingular matrix A, they showed the existence of constants

C > 0 and λ ∈ (0, 1), such that

|A−1(i, j)| ≤ Cλ|i−j| (12.19)

for all i and j. They gave elementary formulae for C and λ in terms of the smallest

interval containing the singular values for A and the half bandwidth k. They showed

that if A is narrow banded and well conditioned, then λ will be small and if the

smallest singular value of A is not too small, then C will not be too large.

We can use an estimate of this type, i.e. (12.19), to bound the truncation error.

Theorem 12.4.6 Let ni denote the size of the i’th diagonal block. Assume ni > 2k

and that constants Ci > 0 and λi ∈ (0, 1) have been found such that an estimate of

the type (12.19) is satisfied for every diagonal block Ai, then the difference between

the truncated reduced system and the reduced system can be estimated by

‖T − R‖1 ≤ max
i

{

Ciβiλ
ni−2k+1

(
1 − λk

i

1 − λi

)2
}

, (12.20)

where βi must dominate every element on the i’th block row of A, which is not on the

block diagonal of A.

Thus if the Ci are not too large, the λi are not too close to 1 and if the block sizes

ni are not too small, then the truncated reduced system will be a good approximation

to the reduced system.

223

Proof The proof is elementary and is included only for the sake of completeness.

Let A be one the the diagonal blocks A1, A2, . . . Ap−1 and let µ denote the dimen-

sion of A. Consider the corresponding super diagonal spike

V = A−1




0

B



 ,

where B = [bij] is a lower triangular k by k matrix. By assumption constants C > 0,

and λ ∈ (0, 1) have been found, such that

|A−1(i, j)| ≤ Cλ|i−j|,

for i, j = 1, 2, . . . µ. The task at hand is to compute an upper bound for the norm of

the very top of the spike, i.e. the square matrix

V(1 : k, 1 : k),

in terms of C, and λ. Now, since B is lower triangular, we have

V(:, t) =
k−t∑

j=0

bµ−j,tA−1eµ−j , t = 1, 2 . . . k.

Let β = max |bij|. Then the entry Vit is bounded by

|Vit| ≤ Cβ

k−t∑

j=0

λ|i−(µ−j)|.

If µ ≥ 2k − 1 then

|i − (µ − j)| = µ − (i + j), i = 1, 2, . . . k, j = 0, 1, . . . k − 1,

and we can estimate further that

|Vit| ≤ Cβ
k−t∑

j=0

λµ−i−j = Cβλµ−i−(k−t)
k−t∑

j=0

λk−t−j = Cβλµ−i−k+t1 − λk−t+1

1 − λ
,

from which it follows that

k∑

i=1

|Vit| ≤ Cβ
1 − λk−t+1

1 − λ

k∑

i=1

λµ−i−k+t ≤ Cβ
1 − λk−t+1

1 − λ
λµ−2k+t

k∑

i=1

λk−i

= Cβ
1 − λk−t+1

1 − λ
λµ−2k+t 1 − λk

1 − λ
.

224

Thus,

‖V(1 : k, 1 : k)‖1 ≤ Cβλµ−2k+1

(
1 − λk

1 − λ

)2

,

provided that µ ≥ 2k−1. It is clear that a similar estimate holds for the spikes below

the diagonal, which completes the proof.

Is it possible to derive a tight estimate on the decay rate of the spikes in the general

case? The spikes are the solutions to some very special linear equations, where both

the coefficient matrices and the right-hand sides are drawn from specific positions

within the original matrix A. When A is diagonally dominant there is a very close

relationship between the diagonal blocks and the corresponding off-diagonal blocks

and we are able to exploit this relationship, when we estimate the norm of the bottom

of a superdiagonal spike as well as the decay rate of the spikes. In the general case,

there is no clear connection between the diagonal and the off-diagonal blocks, and

it is even possible to have a well conditioned narrow banded matrix with a singular

diagonal block. Diagonal dominance is a global property which ties the individual

blocks together and this connection is lost in the general case. It is an open question

if there are other classes of matrices for which it is possible to derive a tight bound

on the decay rate.

12.4.3 The roundoff errors

In this section we consider an error analysis of the truncated SPIKE algorithm

for systems which are strictly diagonally dominant by rows. We begin by deriving a

few results on Gaussian elimination for systems which are diagonally dominant with

degree d > 1, before turning to the truncated SPIKE algorithm.

A matrix which is diagonally dominant by rows with degree d > 1 need not be

well conditioned, but it is only a row scaling away from being well conditioned with

respect to the infinity norm. We now assume that the original problem has been

225

scaled such that aii = 1. Such a scaling preserves the degree of diagonal dominance,

and it allows us to estimate

‖Ai‖∞ ≤ 1 + d−1, ‖A−1
i ‖∞ ≤ 1

1 − d−1
, and κ∞(Ai) ≤

d + 1

d − 1
.

Let u denote the unit roundoff error on the machine, and following Higham [21],

we define

γj =
ju

1 − ju
, (12.21)

when ju < 1. If A is any matrix, then B = |A| is the matrix given by bij = |aij |. If

A, B are matrices of the same dimension, then we write A ≤ B, if aij ≤ bij for all i

and j.

If A is a banded matrix with bandwidth 2k + 1, which is diagonally dominant by

rows, and if Ax = f is solved using Gaussian elimination, then the computed solution

x̂ satisfies

(A + ∆A)x̂ = f, |∆A| ≤ γ3k+2|L̂||Û |,

where L̂ and Û are the computed LU factors.

Now, how large is ‖∆A‖∞? If A is any n by n matrix and if A = LU is the exact

LU-factorization, then

|L||U | = |AU−1||U | ≤ |A||U−1||U |.

If U is diagonally dominant (d = 1), then by Lemma 8.8 [21]

‖|U−1||U |‖∞ ≤ (2n − 1). (12.22)

This estimate is tight, as the following example shows.

Example 12.4.1 Let U be the n by n bidiagonal Toeplitz matrix which has 1 on the

main diagonal and −1 on the first superdiagonal,

U =











1 −1
. . .

. . .

. . . −1

1











, and U−1 =











1 1
. . .

...
. . .

...

1











.

226

It is clear that U is diagonally dominant and

|U ||U−1| =











1 2 . . . 2
. . .

. . .
...

. . . 2

1











,

which implies that ‖|U ||U−1|‖∞ = 2n − 1.

However, if A is strictly diagonally dominant by rows with degree d > 1 then a

better estimate may exist. By Theorem 12.4.1 U is strictly diagonally dominant with

degree no less d. Write U = DV , where D is the main diagonal of U , then

|U−1||U | = |V −1D−1||DV | = |V −1||V |.

Now, since V = [vij] has vii = 1 and is strictly diagonally dominant with the same

degree as U , we have

‖I − V ‖∞ ≤ d−1 < 1,

which allows us to write

V −1 =

∞∑

j=0

(I − V)j

and estimate

‖V −1‖∞ ≤ 1

1 − d−1

as well as ‖V ‖∞ ≤ 1 + d−1. It follows, that

‖|U−1||U |‖∞ = ‖|V −1||V |‖∞ ≤ d + 1

d − 1
. (12.23)

The general bound (12.22) is superior when d < d0 = n
n−1

and the specialized bound

(12.23) is superior when d > d0.

It is important to realize that neither (12.22) nor (12.23) need apply to the com-

puted LU factorization, because while L̂Û is the exact LU factorization of the matrix

A + ∆A, this matrix need no be diagonally dominant! However, since L̂ → L, and

Û → U as the unit roundoff u → 0, we see that if d > 1, then A + ∆A will be

227

diagonally dominant by rows with degree close to d, when u is sufficiently small, and

then we may estimate

‖∆A‖ ≤ γ3k+2‖|L̂||Û |‖∞ . γ3k+2
d + 1

d − 1
‖A‖∞.

In the following we assume that we may estimate

‖∆A‖ ≤ γ3k+2
d + 1

d − 1
‖A‖∞.

Now, what can be said about the solution X̂ to the equation AX = F where X

and F have, say, m columns? We have

(A + ∆Aj)x̂j = fj , |∆Aj | ≤ γ3k+2|L̂||Û |, j = 1, 2, . . .m,

where the perturbations ∆Aj depend on j, but share a common bound which is

independent of j. Now, if the unit roundoff error is sufficiently small, specifically if

α = γ3k+2

(
d + 1

d − 1

)2

< 1, (12.24)

then A−1∆Aj and ∆AjA
−1 are both invertible and we may write

x̂j =

∞∑

i=0

(
−A−1∆Aj

)i
xj = A−1

∞∑

i=0

(
−(∆Aj)A

−1
)i

fj,

from which is follows immediately, that

|x̂j − xj | ≤ E1|xj |, E1 =
∞∑

i=1

(γ3k+2|A−1||L̂||Û |)i,

|Ax̂j − fj | ≤ E2|fj|, E2 =

∞∑

i=1

(γ3k+2|L̂||Û ||A−1|)i,

which implies

|X̂ − X| ≤ E1|X|, and |AX̂ − F | ≤ E2|F |.

The two operators, E1 and E2, share a common bound, namely

‖E1‖∞ ≤ α

1 − α
, and ‖E2‖∞ ≤ α

1 − α
,

228

where α is defined by (12.24). It follows that,

‖X̂ − X‖∞ ≤ α

1 − α
‖X‖∞, and ‖AX̂ − F‖∞ ≤ α

1 − α
‖F‖∞. (12.25)

Stage 1 Each matrix Ai has dimension µ and it is diagonally dominant by rows.

The computed LU factorization satisfies

Ai + ∆Ai = L̂iÛi, |∆Ai| ≤ γk+1|L̂i||Ûi|.

where

‖|L̂i||Ûi|‖∞ .
d + 1

d − 1
‖Ai‖∞,

provided that the unit roundoff error u is sufficiently small. We have the same type

of estimate for the computed UL factorizations.

Stage 2 In the truncated SPIKE algorithm, we do not compute the entire SPIKE

matrix, but stop substituting, as soon as the truncated reduced system matrix has

been computed. However, in order to estimate the error, it is convenient to consider

the computation of the entire SPIKE matrix S.

By applying (12.25) repeatedly to the individual block rows we find

‖Ŝ − S‖∞ ≤ 2α

1 − α
‖S − I‖∞, ‖DŜ − A‖∞ ≤ 2α

1 − α
‖A − D‖∞

The extra factor of 2 is introduced, because we have to treat the superdiagonal and

the subdiagonal spikes separately.

Similarly we find for the computation of the modified right-hand side that

‖ĝ − g‖∞ ≤ α

1 − α
‖g‖∞, and ‖Dĝ − f‖∞ ≤ α

1 − α
‖f‖∞.

It is clear that since T̂ − T is a submatrix of Ŝ − S we have

‖T̂ − T‖∞ ≤ ‖Ŝ − S‖∞ ≤ 2α

1 − α
‖S − I‖∞ ≤ 2α

1 − α
d−1.

Stage 3 By Theorem 12.4.3 the truncated reduced system is a good approximation

of the reduced system if d is not too close to 1 and if the partitions are not too small.

By Theorem 12.4.1 the truncated reduced system is diagonally dominant by rows with

229

a degree no less than that of the original system. It consists of p − 1 independent

systems which are each of dimension 2k. By Theorem 9.3 [21] it follows, that the

computed solution x̂tr of the computed truncated reduced system T̂ xtr = ĝr satisfies

(T̂ + ∆T̂)x̂tr = ĝr, |∆T̂ | ≤ γ6k|L̂t||Ût|,

where L̂tÛt is the computed LU factorization of the computed truncated reduced

system matrix T̂ . It follows that

‖x̂tr − xtr‖∞ ≤ β

1 − β
‖xtr‖∞ and ‖T̂ x̂tr − ĝr‖ ≤ β

1 − β
‖ĝr‖∞

provided the unit roundoff error is so small that

β = γ6k

(
d + 1

d − 1

)2

< 1.

Stage 4 Adjusting the original right-hand side, i.e. computing

hi = fi − Cixi−1,tr − Bixi+1,tr

introduces a small forward error. Notice that Ci affects only the top of fi and Bi

affects only the bottom of fi. The componentwise relative forward error satisfies

|ĥi − hi| ≤ γk+1 (|fi| + |Ci||xi−1,tr| + |Bi||xi+1,tr|) ,

regardless of the order in which the scalar product is evaluated. This is an overes-

timate, which does not take into account that the central components of fi are not

changed at all. The solution of the final set of linear equations is identical to stage

2 and generates a norm-wise relative residual of at most α
1−α

, as well as a norm-wise

relative forward error of at most α
1−α

, cf. (12.25).

In short, if d is not too close to 1 and if the partitions are not too small, then the

errors at every stage of the algorithm are small. We found that the simplest way to

evaluate the overall error, is to calculate the residual and estimate

‖x − y‖∞ ≤ ‖A−1‖∞‖f − Ay‖∞ ≤ 1

1 − d−1
‖f − Ay‖∞,

which turned out to be fairly effective as long as d is not to close to 1.

230

12.5 Numerical experiments

We ran experiments to verify the main results as well as compare the accuracy of

the truncated SPIKE algorithm with the algorithm implemented in ScaLAPACK.

12.5.1 The matrices S, R, and T

We wish to verify that the degree of diagonal dominance of the SPIKE matrix S is

no less than that of the original matrix A. Towards this goal, we select two sequences

of matrices with (n, ku, kl) = (106, 5, 5):

A
(k)
ij =







1 + 0.01k for i = j

−0.1 for 0 < |i − j| ≤ 5,

0 otherwise

B
(k)
ij =







1 + 0.01k for i = j

0.1 for 0 < |i − j| ≤ 5,

0 otherwise

(12.26)

for k = 1, 2, . . . 100. Selecting p = 8 partitions and a uniform block size of 125,000,

we explicitly compute the entire SPIKE matrix S and the excess ‖S − I‖∞ for each

of these 200 matrices, from which we determine the degree of diagonal dominance as

d(S) = 1/‖S − I‖∞. Our results are displayed in Figure 12.1. We find that not only

is the degree of diagonal dominance preserved, i.e. d(S) ≥ d(A), but there can be a

substantial increase in the degree of diagonal dominance as well.

We extract the truncated reduced system matrix T from each of the 200 matrices

and compute the condition number in the infinity norm, by explicitly inverting T and

calculating ‖T−1‖∞. We then plot the condition number of T as a function of the

degree of diagonal dominance of A. The results are displayed in Figure 12.2. The

theoretical upper bound is given by d+1
d−1

, where d = d(A) is the degree of diagonal

dominance of A. We find that the truncated reduced system is even better conditioned

than expected.

231

1 1.5 2
1

1.5

2

2.5

3

3.5

1 1.5 2
1

1.5

2

2.5

3

3.5

4

4.5

Figure 12.1. The degree of diagonal dominance for the matrix S(k) as
a function of the degree of diagonal dominance of the original matrices:
A(k) (left), and B(k) (right). The matrices are defined by equation (12.26).
The red dotted line is the experimental result and the solid blue line is
the theoretical lower bound.

1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

lo
g1

0
in

f−
no

rm
 c

on
dn

um
 T

1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

Figure 12.2. The condition number of the truncated reduced system as a
function of the degree of diagonal dominance of the original system ma-
trices: A(k) (left), and B(k) (right). The matrices are defined by equation
(12.26). The dotted red line is the experimental result and the solid blue
line is the theoretical upper bound.

232

12.5.2 The truncation error

Next, we want to investigate the size of the truncation error as a function of

the degree of diagonal dominance of the original matrix A and the number p of

partitions. We select a tridiagonal Toeplitz matrix with n = 500, 000 and 1.01 on

the main diagonal and 0.5 for the off-diagonal elements. We choose p = 500j, for

j = 1, 2, . . . 10 and compute the truncation error explicitly. The theoretical upper

bound is given by d−q, where d = 1.01 and q = ⌊(5e5/p⌋. The results are displayed in

Figure 12.3. The truncation error is much smaller than the theoretical upper bound

and it is smaller than the unit roundoff error, u = 2−53 ≈ 1.1e-16, as long as p ≤ 2000.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

−60

−40

−20

0

Figure 12.3. The infinity norm of the truncation error as a function of the
number of partitions. The solid blue line is the theoretical upper bound,
while red dots are experimental results. The matrix has degree of diagonal
dominance d = 1.01 and is tridiagonal.

12.5.3 The roundoff errors

To verify the bounds presented in Section 12.4.3, we construct matrices which were

diagonally dominant by different degrees and run them though our implementation of

the truncated SPIKE algorithm. The matrices all have (n, kl, ku) = (1e6, 10, 10), with

every diagonal entry equal to 1. The nonzero, off-diagonal entries are positive and

constant for each matrix, such that the degree of diagonal dominance ranges from 1.1

233

for the first matrix to 2.0 for the last matrix, with steps of 0.1. The right-hand side

is generated from the solution, which is selected as x = (1, 1, . . . , 1)T . Our results are

listed as Table 12.1, and Table 12.2. The bounds are computed as follows:

1. The modified right-hand side,

‖Dĝ − f‖∞ ≤ α

1 − α
‖f‖∞.

2. The SPIKE matrix,

‖DŜ − A‖∞ ≤ 2
α

1 − α
d−1.

3. The computed truncated reduced system,

‖T̂ x̂tr − ĝr‖ ≤ γ6k
d + 1

d − 1
‖x̂tr‖∞.

4. The overall error,

‖x̂ − x‖∞ ≤ 1

1 − d−1
‖Ax̂ − f‖∞.

We see that the modified right-hand side g is computed with a small residual and that

the bound becomes increasingly accurate as d becomes larger. The SPIKE matrix is

computed with a very small residual compared to the bound which is between 103

and 105 times too large. The computed reduced system is solved with a very small

residual and the bound is between 102 and 103 times larger. Finally, we see that

using the residual to estimate the error is very reliable, leading to estimates that are

accurate within one order of magnitude.

12.5.4 Comparisons with ScaLAPACK

We begin by comparing the errors in the truncated SPIKE algorithm to ScaLA-

PACK (PDDBTRF/PDDBTRS) for four different matrices with

(n, kl, ku) ∈ {(2.0 · 104, 10, 10), (105, 10, 10), (105, 50, 50), (106, 10, 10)}.

Every diagonal entry is 1 and all the other entries within the band are 10−2. The

right hand side is constructed using an exact solution of (1, 2, . . . , n)T . The number

234

Table 12.1
A comparison of certain measurable quantities and their bounds for 10
different matrices distinguished by their degree of diagonal dominance

d α ‖Dĝ − f‖∞ ‖DŜ − A‖∞
measured bound measured bound

1.1 1.57e-12 9.58e-16 2.99e-12 6.94e-17 2.85e-12

1.2 4.30e-13 1.25e-15 7.88e-13 5.90e-17 7.16e-13

1.3 2.09e-13 1.57e-15 3.69e-13 7.05e-17 3.21e-13

1.4 1.28e-13 1.51e-15 2.19e-13 6.94e-17 1.83e-13

1.5 8.88e-14 1.64e-15 1.48e-13 5.11e-17 1.18e-13

1.6 6.67e-14 9.78e-16 1.08e-13 5.55e-17 8.34e-14

1.7 5.29e-14 1.51e-15 8.39e-14 2.93e-17 6.22e-14

1.8 4.35e-14 1.47e-15 6.77e-14 4.47e-17 4.84e-14

1.9 3.69e-14 1.75e-15 5.63e-14 4.27e-17 3.88e-14

2.0 3.20e-14 1.30e-15 4.80e-14 4.16e-17 3.20e-14

235

Table 12.2
A comparison of certain measurable quantities and their bounds for 10
different matrices distinguished by their degree of diagonal dominance

d ‖T̂ x̂tr − gr‖∞ ‖Ax̂ − f‖∞ ‖x̂ − x‖∞
measured bound measured measured bound

1.1 7.77e-16 1.40e-13 8.88e-16 8.88e-16 9.77e-15

1.2 7.77e-16 7.33e-14 1.33e-15 1.11e-15 7.99e-15

1.3 5.55e-16 5.11e-14 1.55e-15 1.33e-15 6.74e-15

1.4 8.88e-16 4.00e-14 1.55e-15 1.55e-15 5.44e-15

1.5 4.44e-16 3.33e-14 1.55e-15 1.55e-15 4.66e-15

1.6 7.77e-16 2.89e-14 8.88e-16 8.88e-16 2.37e-15

1.7 5.55e-16 2.57e-14 1.55e-15 1.22e-15 3.77e-15

1.8 5.55e-16 2.33e-14 1.55e-15 1.55e-15 3.50e-15

1.9 6.66e-16 2.15e-14 1.78e-15 1.55e-15 3.75e-15

2.0 5.55e-16 2.00e-14 1.33e-15 1.33e-15 2.66e-15

236

of partitions are 2, 4, 8, 16, 24, 32, 48, 64, 128, and 256. The calculations are carried

out in IEEE double precision arithmetic, and we measure the 2-norm of the absolute

error. Our results are displayed in Table 12.3. In our experiments ScaLAPACK

yields slightly better results than the truncated SPIKE algorithm, but the difference

between the two algorithms decrease, as the problems become larger. We would

like to draw attention to the case of p = 256. In this case ScaLAPACK cannot be

applied to the first matrix where n = 20, 000, because the matrix is too small and

the bandwidth is large compared to the number of partitions. The truncated SPIKE

algorithm has a large error for the first and the third matrix. This is due to the fact

that the infinity norm of the truncation error is very large: for the first matrix it is

1.62 · 10−12, while for the third matrix it is 1.52 · 10−7. In all other cases the infinity

norm of the truncation error is either less than the machine ǫ or much smaller than

the unit round off error u. The experiments with p = 256 emphasize the fact that the

truncated SPIKE algorithm should not be applied to problems where the partitions

are either too small or where the diagonal blocks are not diagonally dominant. The

first matrix is diagonally dominant with degree d = 5, and for p = 256 the dimension

of the smallest partition is 78. In this case Theorem 12.4.2 gives an upper bound for

the infinity norm of the truncation error of 5−7 ≈ 1.28 ·10−5. In other words, we know

in advance that the result might not be accurate. Theorem 12.4.2 does not apply to

the third matrix, for which d = 1.

We consider nine matrices that are diagonally dominant in Matrix Market. They

are all quite small, with dimensions no larger than 5000. Extracting narrow banded

matrices from these benchmarks by choosing k = ⌈0.01n⌉, we run these examples

through LAPACK (DGBTRF/DGBTRS), ScaLAPACK (PDDBTRF/PDDBTRS),

our own implementation of the truncated SPIKE algorithm, as well as the SPIKE

package itself (TU0). The matrices are scaled such that the main diagonals are 1 and

the right-hand side is generated from the solution x = (1, 1, . . . , 1)T . We measured

the 2-norm of the absolute error. Our results are listed in Table 12.4 and Table 12.5.

We find no substantial difference in the accuracy of the four different routines.

237

Table 12.3
The 2-norm of the absolute error for ScaLAPACK (Sca) (PDDBTRF and
PDDBTRS) and the truncated SPIKE (T.S.) algorithm for four different
banded matrices and different numbers of partitions. The results from
LAPACK (DGBTRF/DGBTRS) are listed at the bottom of the table.

(n, kl, ku)

(2e4, 10, 10) (1e5, 10, 10) (1e5, 50, 50) (1e6, 10, 10)

p Sca T.S Sca T.S Sca T.S Sca T.S

2 4.98e-10 5.02e-10 5.33e-9 5.34e-9 1.33e-8 1.33e-8 2.10e-7 2.10e-7

4 4.98e-10 5.02e-10 5.33e-9 5.33e-9 1.33e-8 1.33e-8 2.10e-7 2.10e-7

8 4.97e-10 5.02e-10 5.32e-9 5.33e-9 1.33e-8 1.33e-8 2.10e-7 2.10e-7

12 4.97e-10 5.01e-10 5.32e-9 5.33e-9 1.33e-8 1.34e-8 2.10e-7 2.10e-7

16 4.97e-10 5.02e-10 5.32e-9 5.33e-9 1.33e-8 1.33e-8 2.10e-7 2.10e-7

24 4.95e-10 5.00e-10 5.32e-9 5.33e-9 1.33e-8 1.34e-8 2.10e-7 2.10e-7

32 4.95e-10 5.02e-10 5.32e-9 5.33e-9 1.32e-8 1.33e-8 2.10e-7 2.10e-7

48 4.90e-10 4.98e-10 5.31e-9 5.32e-9 1.33e-8 1.33e-8 2.10e-7 2.10e-7

64 4.88e-10 4.95e-10 5.30e-9 5.32e-9 1.32e-8 1.33e-8 2.10e-7 2.10e-7

128 4.81e-10 4.88e-10 5.28e-9 5.30e-9 1.33e-8 1.34e-8 2.10e-7 2.10e-7

256 N/A 1.43e-7 5.23e-9 5.26e-9 1.33e-8 7.64e-2 2.10e-7 2.10e-7

LA 4.99e-10 5.33e-9 1.33e-8 2.10e-7

238

Table 12.4
The 2-norm of the absolute error for nine different matrices from Matrix
Market. The results are given for LAPACK (dgbtrf/dgbtrs) and ScaLA-
PACK (PDDBTRF/PDDBTRS). The results are given for 2, 4, and 8
partitions.

matrix n LA ScaLAPACK

2 4 8

dwb512 512 3.27e-15 3.14e-15 3.14e-15 3.14e-15

gr 30 30 900 0.00e+00 0.00e+00 1.57e-16 2.94e-16

jpwh 991 991 1.37e-15 2.04e-15 2.03e-15 2.01e-15

nos6 675 0.00e+00 3.05e-15 3.07e-15 3.10e-15

orsirr 1 1030 4.40e-15 4.44e-15 4.42e-15 4.36e-15

orsirr 2 886 4.11e-15 4.10e-15 4.11e-15 4.12e-15

orsreg 1 2205 7.08e-15 7.12e-15 7.30e-15 6.93e-15

sherman3 5005 1.92e-12 1.99e-12 1.99e-12 1.99e-12

sherman4 1104 2.53e-15 2.59e-15 2.58e-15 2.58e-15

239

Table 12.5
The 2-norm of the absolute error for nine different matrices from Ma-
trix Market. The results are given for our implementation (T.S) of the
truncated SPIKE algorithm, as well as the current implementation of the
SPIKE package (TU0). The results are given for 2, 4, and 8 partitions.

matrix T.S TU0

2 4 8 2 4 8

dwb512 3.30e-15 3.30e-15 3.30e-15 3.04e-15 3.09e-15 3.11e-15

gr 30 30 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.11e-16 5.09e-16

jpwh 991 2.00e-15 1.97e-15 1.95e-15 2.03e-15 2.06e-15 2.01e-15

nos6 0.00e+00 0.00e+00 0.00e+00 3.03e-15 3.12e-15 3.01e-15

orsirr 1 4.39e-15 4.38e-15 4.31e-15 4.40e-15 4.26e-15 4.15e-15

orsirr 2 4.07e-15 4.10e-15 4.10e-15 4.16e-15 3.94e-15 4.06e-15

orsreg 1 7.16e-15 7.16e-15 7.00e-15 6.49e-15 6.79e-15 6.18e-15

sherman3 1.99e-12 1.99e-12 1.99e-12 1.98e-12 1.98e-12 1.98e-12

sherman4 2.49e-15 2.50e-15 2.51e-15 2.44e-15 2.41e-15 2.48e-15

240

12.6 Conclusions for SPIKE

We have discussed the explicit and the truncated SPIKE algorithm. Our main

contribution is the theoretical analysis of the truncated SPIKE algorithm for systems

which are strictly diagonally dominant by rows. We showed that the SPIKE matrix,

the reduced system matrix, and the truncated reduced system matrix are all strictly

diagonally dominant by rows with a degree no less than the original matrix. We

established a tight upper bound on the decay rate of the spikes and the truncation

error. This settled a question which has been open since the algorithm was introduced.

The key to understanding the analysis is the fact that Gaussian elimination without

pivoting does not decrease the degree of diagonal dominance. We offered a partial

explanation as to why it is difficult to obtain tight estimates on the decay rate and the

truncation error in the general case where the main block diagonal is a well conditioned

matrix. We also did an elementary error analysis of the truncated SPIKE algorithm,

which revealed that the error committed at each stage of the algorithm is very small.

Our numerical experiments showed that our analysis is pessimistic, and we found

no substantial difference in the accuracy of the solutions obtained via the truncated

SPIKE algorithm and the corresponding algorithm from ScaLAPACK.

12.7 Extensions of the SPIKE algorithm

The truncated SPIKE algorithm is attractive because it is both fast and accurate

and it scales very well on parallel machines. There is very little communication

between the processors, especially during the solve phase where there are only two

exchanges of data between neighboring processors. In this section we consider the

solution of narrow banded linear systems from a theoretical point of view. We show

that it is possible to modify the truncated SPIKE algorithm to the point where the

reduced system is eliminate and we show that it is possible to solve a general narrow

banded linear system on a parallel machine with a single one to all communication

241

.

.

..

..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
.

.

..

..

..

..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.

Figure 12.4. The original, non-overlapping partitioning of the narrow
banded matrix.

during the solve phase. We will rely heavily on the notation and the results which we

have established in this chapter.

12.7.1 Overlapping partition method

The idea of using overlapping partitions to solve a linear system originated in the

masters thesis of G. Lou [35] and has been extended by Naumov and Sameh [38].

Larriba-Pey [29, 33] adapted the basic idea and introduced the overlapping partition

method (OPM) for systems which are strictly diagonally dominant. In this section

we analyze the error for this method using the theory we derived for the truncated

SPIKE algorithms.

Our interest in the OPM is primarily theoretical and our main result, Theorem

12.7.1, is essentially a statement about the nature of such linear systems.

Let A be a narrow banded matrix with half bandwidth k. In the SPIKE algorithm

the original matrix is partitioned by rows, and the case of p = 3 partitions is illustrated

in Figure 12.4.

242

6?lk

Figure 12.5. The overlapping partitioning of the matrix, with the original
partitioning drawn using dotted lines. Each partition has been extended
by lk in all possible directions.

Now, the elements of the second, central partition, satisfy

x2 = g2 − W2x
(t)
3 − V2x

(b)
1 , (12.27)

where V2 and W2 are the corresponding spikes. We have already derived a tight upper

bound on the decay rate of the spikes. The decay implies that if the partitions are

sufficiently large, then the central components of x2 are essentially equal to the cor-

responding components of g2. This suggests that we should create a new partitioning

by extending the original partitions in every direction, allowing them to overlap, see

Figure 12.5. The non-overlapping partitions are extended by lk in every possible

direction, where l is a nonnegative integer and k is the half bandwidth.

The overlapping partition method (OPM) is stated as Algorithms 29 and 30.

For simplicity we continue to assume that the number of partitions, p, divides the

dimension n of the matrix A, i.e. µ = n
p

is an integer.

Theorem 12.7.1 Let A be a narrow banded matrix with half bandwidth k. If A is

diagonally dominant with degree d, and if y is the approximate solution obtained by

243

1: LU factorization: L1U1 = A(1 : µ + lk, 1 : µ + lk)

2: for i = 2 : p − 1 do

3: si := (i − 1)µ + 1 − lk, ei := si + µ + 2lk = iµ + lk

4: LU factorization: LiUi = A(si : ei, si : ei).

5: end for

6: LU factorization: LpUp = A((p − 1)µ + 1 − lk : n, (p − 1)µ + 1 − lk : n).

Algorithm 29: Factorization phase of the OPM

1: Solve L1U1y1 = f(1 : µ + k)

2: for i = 2 : p − 1 do

3: si := (i − 1)µ + 1 − lk, ei := si + µ + 2lk = iµ + lk

4: Solve LiUiyi = f(si : ei)

5: end for

6: Solve LpUpyp = f((p − 1)µ + 1 − lk : n)

7: Assemble the approximate solution y from the yi,

y = (y1(1 : µ)T , y2(lk + 1, µ + lk + 1)T , . . . , yp(lk + 1, µ + lk + 1)T)T

Algorithm 30: Solve phase of the OPM

244

Figure 12.6. The auxiliary partitioning needed for the proof of Theorem 1.
We are interested in the variables corresponding to the original diagonal
block which is drawn using dotted lines.

applying the overlapping partitioning method to Ax = f with overlap lk, l = 0, 1, 2 . . . ,

then

‖x − y‖∞ ≤ 2d−(l+1)‖x‖∞. (12.28)

The theorem states that the overlapping partitioning method solves Ax = f with

a norm-wise relative forward error, which decreases as the overlap increases.

Proof The special case of p = 3 partitions contains all the details of the general

case which is why we only treat this case. In addition, we focus on the second, central

partition, which is drawn using dotted lines on Figure 12.6. In this figure we have

also drawn an auxiliary, non-overlapping partitioning, using solid lines.

We have extended the central dotted partition by lk in all four directions and

we have shrunk the two neighboring partitions just enough to create three non-

overlapping partitions. Now let W ′
2 and V ′

2 be the central spikes generated by applying

the SPIKE algorithm to the system in the auxiliary partitioning. We have

x′
2 = g′

2 − W ′
2(x

′
3)

(t) − V ′
2(x

′
1)

(b). (12.29)

245

Now let x2 be the vector corresponding to the central dotted partition. Then, since

x′
2 was formed by extending x2 with lk variables in either direction, it follows that

‖x2 − y2‖∞ ≤ 2d−(l+1)‖x‖∞, (12.30)

because (x′
3)

(t), and (x′
1)

(b) are also sub-vectors of the true solution x. We have used

Theorem 12.4.2 to estimate the infinity norm of the central submatrices of V ′
2 , and

W ′
2, which correspond to x2. In order to complete the case of p = 3 we note that

‖xi − yi‖∞ ≤ d−(l+1)‖x‖∞ (12.31)

for i = 1 and i = 3, because only a single spike is involved in each of these two cases.

It follows, that

‖x − y‖∞ ≤ 2d−(l+1)‖x‖∞, (12.32)

and the proof is complete.

It is possible to improve on this error bound slightly. We used our tight estimate

for the decay rate of the spikes, but we suspect that the slowest decay rate is observed

only for matrices which are also triangular, and we know this to be true for tridiagonal

matrices. In short, while it might be possible to improve on the constant in Theorem

12.7.1, the asymptotic dependence on d and l is tight for the class of narrow banded

matrices which are diagonally dominant by rows.

Now suppose that we are interested only in a particular component xi of the entire

solution x of Ax = f , but that we cannot afford to solve the entire system. In view

of the proof of Theorem 12.7.1, it suffices to extract and solve

A(i − lk : i + lk, i − lk : i + lk)y = f(i − lk : i + lk) (12.33)

for y, because ylk+1 will satisfy

|xi − ylk+1| ≤ 2d−(l+1)‖x‖∞ (12.34)

We see that if xi and xj are two distinct components of x, then they are essentially

independent of each other if |i−j| is sufficiently large. Our previous comments merely

makes this notion precise.

246

The greatest difference between the OPM method and the truncated SPIKE al-

gorithm is that the OPM does not require the solution of a reduced system. Both

algorithms are suitable for a parallel computer. For the OPM it is natural to use a

linear array of p processors, while for the truncated SPIKE algorithm a ring of p− 1

processors is the natural choice, and in both cases we begin by splitting the data in

disjoint block rows across the processors.

During the factorization phase the SPIKE algorithm does twice as much work

as the OPM, but only a single k by k block is moved from each processor to its

predecessor in the ring, while the OPM requires the exchange of lk rows of the matrix

between each pair of neighboring processors.

During the solve phase, the SPIKE algorithm moves k rows of the modified right

hand side from each processor to its immediate predecessor in the ring in order to

set up the truncated reduced system. After the truncated reduced system has been

solved, k rows of the solution are moved from each processor to its successor. For

the OPM each pair of neighboring processors exchange lk rows of the right hand side

matrix.

In summary, the SPIKE algorithm performs more arithmetic than the OPM during

the factorization phase, but less data is moved during both phases.

12.7.2 Solving linear systems with a single communication

The SPIKE algorithms, the OPM and the solves implemented in SCALAPACK

split naturally into two phases, a factorization phase where the coefficient matrix is

analyzed and a solve phase where the right hand side is accessed and the solution is

returned. The processors exchange multiple messages during both phases of all the

algorithms.

We now explain why it is possible to solve a general narrow banded linear system

using a single one to all communication between the processors during the solve phase.

247

If the linear system is sufficiently well conditioned, then this can be reduced to a single

exchange between neighboring processors.

As in the SPIKE algorithms we split the linear system by block rows across the

processors and we use D to denote the main block diagonal.

Let f ∈ Rn, then by the SPIKE algorithm

Dx = f − (A − D)Qxr (12.35)

where Q is the natural injection of the reduced system space into R
n. Now, if xr = 0,

then

Dx = f, (12.36)

and it follows that the local segments of x can be computed with no communication,

because Aixi = fi. As a result of this observation we define the vectorspace G as

follows,

G = {f ∈ R
n : PD−1f = 0} = Ker(PD−1), (12.37)

where P is the orthogonal projection onto the reduced system space. This is the

vectorspace of “good” right hand sides f for which the solution of Ax = f does not

require communication. We also define

B = G⊥ = Ran (D−T P), (12.38)

which allows us to write

Rn = G ⊕ B. (12.39)

The vector space B is the set of “bad” right hand sides f , for which the solution of

Ax = f may require communication.

By assumption D is nonsingular, which implies that the dimension of B satisfies

dim B = 2(p − 1)k. (12.40)

In general both k and p are much smaller than n, so the dimension of B is likely to

be small. Now let m = dim B. It is clear that B is spanned by the columns of the n

by m matrix

E = diag{E1, E2, . . . , Ep}, (12.41)

248

where

E1 = A−T
1








0

0

Ik








, Ei = A−T
i








Ik 0

0 0

0 Ik








, 2 < i < p, and Ep = A−T
p








Ik

0

0








(12.42)

and Ik denotes the k by k identity matrix. Let Ei = QiRi be the QR factorization of

Ei, then the columns of

Q = diag{Q1, Q2, . . . , Qp} (12.43)

form an orthonormal basis for B.

Now assume that we have solved the linear system

AY = Q (12.44)

and that the solution Y has been split by block rows across the processors such that

the i’th segment Yi is stored in the local memory of processor i.

We are now given a new right hand side f and asked to solve Ax = f . First

the right hand side is split across the processors. Then we compute the orthogonal

projection f ′′ of f onto B,

f ′′ = QQT f. (12.45)

This can be done locally with no communication, because Q is block diagonal, which

implies that the local segments of f ′′ are given by

f ′′
i = (QQT f)i = Qi(Q

T
i fi). (12.46)

We can now compute the orthogonal projection of f onto G, because

f ′ = (I − QQT)f = f − f ′′, (12.47)

and the i’th processor merely computes

f ′
i = fi − f ′′

i , (12.48)

249

which does not require any communication either. Now we solve Ax′ = f ′, and since

f ′ ∈ G this does not require any communication. The i’th processor merely solves

Aix
′
i = f ′

i (12.49)

for the local segment of x′. It remains to solve Ax′′ = f ′′. However, we have already

done most of the work, before we were even given f , because

x′′ = A−1f ′′ = A−1QQT f = (A−1Q)QT f = Y (QT f). (12.50)

We see that the local segments of x′′ are given by

x′′
i = Yi(Q

T f), (12.51)

where Yi is the local segment of Y . Processor i already has access to its own segment

of (QT f), but it the entire vector QT f ∈ Rm is needed in order to complete the

calculation of x′′
i . At this point it is necessary to have a single one to all broadcast of

the local segments of QT f . This is not a cheap operation, but it is necessary in the

general case. However, there are cases were it is possible to reduce this demand to a

single exchange of segments between neighboring processors.

Finally, processor i computes the local segment xi of the solution of Ax = f , by

simple addition, i.e.

xi = x′
i + x′′

i , (12.52)

which completes the calculation.

We have summarized this discussion in Algorithms 31, 32, 33.

1: Processor i solves AT
i Zi = Ei using any suitable algorithm.

2: Processor i computes QiRi = Zi, QR factorization.

Algorithm 31: Mincom: Assembling the auxiliary equations

Algorithm 33 contains a single one to all broadcast which will make the vector

QT f ∈ Rm available to every processor. This is an expensive operation, because every

processor must communicate data to every other processor. However, there are many

250

1: The linear system AY = Q is solved using any suitable algorithm.

2: The i’th segment of Yi is stored in the local memory of processor i.

Algorithm 32: Mincom: Solution of the auxiliary equations

1: Processor i computes f ′′
i = QiQ

T
i fi.

2: Processor i computes f ′
i = fi − f ′′

i .

3: Processor i solves Aix
′
i = f ′

i .

4: In a single one to all broadcast, processor i sends QT
i fi to the other processors.

5: Processor i computes x′′
i = Yi(Q

T f).

6: Processor i computes xi = x′
i + x′′

i .

Algorithm 33: Mincom: Solution of a Ax = f

251

cases where this operation can be reduced to a single exchange of information between

neighboring processors. The key to understanding this is to realize that the matrix

Y = A−1Q has a very special structure. Let q be any column of Q. By definition, q

consists mostly of zeros, and the nonzero entries are concentrated in a single segment

corresponding to a particular processor, say, processor i. If A is a sufficiently well

conditioned matrix, then it follows from the estimates developed by Demko, Moss,

and Smith [9] that the entries of y = A−1q decay exponentially as we move away from

the i’th segment and by the time we enter the segment corresponding to processor j,

where |i − j| > 1, the entries may very well have decayed below the machine ǫ and

they are effectively zero. This phenomenon is observed when A is well conditioned,

and the partitions are large compared with the half bandwidth, i.e when µ/k ≫ 1.

252

253

13. Conclusion

13.1 Summary of contributions

We have considered three distinct, but related topics:

• The direct computation of a dominant eigenspace of a matrix X given implicitly

as the solution of the Lyapunov equation, i.e.

AX + XAT + BBT = 0.

• The application of Krylov subspace methods to Lyapunov equations written in

the Kronecker product form,

(I ⊗ A + A ⊗ I)vec(X) + vec(BBT) = 0.

• The solution of general narrow banded linear systems, Ax = f .

Let A be an n by n negative definite matrix and let B be an n by p matrix. Let

P be the solution of

AP + PAT + BBT = 0.

Also, let V be an n by k matrix with orthonormal columns. Hodel [24] approximated

PV with Y , where Y is the solution of the tall Sylvester equation,

AY + Y (V T AT V) + BBT V = 0.

Our main contribution is Theorem 8.2.1, which shows that if P has rank r, and if V

has k = r columns, then

RanY = Ran P,

unless Y is rank deficient, in which case

RanY ⊂ Ran P.

254

Our result is an extension of Hodel’s analysis, which considered the case of r = 1.

In practice, P has full rank r = n and it is not practical to solve for Y . However,

both the theoretical analysis and our experimental results suggest that the dominant

eigenspaces of P can be computed accurately by choosing k sufficiently large.

We extended the analysis of the standard Arnoldi method [28,50,56] for Lyapunov

equations, by showing how to construct a negative definite matrix A and a column

vector B for which the method returns a predescribed residual history.

Hochbruck and Starke [23] showed that it is possible to apply Krylov subspace

methods directly to the Lyapunov equation in the Kronecker product form. However,

their approach requires O(n2) arithmetic operations and O(n2) words of storage.

We have shown that if B is an n by p matrix, with p ≪ n, then it is possible to

reduce these requirements to O(n). Our main result, Theorem 10.3.1, shows that it

is possible to compute an orthonormal basis for the Krylov subspace Kk(Ã, b̃) ⊆ Rn2

,

using O(npk+p2k3) words of storage and O(np2k2 +p3k3) arithmetic operations. We

used this and similar results to adapt GMRES, CG, BCG, and CGNR for standard

linear systems to the Lyapunov equation in the Kronecker product form. Regrettably,

our compact representation of the necessary vectors in R
n2

does not permit a general

preconditioning strategy. However, preconditioning can be achieved by working with

a representation of the form x̃ = vec(EF T), where E and F are tall matrices with

n rows. Unfortunately, it is necessary to compute tall singular value decompositions

at regular intervals in order to keep the memory consumption down. In addition,

it appears that the choice of preconditioners is extremely limited. A preconditioner

M̃ must necessarily be an invertible map from Rn2

into Rn2

, and representing M̃

explicitly would require at least n2 words of memory. Further, every equation of the

type

M̃x̃ = vec(EF T),

where E and F are tall matrices, must have a solution x̃, which admits an approxi-

mation of the form

x̃ ≈ vec(GHT),

255

where G and H are tall matrices, and we must be able to compute G and H directly

without forming x̃ explicitly. As a result, we investigated preconditioners of the type

M̃ = I ⊗ M + M ⊗ I,

hoping to select M such that M̃−1 could be considered a good approximation to Ã−1,

and such that solving

MX + XM + EF T = 0

would be much faster than solving the original problem

AX + XAT + BBT = 0,

We found that out that if the n2 by n2 matrix

In2 − M̃−1Ã

has rank strictly less than n, then surprisingly enough M must be equal to A (con-

sequence of Theorem 11.3.3). We made the elementary observation (consequence of

Theorem 11.3.2) that there exists a positive constant C = C(n), such that

‖M − A‖2

‖M‖2
≤ C(n)‖In2 − M̃−1Ã‖2,

which suggests that if M̃ is a good preconditioner for Ã in the sense that

‖In2 − M̃−1Ã‖2 ≪ 1

then is is likely that A is a good norm-wise approximation of M . Unfortunately we

do not have a formula for C(n).

Currently, we are only aware of two situations where an equation of the form

MX + XM + EF T = 0

admits a good low rank approximation, namely when M is well conditioned and

negative definite (the Arnoldi method) or when the spectrum of M is clustered around

a few known points (the ADI family of methods). But if A is a good approximation

256

of M , then, by continuity, we can expect each of these methods to apply equally

well to the original problem, eliminating the need for Krylov subspace methods and

preconditioning in the first place.

Above all, simply treating the Lyapunov matrix equation as a standard linear

system ignores the structure of the solution. We used the structure of the Lyapunov

operator to reduce the storage and arithmetic requirements. Our investigation also

revealed that the Arnoldi methods and its various extensions do not exploit the low

rank phenomenon. Specifically, we exhibited an n by n negative definite matrix A for

which the Arnoldi method did not converge until the n’th iteration, while the exact

solution exhibited rapid eigendecay.

Almost every solver for Lyapunov matrix equations depends on the solution of

standard linear systems. The ADI family of methods is a prominent example. Fre-

quently, these systems are either narrow banded or admit narrow banded precondi-

tioners. As a result, we spent time investigating the solution of narrow banded linear

systems. We analyzed the SPIKE algorithms, with special emphasis on the truncated

SPIKE algorithm, which applies to systems which are diagonally dominant by rows.

We were able to settle several questions, which have been open since the algorithm

was introduced. Specifically, we showed that the SPIKE matrix, the reduced system

matrix, and the truncated reduced system matrix are all diagonally dominant with

a degree no less than that of the original system. We estimate the decay rate of the

spikes as well as the the truncation error. Our bounds are tight for matrices with a

given half bandwidth and degree of diagonal dominance. The key to understanding

all of these results is Lemma 12.4.1, which states that Gaussian elimination does not

decrease the degree of diagonal dominance.

The analysis of the truncated SPIKE algorithm had immediate implications for the

overlapping partition method. Let x = (x1, x2, . . . , xn)T be the solution of Ax = f ,

which is strictly diagonally dominant by rows, then the OPM can be used to explain

why xi is almost independent of xj , provided that |i − j| is large enough.

257

The explicit SPIKE algorithm and the truncated SPIKE algorithm, as well as

the direct solvers implemented in SCALAPACK, can all be split into a preliminary

factorization phase where the matrix is partitioned and factorized, and a solve phase

where the systems are actually solved. We showed that it is possible to arrange the

calculations such that the solve phase for a general narrow banded linear system can

be carried out with a single one to all communication.

13.2 Future work

Our work on the approximate subspace iteration with Ritz acceleration as well as

our adaption of the CGNR algorithm, were attempts to create methods which were

parameter free. The approximate subspace iteration applies only to problems which

are negative definite, and while the CGNR algorithm applies to any problem, the

storage requirements are excessive in the worst case. Developing a parameter free

method for general large and sparse Lyapunov equations is still an open question,

which we would like to pursue.

We are intrigued by the possibility of reducing the interprocessor communication

during the solve phase of the solution of a general narrow banded linear system. We

expect this to be particularly relevant on a distributed memory machine. We have

not done an error analysis of the algorithm that we have outlined, but it is clear that

the rounding errors during the solution of the ’bad’ systems, will necessarily pollute

the solution of Ax = f for an arbitrary right-hand side f . As a result we would only

use our method as a preconditioner, and only when it is necessary to solve many

systems with the same coefficient matrix, as in the ADI method.

LIST OF REFERENCES

258

LIST OF REFERENCES

[1] A. C. Antoulas. Approximation of large-scale dynamical systems. SIAM, first
edition, 2005.

[2] A. C. Antoulas, D. C. Sorensen, and Y. Zhou. On the decay rate of Hankel
singular values and related issues. Linear Algebra and Applications, 415(2-3):344–
358, 2006.

[3] R. H. Bartels and G. W. Stewart. Solution of the matrix equation AX+XB=C.
Communication of the ACM, 15(9):820–826, 1972.

[4] U. Baur and P. Benner. Factorized solution of the Lyapunov equation by using
the hierarchical matrix arithmetic. Computing, 78(3):211–234, 2006.

[5] P. Benner. Factorized solution of the Sylvester equation with applications in con-
trol. In Proceedings of the 16th Intl. Symp. on Mathematical Theory of Networks
and Systems, 2004.

[6] M. Berry and A. Sameh. Multiprocessor schemes for solving block tridiagonal
linear systems. Int. J. Supercomputing. Appl., 2(3):37–57, 1988.

[7] Steffen Börm, Lars Grasedyck, and Wolfgang Hackbusch. Hierarchical matrices.
Lecture notes no. 21, Max-Planck-Institut für Mathematik in den Naturwis-
senschaften, 2003.

[8] S. C. Chen, D. J. Kuck, and A. H. Sameh. Practical parallel band triangular
solvers. ACM Transactions on Mathematical Software, 4:270–277, 1978.

[9] S. Demko, W. F. Moss, and P. W. Smith. Decay rates for inverses of band
matrices. Mathematics of Computation, 43(168):491–499, 1984.

[10] J. J. Dongarra and A. H. Sameh. On some parallel banded system solvers.
Parallel computing, 1:223–235, 1984.

[11] Mark Embree. How descriptive are GMRES convergence bounds. Technical
research report, Oxford University Computing Laboratory, 1999.

[12] Nabil Gamti and Bernard Philippe. Comments on the GMRES convergence for
preconditioned systems. In Jerzy Wasniewski Ivan Lirkov, Svetozar Margenov,
editor, Large scale scientific computing: 6th international conference, LSSC
2007, Sozopol, Bulgaria, June 5-9, 2007, pages 41–51, New York, 2008. Springer.

[13] A. George and Kh. Ikramov. Gaussian elimination is stable for the inverse of a
diagonally dominant matrix. Math. Comp, 73(246):653–657, 2003.

[14] Luc Giraud, Julien Langou, and Miroslav Rozložńık. On the loss of orthogonal-
ity in the Gram-Schmidt orthogonalization process. Technical research report
TR/PA/03/25, CERFACS, 2003.

259

[15] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Hopkins Uni-
versity Press, Baltimore, Maryland, third edition, 1996.

[16] L. Grasedyck, W. Hackbusch, and B. N. Khoromskij. Solution of large scale
algebraic matrix Riccati equations by use of hierarchical matrices. Computing,
70(2):121–165, 2003.

[17] Anne Greenbaum, Vlastimil Pták, and Zdeněk Strakoš. Any non increasing
convergence curve is possible for GMRES. SIAM Journal of Matrix Analysis
and Applications, 17(3):465–469, 1996.

[18] S. Gugercin, D. C. Sorensen, and A.C. Antoulas. A modified low-rank Smith
method for large-scale lyapunov equations. Numerical Algorithms, 32(1):27–55,
2003.

[19] S. J. Hammarling. Numerical solution of the stable, non-negative definite Lya-
punov equation. IMA Journal of Numerical Analysis, 2(3):303–323, 1982.

[20] M. R. Hestenes and E. L. Stiefel. Methods of conjugate gradients for solving
linear systems. Journal of Research of the National Bureau of Standards, Section
B, 49:409–436, 1952.

[21] N. J. Higham. Accuracy and stability of Numerical Algorithms. SIAM, Philidel-
phia, PA, USA, second edition, 2002.

[22] N. J. Higham. Functions of Matrices: Theory and computation. SIAM, USA,
first edition, 2008.

[23] M. Hochbruck and G. Starke. Preconditioned Krylov subspace methods for Lya-
punov matrix equations. SIAM J. Matrix. Anal. Appl., 16:156–171, 1995.

[24] A. S. Hodel. Numerical Methods for the Solution of Large and Very Large, Sparse
Lyapunov Equations. PhD thesis, University of Illinois at Urbana-Champaign,
1989.

[25] A. S. Hodel, B. Tenison, and K. R. Poolla. Numerical solution of the Lyapunov
equation by approximate power iteration. Linear Algebra and its Applications,
236:205–230, 1996.

[26] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press,
New York, first edition, 1985.

[27] D. Y. Hu and L. Reichel. Krylov subspace methods for the Sylvester equation.
Linear Algebra Appl. 1992, 172:283–313, 1992.

[28] I. Jaimoukha and E. Kasenally. Krylov subspace methods for solving large Lya-
punov equations. SIAM J. Matrix Anal, 31:227–251, 1994.

[29] Angel Jorba, Josep-L. Larriba-Pey, and Juan J. Navarro. A proof for the accuracy
of OPM. Technical research report 92-10, Departament de Matemàtica Aplicada
I Universitat Politècnica de Catalunya, Barcelon, Spain, 1992.

[30] D. Kressner. Memory efficient Krylov subspace techniques for solving large-scale
Lyapunov equations. In IEEE International Conference on Computer Aided
Control Systems, pages 613–618, 2008.

260

[31] C. Lanczos. Solution of systems of linear equations by minimized iterations.
Journal of Research of the National Bureau of Standards, 49:33–53, 1952.

[32] Josep-L. Larriba-Pey and Juan J. Navarro Àngel Jorba. Spike algorithm with
savings for strictly diagonal dominant tridiagonal systems. Microprocessing and
Microprogramming, 39(2-5):125–128, 1993.

[33] Josep-L. Larriba-Pey, Angel Jorba, and Juan J. Navarro. OPM: a parallel
method to solve banded systems of equations. Technical research report 92-09,
Departament de Matemàtica Aplicada I Universitat Politècnica de Catalunya,
Bercelon, Spain, 1992.

[34] D. H. Lawrie and A. H. Sameh. The computation and communication complexity
of a parallel banded system solver. ACM Transactions on Mathematical Software,
10:185–195, 1984.

[35] Gang Lou. Parallel methods for solving linear systems via overlapping decom-
position. Thesis (m.s.), University of Illinois at Urbana-Champaign, 1989.

[36] C. C. K. Mikkelsen. The decay rate of the solution to a tridiagonal system with
a very special right hand side. Technical research report CSD TR #08-021,
Department of Computer Science, Purdue University, West Lafayette, IN, USA,
2008.

[37] C. C. K. Mikkelsen and M. Manguoglu. Analysis of the truncated SPIKE algo-
rithm. SIAM Journal of Matrix Analysis and Applications, accepted, 2008.

[38] M. Naumov and A. H. Sameh. A tearing based hybrid parallel banded solver.
Journal of Computational and Applied Mathematics, accepted, 2008.

[39] G. K. Pedersen. Analysis Now. Springer Verlag, New York, second edition, 1995.

[40] T. Penzl. A cyclic low-rank Smith method for large sparse Lyapunov equations.
SIAM J. Sci. Comp. 2000, 21(4):1401–1418, 2000.

[41] T. Penzl. Eigenvalue decay bounds for solutions of Lyapunov equations: the
symmetric case. Systems Control Lett., 40(2):139–144, 2000.

[42] T. Penzl. Lyapack users’ guide. http://www.netlib.org/lyapack/guide.pdf,
2000.

[43] E. Polizzi and A. H. Sameh. A parallel hybrid banded system solver: the SPIKE
algorithm. Parallel Computing, 32:177–194, 2006.

[44] E. Polizzi and A. H. Sameh. SPIKE: A parallel enviroment for solving banded
linear systems. Computers & Fluids, 36:113–120, 2007.

[45] P. J. Psarrakos and M. J. Tsatsomeros. Numerical range: (in) a matrix nutshell.
Notes, National Technical University, Athens, Greece, 2004.

[46] J. D. Roberts. Linear model reduction and solution of the algebraic Riccati
equation by use of the sign function. International Journal of Control, 32(4):677–
687, 1980.

[47] H. L. Royden. Real Analysis. Prentice-Hall, New Jersey, third edition, 1988.

261

[48] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Halsted Press, New
York, 1992.

[49] Youcef Saad and Martin H. Schultz. GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM J. Sci. and Stat.
Comput., 7(3):856–869, 1986.

[50] Yousef Saad. Numerical solution of large Lyapunov equations. Progr. Systems
Control Theory, 5:503–511, 1990.

[51] Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, USA, second
edition, 2003.

[52] J. Sabino. Solution of large-scale Lyapunov equations via the block modified Smith
method. PhD thesis, University of Houston, Texas, 2006.

[53] A. H. Sameh and D. J. Kuck. On stable parallel linear system solvers. Journal
of the ACM, 25:81–91, 1978.

[54] Joel H. Shapiro. Notes on the numerical range. Notes, Michigan State University,
USA, 2004.

[55] V. Simoncini. A new iterative method for solving large-scale Lyapunov matrix
equations. SIAM J. Scient. Computing, 29(3):1268–1288, 2007.

[56] V. Simoncini and V. Druskin. Convergence analysis of projection methods for
the numerical solution of large Lyapunov equations. http://www.dm.unibo.it/
~simoncini/list.html, 2008.

[57] Valeria Simoncini and Daniel B. Szyld. Recent computational developments in
Krylov subspace methods. Numerical Linear Algebra and Applications, 14(1):1–
59, 2007.

[58] R. A. Smith. Matrix equation XA + BX = C. SIAM Journal on Applied
Mathematics, 16(1):198–201, 1968.

[59] D. Sorensen and Y. Zhou. Direct methods for matrix Sylvester and Lyapunov
equations. Journal of Applied Mathematics, 6:277–303, 2003.

[60] D. C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi
method. SIAM J. Matrix Anal. Appl., 13(1):357–385, 1992.

[61] G. W. Stewart. Simultaneous iteration for computing invariant subspaces of
non-Hermitian matrices. Numerische Mathematik, 25:123–136, 1976.

[62] G. W. Stewart. Matrix Algorithms. SIAM, first edition, 2001.

[63] J. C. Strikwerda. Finite difference schemes and partial differential equations.
Wadsworth & Brooks/Cole, first edition, 1989.

[64] Xian-He Sun. Application and accuracy of the parallel diagonal dominant algo-
rithm. Parallel Computing, 21:1241–1267, 1995.

[65] Xian-He Sun, Hong Zhang, and Lionel M. Ni. Efficient tridiagonal solvers on
multicomputers. IEEE Transactions on Computers, 41(3):286–296, 1992.

262

[66] Eugene L. Wachspress. Iterative solution of the Lyapunov matrix equation.
Applied Mathematics Letters, 1(1):87–90, 1988.

[67] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press,
first edition, 1965.

[68] K. Zhou, J. C. Doyle, and K. Glover. Robust and optimal control. Prentice Hall,
New Yersey, 1996.

[69] Y. Zhou and D. C. Sorensen. Bounds on eigenvalue decay rates and sensitivity
of solutions to Lyapunov equations. Technical research report TR-02-07, CACM
Rice University, 2002.

[70] Y. Zhou and D.C. Sorensen. Approximate implicit subspace iteration with alter-
nating directions for LTI system model reduction. Numer. Linear Algebra Appl.,
to appear.

APPENDICES

263

A. The Cayley transform

A.1 Introduction

Let A be an n by n matrix and let σ(A) denote the set of eigenvalues for A. Let

S be the set of matrices, given by

S = {A : 1 6∈ σ(A)}.

The Cayley transform C(A) of A, given by

C(A) = (A + I)(A − I)−1,

is well defined for all A ∈ S.

The Cayley transform can be viewed as an extension of the function

φ(z) =
z + 1

z − 1
,

which maps C − {1} one to one and onto itself, and φ(φ(z)) = z for all z ∈ C − {1}.
We became interested in the Cayley transform because it provides a simple con-

nection between discrete and continuous time Lyapunov equations. In this appendix

we derive a list of simple results on the Cayley transform. We have been unable to

locate a reference which contains the main result, Theorem A.2.3, which is why we

give such detailed proofs.

A.2 Properties of the Cayley transform

Theorem A.2.1 The Cayley transform maps S one to one and onto S, and

C(C(A)) = A,

for all A ∈ S.

264

Proof Let A ∈ S. Then C(A) is well defined. We want to show that C(A) ∈ S. We

must show that 1 is not an eigenvalue for C(A). Let (µ, w) be an eigenpair for C(A),

then

(A + I)(A − I)−1w = µw,

or equivalently

(A + I)w = µ(A − I)w,

from which it follows

(1 − µ)Aw = −(1 + µ)w.

Now, if µ = 1, then w = 0, which is impossible, because w is an eigenvector for C(A).

It follows that C(A) ∈ S. We conclude that the Cayley transform maps S into itself.

We now show that C(C(A)) = A. By definition

C(A) = (A + I)(A − I)−1 = (A − I + 2I)(A − I)−1 = I + 2I(A − I)−1,

from which it follows, that

C(C(A)) = (C(A) + I)(C(A) − I)−1 = 2(I + (A − I)−1)(2(A − I)−1)−1

= (I + (A − I)−1)(A − I) = (A − I) + I = A.

We conclude that the Cayley transform maps S one to one and onto itself, and

C(C(A)) = A for all A ∈ S.

Now, let A ∈ S, and let (λ, v) be an eigenpair for A. By definition

Av = λv,

which implies

(A ± I)v = (λ ± 1)v,

and

C(A)v = (A + I)(A − I)−1v = φ(λ)v.

265

We conclude that (φ(λ), v) is an eigenpair for C(A). By Theorem A.2.1 it follows

immediately that (λ, v) is an eigenpair for A if and only if (φ(λ), v) is an eigenpair

for C(A).

It is well known that φ maps the open left hand complex plane one to one and

onto the open unit disk. As a result we have the following theorem.

Theorem A.2.2 A is a stable matrix if and only if the spectral radius of C(A) is

strictly less than 1.

We now prove the main result

Theorem A.2.3 A is a negative definite matrix if and only if ‖C(A)‖2 < 1.

Proof We received this elegant proof from Prof. Bent Ørsted from the University

of Aarhus, Denmark. By definition

C(A)TC(A) − I = (A − I)−T (A + I)T (A + I)(A − I)−1 − I,

which we rewrite as

C(A)TC(A) − I = (A − I)−T (A + I)T (A + I) − (A − I)T (A − I))(A − I)−1

= (A − I)−T (2(A + AT))(A − I)−1,

or equivalently

I − C(A)TC(A) = (A − I)−T (−2(A + AT))(A − I)−1

Now if ‖C(A)‖ < 1, then I − C(A)TC(A) is symmetric positive definite and admits a

Cholesky factorization

I − C(A)TC(A) = LLT .

It follows immediately, that

−2(A + AT) = (A − I)T LLT (A − I)

266

is also symmetric positive definite. Similarly if A is negative definite, then

I − C(A)TC(A)

must necessarily be symmetric positive definite and it follows that

C(A)TC(A) < I,

or equivalently

‖C(A)‖2 < 1.

Now suppose A is a negative definite matrix, then ‖C(A)‖2 < 1. Let σ be a

singular value for C(A), and let v be the corresponding right singular vector, then

C(A)TC(A)v = σ2v

or equivalently

(A + I)T (A + I)w = σ2(A − I)T (A − I)w,

where we have introduced w = (A − I)−1v. It follows that

(1 − σ2)(AT A + I)w = −(1 + σ2)(A + AT)w

and since σ2 < 1, we have

(AT A + I)w = −1 + σ2

1 − σ2
(A + AT)w = φ(σ2)(A + AT)w

We see that the singular values of C(A) are given by the eigenvalues of a generalized

eigenvalue problem involving symmetric positive definite matrices.

267

B. Drawings of the SPIKE partitioning

This appendix contains some large drawings of the partitioning used in the SPIKE

algorithms. They contain information which has already been presented in the main

chapter, but the drawings are clearer than the defining equations and we feel justified

in presenting them here.

The case of p = 3 partitions is the simplest example which represents all aspect

of the general case. In the case of p = 2 the reduced system is equal to the truncated

reduced system and there is no truncation error.

We have illustrated the partitioning of the original matrix in Figure B.1, the layout

of the SPIKE system in Figure B.2, emphasized the position of the reduced system in

Figure B.3, and isolated the reduced system, as well as the truncated reduced system

in Figure B.4, and Figure B.5.

It is assumed that the number of superdiagonals k is equal to the number of

subdiagonals and that the number of processors n divides the dimension n of the

matrix. The diagonal blocks is µ = n/p.

268

.

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
...

.

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
...

A1

A2

A1

B1

B2

C2

C3

x1

x2

x3

f1

f2

f3

=

Figure B.1. The partitioning of the original system for the SPIKE algo-
rithms, p = 3 partitions.

269

Iµ

Iµ

Iµ

V1

V2W2

W3

x1

x2

x3

g1

g2

g3

=

Figure B.2. The SPIKE system corresponding to p = 3 partitions.

270

Iµ−k

Iµ−2k

Iµ−k

V
(t)
1

V
(m)
1

V
(b)
1

V
(t)
2

V
(m)
2

V
(b)
2

W
(t)
2

W
(m)
2

W
(b)
2

W
(t)
3

W
(m)
3

W
(b)
3

Ik

Ik

Ik

Ik

x
(m)
1

x
(m)
2

x
(m)
3

x
(t)
1

x
(b)
1

x
(t)
2

x
(b)
2

x
(t)
3

x
(b)
3

g
(m)
1

g
(m)
2

g
(m)
3

g
(t)
1

g
(b)
1

g
(t)
2

g
(b)
2

g
(t)
3

g
(b)
3

=

Figure B.3. The SPIKE system corresponding to p = 3 partitions with
special emphasis on the reduced system.

Ik V
(b)
1

W
(t)
2 Ik V

(t)
2

W
(b)
2 Ik V

(b)
2

W
(t)
3 Ik

x
(b)
1

x
(t)
2

x
(b)
2

x
(t)
3

g
(b)
1

g
(t)
2

g
(b)
2

g
(t)
3

=

Figure B.4. The reduced system corresponding to p = 3 partitions. The
reduced system matrix has dimension 4k.

271

Ik V
(b)
1

W
(t)
2 Ik

Ik V
(b)
2

W
(t)
3 Ik

x
(b)
1

x
(t)
2

x
(b)
2

x
(t)
3

g
(b)
1

g
(t)
2

g
(b)
2

g
(t)
3

=

Figure B.5. The truncated reduced system responding to p = 3 partitions.

VITA

272

VITA

Carl Christian Kjelgaard Mikkelsen was born in Aarhus, Denmark, on the 3rd of

February 1976. He received his masters degree in mathematics from the University

of Aarhus in May 2003. He has been a graduate student at Purdue University since

January 2004.

