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Abstract. Recurrent neural networks (RNNs) is a useful tool for
sequence labelling tasks in natural language processing. Although in
practice RNNs suffer a problem of vanishing/exploding gradient, their
compactness still offers efficiency and make them less prone to overfit-
ting. In this paper we show that by propagating the prediction of previous
labels we can improve the performance of RNNs while keeping the num-
ber of parameters in RNNs unchanged and adding only one more step
for inference. As a result, the models are still more compact and efficient
than other models with complex memory gates. In the experiment, we
evaluate the idea on optical character recognition and Chunking which
achieve promising results.
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1 Introduction

Sequence labelling is a machine learning method which has been widely used
for natural language processing tasks. In early work, these tasks attract the
use of dynamic Bayesian models such as Hidden Markov Models (HMMs) [21]
and Conditional Random Fields (CRFs) [17]. An advantage of such models is
the ability to learn relationships between sequence labels, which is useful for
temporal reasoning. Recently recurrent neural networks (RNNs) have become a
central tool for sequence labelling. An RNN is constructed by rolling an artificial
neural network with one hidden layer over time. The hidden layer is connected to
itself through recurrent weights. A main advantage of RNNs is the ability to learn
temporal representations from data using recurrent hidden layers. Different from
dynamic Bayesian models, RNNs assume that the class labels in a sequence are
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independent, given the sequence inputs. This makes inference easier, but with the
sacrifice of valuable information: the temporal dependencies of sequence labels.

However, as a type of deep architecture, RNNs suffer the problem of vanish-
ing/exploding gradient which necessitates the use of complex memory gates such
as Long-short term memory (LSTM) [14] and Gated recurrent unit (GRU) [3].
However, in many cases, especially when efficiency and compactness are of vital
importance, RNNs are more desirable. For example, one would choose an RNN
over LSTM for memory-limited devices such as mobile phones and smart sensors
if its performance is acceptable. Also, the complexity of LSTM and its variants
make it prone to overfitting when training data is small. This situation is very
common with natural language processing because of the difficulty in labelling
ground truth for large number of sequences. Therefore, it would be useful for
an improved version of RNNs which can perform comparably well in compari-
son to complex models such as GRU and LSTM while keeping the number of
parameters remain small in size.

In this paper we show that by propagating the prediction of previous labels
we can improve the performance of RNNs. This means that we can keep the
number of parameters in RNNs unchanged while adding only one more step for
inference. Therefore, the models are still more compact and efficient than other
models with complex memory gates.

(a) RNNs (b) Predictive propagation RNNs

Fig. 1. RNNs and ppRNNs

In the experiments, we evaluate RNNs with predictive propagation (ppRNNs)
on two sequence labelling tasks: OCR and Chunking. The results show that in
most cases predictive propagation help improving the performance of RNNs.
We also evaluate the effect of the data sizes on ppRNNs using a POS tagging
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dataset. We find that ppRNNs achieve higher accuracy than RNNs, GRUs and
LSTMs when small training samples are used. Finally, a synthetic dataset is
used to compare the computational time needed for training and inference with
ppRNNs to that of GRU and LSTM. It shows that due to the additional step
for propagating predictions ppRNNs are more computationally expensive than
GRU and LSTMS when the dimension of the output layer is very large, e.g. 400
in the experiment. Fortunately, in practice there are many applications that do
not require such high number of classes.

The remainder of the paper is organised as follows. In the next section, we
review the literature related to this work. Section 2 introduces the idea of predic-
tive propagation in recurrent neural networks. In Sect. 3, we perform the empir-
ical evaluations. Finally, Sect. 4 concludes the paper and discusses the future
extensions.

2 Recurrent Neural Networks with Predictive
Propagation

2.1 Graphical Structure

A recurrent neural network for sequence labelling is illustrated in Fig. 1a where
Wxh is the weight matrix of connections between input and hidden layers; Why

is the weight matrix of connections between hidden and output layers; Whh is
the weight matrix of recurrent connections; b, c are the biases of output units
and hidden units respectively.

The predictive propagation recurrent neural network is similar to a recurrent
neural network, except that the connections between hidden layer and output
layer are bidirectional, as shown in Fig. 1b. Here, the upward direction is used
for prediction while the downward direction is for propagating that prediction to
the next time step. In the next sections we will show how inference and learning
are carried out in this model.

2.2 Inference

Inference in ppRNNs at each time step involves the computation of two states:
the state of the output layer in current time step for prediction, and the state
of hidden layer that would be used to propagate the current and previous infor-
mation, including the prediction, to the next step. The details of those steps are
in Algorithm 1. Here, f is an activation function and s is the softmax function
s(x)i = exp(xi)∑

i′ exp(xi)
.

2.3 Learning

We train the RNNs using each sample at a time. In particular for each training
pair x1:T ,y1:T from the dataset we infer ỹ1:T using the Algorithm 1 and update



Predictive Propagation RNNs 455

Algorithm 1. Predictive propagation
Data: Input: x1:T

Result: Output: o1:T

for t = 1 : T do

h̃t = f(xt�
Wxh + ht−1�

Whh + c�)

ỹt = s(h̃t�
Why + b�)

ot = arg maxkỹt
k

ht = f(xt�
W + ỹt�

W�
hy + ht−1�

Whh + c�)

end

the parameters by minimising the cross entropy:

C = − 1
T

T∑

t=1

L∑

l=1

[ytl log ỹtl + (1 − ytl ) log(1 − ỹtl )] (1)

where L is the number of classes. A RNN trained by this method is denoted
as ppRNNp. Alternatively, with the availability of the true labels, we can use
another method to infer ỹ1:T by replacing ỹt in the last expression in Algorithm
1 with yt. The state of hidden layer at time t then becomes ht = g(xt�W +
yt�Why

� +ht−1�Whh + c�). We denote a ppRNN using this type of inference
for learning as ppRNNg.

3 Experiments

3.1 OCR

The MIT OCR dataset1 is a widely used benchmark for evaluating sequence
labelling algorithms [25]. We use two popular partitions from [19] and [1,9]. In
the former, called here “ms” for model selection, the data is partitioned into 10
groups, each consisting of a training, validation, and test set. We select models
based on performance on the validation sets and report their average accuracy
on the test sets. In the latter, here called “cv” for cross-validation, the data is
divided into 10 folds in the usual way but without model selection. Each fold in
the “cv” partition has ∼6000 training samples, about 10 times larger than each
fold in “ms”.

Effect of Learning Methods. First, we use the “ms” partition which consists
of ten folds, each has ∼600, ∼100, and ∼5400 samples for training, validation,
and testing respectively. With such a small number of samples for training we can
anticipate the issue of overfitting for large models. Besides, selection of learning
methods is also very important. Therefore, we start with testing RNNs with

1 http://www.seas.upenn.edu/∼taskar/ocr/.

http://www.seas.upenn.edu/~taskar/ocr/
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different number of hidden units: hidNum = {100, 500, 1000, 2000, 5000, 10000};
and learning methods: lrn = {sgd : vanilla stochastic gradient descent , adagrad
[10], rmsprop, adam [16]}. For each pair of (hidNum,lrn), we select the best
learning rate and activation function based on the performance of validation sets.
For early stopping, if performance on a validation set does not improve for 20
epochs then we stop the learning and use the best trained model for testing. As
we can see from Fig. 2 the performances of RNNs on the test set drop significantly
when the number of hidden units is too high. This makes sense because such
overfitting phenomenon is more likely to happen when the models become more
complex, i.e. have large number parameters. Overall, adaptive learning method
adam, which is recently introduced, is shown better than the other methods
tested here. adam also offers another advantage is that it is fast and works very
well with sparse data. Different initial learning rates can be used for adam to
produce good results but we found that normally 0.001 is good for all cases. In
terms of activation function, surprisingly it seems that using sigmoid for RNNs
performs better than tanh despite a study in deep feed-forward neural networks
suggesting that the former may suffer from a gradient saturation issue [12].

Fig. 2. Performance of RNNs on OCR test set with different learning algorithms and
number of hidden units

Overall Results. We compare the performance of SCRBM on the above
sequence labelling task with the models: Multiclass support vector machines
(SVM-multiclass) [6], Structured support vector machines (SVM-struct) [26],
Max-margin Markov network (M3N) [25], Averaged Perceptron [4], Search-based
structured prediction model, a.k.a SEARN [7], Conditional random field (CRF)
[17,20], Hidden Markov model (HMM) [21], LogitBoost [11], TreeCRF [8], RTD-
RBM [2] (modified to use the inference algorithm proposed in this paper so it
works with a sequence labelling task), and state-of-the-art models:
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Table 1. Average test set accuracy (%) of various models on the OCR sequence
labelling task; “ms” dataset uses model selection and “cv” uses cross-validation without
model selection.

Model ms cv

ppRNNg 88.54 95.20

ppRNNp 88.60 95.54

RNNsigmoid+adam 88.44 95.64

LSTM 88.28 95.24

GRU 85.77 93.62

RTDRBM 84.54 -

Neural CRFCML - 95.56

Neural CRFLM - 95.44

SLE 79.42 -

GBCRF - 95.36

TreeCRF - 93.01

LogitBoost - 90.33

RNNtanh+sgd 77.08 86.67

M3N 74.92 86.54

Perceptron 73.60 -

SEARN 72.98 -

SVMmulticlass 71.46 -

SVMstruct 78.84 -

HMM 76.30 -

CRF 67.70 85.80

– Structured learning ensemble (SLE) [19]: An optimised ensemble of 7 effective
models: SVM-multiclass, SVM-struct, M3N, Perceptron, SEARN, CRF and
HMM.

– Neural CRF [9]: A combination of CRF and deep networks.
– Gradient boosting CRF (GBCRF) [1]: CRF trained by a novel gradient boost-

ing algorithm.

For the “ms” partition, to determine the best model for the task, a grid search
was carried out where the number of hidden units, learning rate, activation
function are selected similarly as in Sect. 3.1. For the “cv” partition, since model
selection is not possible, we use 2000 hidden units and set the initial learning
rate for adam [16] as 0.001. Each model is trained in 30 epochs.

Table 1 summarises the results and shows that with a right choice of activa-
tion function (sigmoid) and learning method (adam) RNNs can perform very
well in this dataset. Although improvement has not been seen in “cv” partition
ppRNNs achieve higher accuracy than other methods in “ms” partition where
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the number of training samples is smaller. The results also imply that propagat-
ing prediction probabilities (ppRNNp) seems slightly better than propagating
ground truth (ppRNNg), during the learning (Table 2).

Table 2. Features extraction for Conll2000 Chunking task (see [23])

wt−δ = w

wt matches [A-Z][a-z]+

wt matches [A-Z]

wt matches [A-Z]+

wt matches [A-Z]+[a-z]+[A-Z]+[a-z]

wt matches .*[0-9].*

wt appears in list of first names,

last names, company names, days,

months, or geographic entities

wt is contained in a lexicon of words

with POS T (from Brill tagger)

Tt = T

qk(x, t + δ) for all k and δ ∈ [−3, 3]

3.2 CoNLL 2000 Chunking

The CoNLL 2000 shared task is a benchmark data for sequence labelling with a
focus on Chunking. The dataset consists of 8, 936 and 2012 sentences for training
and testing respectively. For this data we use the binary features from [23].

In this experiment, we use 50000 most common features from the training
set. The motivation behind the selection of this type of features over word2vec
features is to exploit the efficiency of RNNs. Although word2vec features are
smaller in terms of size, generic approaches such as RNN, GRU, LSTM do not
perform well, and therefore more complex variants, i.e. biLSTM [13], bi-LSTM-
CRF [15] and CNN-biLSTM-CRF [18] are needed when using word2vec features
as their sole input. Here, the compactness and efficiency of RNNs make it easier
to work with such highly dimensional hand-crafted features, which in this case
perform better than word2vec features .

Since the dataset only includes training and testing samples we do not per-
form model selection and early stopping. Instead, we set the number of hid-
den units to be 500 and the number of training epochs to be 50. Such hyper-
parameters are chosen based on the capacity of our computers used in this
experiment. We also use adam to take the advantage of sparsity of the features,
the initial learning rate for it is 0.001.

As we can see from Table 3, the features are so effective that even a sim-
ple RNN can give a better result than many other approaches using different
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Table 3. F1 score in CoNLL 2000 chunking data.

Model F1 score

ppRNNg 95.319

ppRNNp 95.302

LSTM 95.118

GRU 94.719

RNN 95.085

Suzuki et. al. [24] 95.15

Huan et. al. [15] 94.46

Sun et. al. [22] 94.34

Collobert et. al. [5] 94.32

Tsuruoka et. al. [27] 93.81

features. Again, we show that predictive propagation can help to improve the
performance. It is also worth noting that the ppRNNs in this case only needs
∼4 h to train while the GRU and LSTM take more than ∼10 h, using NVIDIA
Quadro P1000. Although the other models we compare to in Table 3 are appli-
cable to the hand-crafted features above, in this experiment we show that RNNs
can perform very well while being very efficient.

Table 4. Test accuracy of ppRNNs, RNN, GRU and LSTM on POS dataset with
different number of training samples.

Model 500 1000 2000 4000 8000

ppRNNg 88.703 90.847 91.757 92.122 93.336

ppRNNp 88.646 90.767 91.781 92.244 93.419

RNN 88.293 90.755 91.808 92.303 93.380

LSTM 88.529 90.585 91.606 92.445 93.414

GRU 88.571 90.526 91.169 92.276 93.046

3.3 POS Tagging: Effect of Training Size

In this experiment we use a POS tagging dataset with different training sizes
of 500, 1000, 4000, 8000 samples to compare the effectiveness of ppRNNs with
RNN, GRU, and LSTM. The samples are obtained from Penn Treebank 2002
dataset. Model selection and early stopping are done by leaving out 10% of the
training set for validation. The test set consists of ∼1600 samples and is applied
to all cases.
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Similar to the Chunking task above, we also use binary features for each
token in POS task. The results in Table 4 show that ppRNNs perform better
than the others when the training data is small.

Fig. 3. Computational time.

3.4 Computational Time

Finally, in order to compare the efficiency of ppRNNs over other types of RNNs
we use a synthetic dataset of 1000 training samples and 1000 validation samples.
Each sample has the length of 100 and the input’s dimension is 1000. We train
each model in one epoch and evaluate it on the validation set. All RNNs have
100 hidden units. Since the computation in ppRNNs requires the propagation
of the prediction back to the hidden layer we test the computational time of
the models on the data with different number of classes using a PC with 4
Intel CoreTM i5-6500 CPUs @ 3.20 Hz and 32 GiB RAM. From Fig. 3 we can
see that ppRNNg and ppRNNp takes similar time to learn and infer, and also
that when the number of labels grows larger, i.e. ∼400, ppRNNs become slower
than LSTM. However, it is not common to see such a large number of labels in
sequence labelling in practice.

4 Conclusion

We have shown an empirical study on propagating prediction of output layer in
RNNs for sequence labelling. In most cases, it helps improve the performance
of RNNs while maintaining the compactness. The computational time of the
proposed models is practically efficient in comparison with other RNNs having
complex memory gates.
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